楊 望,李 楊,鄭 賢,陳科余,楊 堅,莫建霖,隋明君
?
基于改進蜘蛛群集算法的木薯收獲機塊根拔起速度優(yōu)化
楊 望1,李 楊1,鄭 賢1,陳科余2,楊 堅1※,莫建霖3,隋明君1
(1. 廣西大學機械工程學院,南寧 530004;2. 廣西大學工程實踐與訓練中心,南寧 530004;3. 廣西農業(yè)機械研究院,南寧 530007)
針對挖拔式木薯收獲機由于較難獲得塊根拔起速度控制系統(tǒng)最優(yōu)化控制參數,造成塊根拔起速度控制精度較低,木薯塊根收獲拔斷損失率較大的問題,開展拔起機構塊根拔起速度控制系統(tǒng)控制參數優(yōu)化的算法研究。該文以模糊PI作為塊根拔起速度控制算法,采用多領域的動力學仿真技術,構建木薯收獲機塊根拔起機構控制系統(tǒng)的聯合仿真模型,以較優(yōu)塊根拔起速度模型為控制目標,塊根拔起阻力為條件,開展結合局部搜索算子的蜘蛛群集算法的模糊PI控制參數的優(yōu)化研究,且進行了田間木薯塊根拔起試驗。結果表明,結合局部搜索的蜘蛛群集算法比蜘蛛群集算法具有較快的收斂速度和較高的搜索精度,模糊PI控制參數的優(yōu)化結果,控制參數K為0.841,K為0.203 9,在優(yōu)化的控制參數條件下,塊根拔起速度能較好跟隨較優(yōu)塊根拔起速度,木薯塊根的垂直拔起速度與塊根拔起較優(yōu)速度的平均相對誤差為4.5%,滑塊位移與理論值的平均相對誤差為3.7%。
機械化;控制;算法;木薯收獲機;拔起機構;聯合仿真;局部搜索算子
目前中國的木薯收獲機主要有挖式和挖拔式2種[1-3]。挖式木薯收獲機主要由挖掘鏟和土薯分離裝置組成,其作業(yè)效率高,但功耗大,且挖掘深度受限,收獲損失率較大[4-7]。同時,挖式木薯收獲機不適合黏土作業(yè);挖拔式木薯收獲機主要由松土鏟和拔起機構系統(tǒng)組成,其功耗小,對土壤的適應性強,但塊根撥起速度不可控的挖拔式木薯收獲機塊根收獲拔斷損失較大,塊根撥起速度可控的挖拔式木薯收獲機(簡稱木薯收獲機)塊根收獲拔斷損失受拔起速度的控制精度影響較大,而塊根拔起速度的控制精度主要取決于控制系統(tǒng)是否獲得好的控制參數,即取決于系統(tǒng)控制參數優(yōu)化算法是否能獲得控制參數的最優(yōu)值[8-10]。因此,采用先進的方法和技術,開展拔起機構塊根拔起速度控制系統(tǒng)控制參數優(yōu)化的算法研究,對提高塊根拔起速度的控制精度及減少木薯塊根收獲損失具有重要意義[11-14]。
模糊PI控制算法是一種具有自適應控制的方法,在各領域的控制方面已得到了較多的應用,但對復雜系統(tǒng)控制參數優(yōu)化的能力有限[15],而仿生群體智能算法具有全局搜索能力強,收斂速度快特點,主要包括蟻群算法[16-17]、粒子群算法[18-19]、遺傳算法[20-21]、魚群算法[22-23]和蜘蛛群集算法[24-25]等。因此,根據上述算法的特點,本文以廣西大學研制的木薯收獲機塊根拔起速度為控制對象,以模糊PI作為塊根拔起速度控制算法,采用多領域的動力學仿真技術,構建木薯收獲機塊根拔起機構控制系統(tǒng)的聯合仿真模型,以較優(yōu)塊根拔起速度模型為控制目標,塊根拔起阻力為條件,結合局部搜索算子[26],開展具有收斂速度快,搜索精度高改進的蜘蛛群集算法研究,優(yōu)化系統(tǒng)控制參數,為木薯收獲機塊根拔起速度精確控制提供參考。
木薯收獲機主要由機械系統(tǒng)、液壓系統(tǒng)和電控系統(tǒng)三大部分組成,其結構示意圖如圖1所示。
田間作業(yè)時,木薯收獲機在拖拉機的牽引下,松土鏟松土,導行桿歸攏木薯莖稈,當木薯莖稈碰觸到夾持裝置行程開關時,電磁單向閥和二位四通換向閥同時通電,液壓系統(tǒng)停止向拖拉機液壓提升裝置供油,夾持裝置夾緊木薯莖稈。隨后,比例閥控制液壓馬達轉動,驅動齒輪、齒條運動,帶動夾持裝置按規(guī)定的速度模型運動,拔起木薯塊根,同時,在土薯分離裝置的作用下塊根和土壤分離,當滑塊到達最高位置時,接近開關閉合,二位四通換向閥斷電,夾持裝置松開木薯莖稈,木薯塊根靠自重下落,液壓馬達反轉,拔起裝置復位,完成木薯收獲的挖拔過程。
1. 懸掛裝置 2.觸碰開關 3.松土鏟 4.夾持裝置 5.液壓油缸 6.速度傳感器 7.液壓馬達 8.最高點開關 9.拔起裝置 10.土薯分離裝置
文獻[27]根據有收獲經驗薯農的木薯塊根拔起試驗和塊根拔起速度模型的優(yōu)選結果,以廣西木薯種植基地木薯收獲期的土質情況和木薯塊根平均直經、平均長度等為條件,采用數值模擬試驗,對機械的塊根拔起較優(yōu)速度模型進行了研究。試驗表明,采用文獻[27]給出的木薯塊根拔起較優(yōu)速度模型拔起收獲塊根,能達到較好的塊根收獲質量。木薯塊根拔起的較優(yōu)速度模型,如式(1)所示。
式中為時間,s;()為垂直塊根拔起速度,m/s。
本文研究的木薯塊根收獲機,加裝了文獻[28]給出的土薯分離效果較好的土薯抖動分離裝置,因此,將式(1)中的正弦部分(起抖動分離土薯作用)去除,僅把拋物線函數部分作為木薯塊根拔起的較優(yōu)速度模型。
本文通過控制液壓馬達轉速控制塊根拔起速度,因此須進行速度轉換。轉換得到的液壓馬達理論較優(yōu)轉速(與木薯塊根拔起的較優(yōu)速度模型對應)ω()為
式中v為拖拉機的前進速度(本文取值0.214 7 m/s),為導軌與水平方向的夾角(本文取值45°),為齒輪半徑(本文取值33 mm)。
在木薯塊根的拔起過程中,為了實現拔起速度的精確控制,本文利用模糊PI算法的輸出值對PI控制器的比例部分和積分部分進行修正,使實際拔起速度跟隨較優(yōu)拔起速度,其模糊PI控制算法如圖2所示。
本文的模糊PI控制算法,主要由輸入量、和輸出量ΔK、ΔK四部分組成。在實際測量過程中確定液壓馬達轉速誤差的范圍為[-17,17],誤差變化率的范圍為[-13,13]。為了平均分配誤差和誤差變化率,將誤差和誤差變化率定義為n1、n2、n3、n4、z0、p1、p2、p3、p4。在誤差的區(qū)域內采用間隔2作為分值,在誤差變化率區(qū)域內采用間隔1.5作為分值。實際物理輸出量ΔK和ΔK的范圍為[0,2],但在仿真計算中,如果取值范圍過小,雖然精度有所提高,但仿真計算時間過長,因此本文為了減少仿真時間,范圍設為[0,20]。輸出結果ΔK和ΔK平均分配,將ΔK和ΔK定義為n1、n2、n3、n4、z0、p1、p2、p3、p4。ΔK采用間隔1.5作為分值,ΔK采用間隔2作為分值。
注:ΔKp和ΔKi為輸出量。
在解模糊化的過程中,為了便于求解輸出量,采用面積中心法進行求解。根據輸入量、和輸出量ΔK、ΔK的定義域和取值,制定模糊規(guī)則,如表1、2所示。
表1 ΔKp的模糊規(guī)則
表2 ΔKi的模糊規(guī)則
木薯收獲機是一個涉及機械、液壓和控制等多學科領域的復雜系統(tǒng),采用單一軟件較難進行控制參數優(yōu)化研究[29]。因此,本文采用聯合仿真的方法進行控制參數的尋優(yōu)研究。
2.3.1 聯合仿真模型
根據木薯收獲機的整體結構和工作原理構建聯合仿真模型,其機械液壓系統(tǒng)模型在Amesim軟件中搭建,控制系統(tǒng)在Simulink中搭建,建立的木薯收獲機聯合仿真模型和機械液壓系統(tǒng)仿真模型如圖3所示。
聯合仿真模型主要包括液壓系統(tǒng)模塊、機械系統(tǒng)模塊和電控系統(tǒng)模塊。機械系統(tǒng)模塊主要包括拔起裝置和夾持裝置;液壓模塊主要包括比例閥控液壓馬達模塊、拖拉機液壓提升油路截斷控制模塊和二位四通換向閥控液壓油缸模塊;電控系統(tǒng)主要包括木薯塊根拔起較優(yōu)速度模塊、拔起力模塊和模糊PI控制算法模塊。
a. 木薯收獲機聯合仿真模型
a. Co-simulation model of cassava harvester
b. 機械液壓系統(tǒng)仿真模型
2.3.2 結合局部搜索的蜘蛛群集算法
在聯合仿真模型中,控制系統(tǒng)的和值決定實際拔起速度??刂茀颠^大或過小,對實際的拔起速度與較優(yōu)拔起速度的偏差有較大影響,因此,本文采用結合局部搜索的蜘蛛群集算法,通過迭代尋優(yōu)方法確定和的最優(yōu)解。
蜘蛛群集算法將蜘蛛群落分為雌雄兩部分,雌蜘蛛向權重較大的個體迭代,雄蜘蛛向雄蜘蛛群落的中間個體靠攏,在規(guī)定的交配范圍內,雄蜘蛛與范圍內的雌蜘蛛交配產生新的蜘蛛個體,代替整個群落的最差個體,通過循環(huán)上述過程,實現最優(yōu)解的求解。
1)雌蜘蛛迭代
概率因子PF決定雌蜘蛛個體靠近還是遠離雌蜘蛛最優(yōu)個體,迭代公式如式(3)所示。
式中F表示雌蜘蛛個體的位置,表示迭代次數,和表示各項的系數,S為比雌蜘蛛權重大且距離雌蜘蛛最近的個體,S為權重最大的雌蜘蛛,Vb為雌蜘蛛對雌蜘蛛的感知性能,Vb為雌蜘蛛對權重最大的雌蜘蛛的感知性能。
2)雄蜘蛛協作
將中間權重的雄蜘蛛作為雄蜘蛛群落的閾值,當雄蜘蛛比重大于閾值時,雄蜘蛛向最近的雌蜘蛛靠攏,當雄蜘蛛比重小于閾值時,雄蜘蛛向雄蜘蛛群落的中間個體靠攏。迭代公式如式(4)所示。
式中M為雄蜘蛛的位置,W表示雄蜘蛛的閾值,Vb為雄蜘蛛對最近雌蜘蛛的感知性能,S為距離雄蜘蛛最近的雌蜘蛛,M為中間權重的雄蜘蛛位置。
3)雌、雄蜘蛛交配
以任意的雄蜘蛛為中心,為半徑進行搜索,若存在雌蜘蛛,則雌蜘蛛組成新的種群T,種群的比率()如式(5)所示,w與w為個體權重。據種群比率的輪盤法[30]選出最差個體new,并記錄最差個體的位置。若最差個體的適應值大于種群的最差個體,則替代最差個體。
4)局部最優(yōu)搜索算子
當雌、雄蜘蛛交配半徑小于閥值r時,以最優(yōu)個體為中心,在交配半徑/10的區(qū)域內進行局部搜索。當局部搜索的最小適應值小于群落的最優(yōu)值best時,替代最優(yōu)值;當局部搜索的最小適應值大于等于最優(yōu)值時,繼續(xù)進行下一次雌、雄迭代搜索,如式(6)所示。
式中fitness表示在搜索半徑r/10區(qū)域內的蜘蛛個體的適應值,min(fitness)表示取適應值的最小值。本文選用常用的測試函數[31]驗證結合局部搜索的蜘蛛群集算法和蜘蛛群集算法的收斂性,測試函數如表3所示。
表3 測試函數
圖4是測試函數的迭代收斂結果。由圖4可知,在單峰函數1和2中,結合局部搜索的蜘蛛群集算法經過400多次迭代之后,其結果收斂于0,收斂速度和迭代結果都優(yōu)于蜘蛛群集算法。在多峰函數3中,結合局部搜索的蜘蛛群集算法在經過400多次迭代之后算法收斂于0,避免在迭代過程中陷入局部最優(yōu)解,而蜘蛛群集算法在迭代初期陷入局部最優(yōu),且隨著迭代次數的增加,其值不再發(fā)生變化,表明結合局部搜索的蜘蛛群集算法比蜘蛛群集算法具有較快的收斂速度和較高的搜索精度,適用于高維復雜函數求極值的問題。
圖4 測試函數的迭代收斂結果
2.3.3 參數優(yōu)化及結果分析
本文將聯合仿真評價函數的最小適應值的解作為最優(yōu)蜘蛛個體的位置,通過局部搜索的蜘蛛群集算法實現蜘蛛群落位置的更新,并作為下一次聯合仿真的新值,循環(huán)上述過程,確定控制參數的最優(yōu)解,其控制參數尋優(yōu)流程圖如5所示。
圖5 控制參數尋優(yōu)流程圖
評價函數()如式(7)所示。
式中為仿真計算步長(本文取值0.001),為仿真計算點數(本文取值1 300),|()|為采集數據誤差的絕對值。
迭代次數設為500次,蜘蛛數量設為30只,最小適應值設為1×10-6,維度設為2。每次仿真后,調整新的隨機數值進行下一次仿真,結果表明控制參數和值變化較小,因此,本文選取10次仿真結果的平均值作為最后的輸出值,即為0.841,為0.203 9。
把(0.841)和(0.203 9)作為系統(tǒng)的控制參數,分別以恒定拔起阻力、軟土拔起阻力和硬土拔起阻力[32]為仿真試驗條件,分別進行仿真模擬試驗,結果如圖6所示。
圖6 不同拔起力條件下的轉速跟隨圖
由圖6可知,在塊根拔起的初始階段,恒定拔起阻力、軟土拔起阻力和硬土拔起阻力條件下的跟隨液壓馬達轉速偏離液壓馬達的理論較優(yōu)轉速較大,而之后,跟隨液壓馬達轉速接近液壓馬達的理論較優(yōu)轉速。其原因是,在塊根拔起的初始階段,由于各種拔起阻力的增速快,故液壓馬達轉速不穩(wěn)定,而之后,雖然軟土拔起阻力和硬土拔起阻力有一定的波動,但其大小變化相對較平緩,故在模糊PI控制器實時調節(jié)作用下,液壓馬達的轉速接近理論較優(yōu)轉速。表明結合局部搜索算子的蜘蛛群集算法應用于木薯收獲機,塊根拔起速度能較好跟隨塊根拔起較優(yōu)速度。
木薯塊根撥起試驗時,隨機選取6棵木薯進行拔起試驗,在木薯收獲機拔起木薯塊根過程中,先采用編碼器和位移傳感器實時采集齒輪的轉速和滑塊的位移,后與木薯塊根拔起的液壓馬達理論較優(yōu)轉速和滑塊的理論位移進行比較,驗證結合局部搜索算子的蜘蛛群集算法用于木薯收獲機塊根拔起作業(yè)的控制精度。試驗時,發(fā)動機轉速為800 r/min,拖拉機前進速度為0.21 m/s。
主要試驗設備:木薯收獲機樣機(廣西大學試制,單行收獲機),上海654拖拉機,筆記本電腦等。試驗場地:廣西大學木薯種植試驗基地。
圖7、8是木薯拔起試驗獲得的2棵木薯試驗結果。其中,圖7是轉速跟隨曲線圖,圖8是位移跟隨曲線圖,實線是液壓馬達理論較優(yōu)轉速和滑塊的理論位移,虛點線是木薯塊根拔起試驗的液壓馬達實際轉速和滑塊實際位移。
圖7 木薯拔起試驗轉速跟隨曲線
由圖7可知,木薯塊根拔起的總時間為1.32 s,最大轉速為184 r/min,在0~0.2 s木薯塊根拔起的前期,轉速能較快向理論較優(yōu)轉速曲線靠攏;在0.2~1.1 s木薯塊根拔起的中期,雖然塊根拔起力不斷變化,但由于模糊PI控制器不斷調節(jié)輸出值,使液壓馬達的轉速始終接近理論較優(yōu)轉速曲線;在1.1~1.32 s木薯塊根拔起的后期,由于木薯塊根已與土體土壤分離,拔起力變化小,實際轉速趨向于理論較優(yōu)轉速。由圖8可知,滑塊位移為0.35 m,在0~0.2 s木薯塊根的拔起前期,滑塊位移緩慢增大;在0.2~1.1 s木薯塊根的拔起中期,實際的滑塊位移始終接近理論位移;在1.1~1.32 s木薯塊根的拔起后期,塊根與土體土壤分離,實際位移趨向于理論位移。
圖8 木薯拔起試驗位移跟隨曲線
驗證試驗的誤差分析,采用平均誤差1和最大誤差2進行,其計算式如式(8)、(9)所示。
式中1為實際轉速,r/min;2為理論較優(yōu)轉速,r/min;為采樣個數,取50;為木薯試驗樣本數,取6。
由式(8)、(9)得,實際轉速與理論較優(yōu)轉速(木薯塊根的垂直拔起速度與塊根拔起較優(yōu)速度)的平均相對誤差為4.5%,最大誤差為6.7%;滑塊位移與理論值的平均相對誤差為3.7%,最大誤差為5.4%,表明結合局部搜索算子的蜘蛛群集算法用于木薯收獲機的塊根拔起過程控制精度較高,可用于塊根拔起機構控制系統(tǒng)的優(yōu)化設計。
1)結合局部搜索算子的蜘蛛群集算法比蜘蛛群集算法具有較快的收斂速度和較高的搜索精度,適用于高維復雜函數求極值的問題。
2)結合局部搜索算子的蜘蛛群集算法對塊根拔起模糊PI控制參數的優(yōu)化結果:K為0.841,K為0.203 9,在優(yōu)化的控制參數條件下,塊根拔起速度能較好跟隨較優(yōu)塊根拔起速度,動態(tài)性能良好。
3)田間試驗的木薯塊根垂直拔起速度與塊根拔起較優(yōu)速度的平均相對誤差為4.5%,最大誤差為6.7%;滑塊位移與理論值的平均相對誤差為3.7%,最大誤差為5.4%,結合局部搜索算子的蜘蛛群集算法用于塊根拔起模糊PI控制參數優(yōu)化能達到提高木薯收獲機塊根拔起速度的控制精度,減少塊根收獲拔斷損失的目的。
[1] 楊望,楊堅,鄭曉婷,等. 木薯塊根收獲機械與技術研究現狀及發(fā)展趨勢[J]. 農機化研究,2012,34(12):230-235.
Yang Wang, Yang Jian, Zheng Xiaoting, et al. Current research and development trends of cassava root harvest machinery and technology[J]. Journal of Agricultural Mechanization Research, 2012, 34(12): 230-235. (inChinese with English abstract)
[2] 黃暉,崔振德,張園,等. 木薯收獲機械研究進展與分析[J]. 中國熱帶農業(yè),2012(6):20-22.
[3] 廖宇蘭,孫佑攀,林大春,等. 木薯收獲機械研究進展[J]. 熱帶農業(yè)工程,2009,33(1):54-56,60.
Liao Yulan, Sun Youpan, Lin Dachun, et al. Advances on development of cassava harvesting machinery[J]. Tropical Agriculture Engineering, 2009, 33(1): 54-56, 60. (inChinese with English abstract)
[4] Agbetoye L A S. Developments in cassava harvestingmechanization[J]. West Indian Journal of Engineering, 1999,22(1): 11-19.
[5] Chalachai Sahapat, Soni Peeyush, Chamsing Anuchit, et al. Acritical review of mechanization in cassava harvesting inThailand[J]. International Agricultural Engineering Journal,2013, 22(4): 81-93.
[6] 莫清貴,黃鳴安. 4UM-160 型木薯收獲機的研發(fā)應用[J].廣西農業(yè)機械化,2012(3):20-22,25.
[7] Odigboh E U, Moreira C A. Development of a complete cassava harvester: I-Conceptualization[J]. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 2002, 33(4): 43-49.
[8] Odigboh E U, Moreira A. Development of a complete cassava harvester: II-Design and development of the uprooter/lifter system[J]. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 2002, 33(4): 50-58.
[9] Gupta C P, Stevens W F, Paul S C. Development of a vibrating cassava root harvester[J]. Agricultural Mechanization in Asia, Africa and Latin America, 1999, 30(1): 51-55.
[10] Liu Shihao, Weng Shaojie, Liao Yulan, et al. Structural bionic design for digging shovel of cassava harvester considering soil mechanics[J]. Applied Bionics and Biomechanics, 2014, 11(1/2): 1-11.
[11] Liao Yulan, Sun Youpan, Liu Shihao, et al. Development and prototype trial of digging-pulling style cassava harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.2): 29-35.
廖宇蘭,孫佑攀,劉世豪,等. 挖拔式木薯收獲機的研制與樣機試驗[J]. 農業(yè)工程學報,2012,28(增刊2):29-35. (in Englishwith Chinese abstract)
[12] 孫佑攀,廖宇蘭,陳丹萍,等. 4 UMS-1型木薯收獲機的設計[J]. 農機化研究,2012,34(2):89-92.
Sun Youpan, Liao Yulan, Chen Danping, et al. Design of 4UMS-1 type cassava harvester[J]. Journal of Agricultural Mechanization Research, 2012, 34(2): 89-92. (in Chinese with English abstract)
[13] 楊怡,廖宇蘭,王濤,等. 自走式木薯收獲機的設計[J].農機化研究,2016,38(4):99-102,106.Yang Yi, Liao Yulan, Wang Tao, et al. Design of the self-propelledharvester for cassava[J]. Journal of AgriculturalMechanization Research, 2016, 38(4): 99-102, 106. (in Chinesewith English abstract)
[14] 王濤,廖宇蘭,劉世豪,等. 挖拔式木薯聯合收獲機的設計[J]. 農機化研究,2016,38(6):126-131.
Wang Tao, Liao Yulan, Liu Shihao, et al. Design andresearch of digging pull cassava combine harvester[J].Journal of Agricultural Mechanization Research, 2016, 38(6):126-131. (in Chinese with English abstract)
[15] 吳曉剛,王旭東,余騰偉.磁粉離合器自適應權重粒子群優(yōu)化模糊控制的研究[J].汽車工程,2010,32(6):510-514,523.
Wu Xiaogang, Wang Xudong, Yu Tengwei. A research on the fuzzy control of magnetic powder clutch based on adaptive weight particle swarm optimization[J].Automotive Engineering,2010, 32(6):510-514,523. (inChinese with English abstract)
[16] 段海濱,王道波,朱家強,等. 蟻群算法理論及應用研究的進展[J]. 控制與決策,2004,19(12):1321-1326,1340.
Duan Haibin, Wang Daobo, Zhu Jiaqiang, et al. Development on ant colony algorithm theory and its application[J]. Control and Decision, 2004, 19(12): 1321-1326, 1340. (inChinese with English abstract)
[17] 吳慶洪,張穎,馬宗民. 蟻群算法綜述[J]. 微計算機信息,2011,27(3):1-2,5.
Wu Qinghong, Zhang Ying, Ma Zongmin. Review of ant colony optimization[J]. Microcomputer Information, 2011, 27(3): 1-2, 5. (inChinese with English abstract)
[18] 李智,鄭曉. 粒子群算法在農業(yè)工程優(yōu)化設計中的應用[J].農業(yè)工程學報,2004,20(3):15-18.
Li Zhi, Zheng Xiao. Application of improved particle swarm algorithm in optimization design of agricultural engineering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3): 15-18. (inChinese with English abstract)
[19] 薛洪波,倫淑嫻. 粒子群算法在多目標優(yōu)化中的應用綜述[J]. 渤海大學學報:自然科學版,2009,30(3):265-269.
Xue Hongbo, Lun Shuxian. A review on appliaction of PSO in multiobjective optimization[J]. Journal of Bohai University: Natural Science Edition, 2009, 30(3): 265-269. (inChinese with English abstract)
[20] 戴曉暉,李敏強,寇紀淞. 遺傳算法理論研究綜述[J]. 控制與決策,2000,15(3):263-268,273.
Dai Xiaohui, Li Minqiang, Kou Jisong. Survey on the theory of genetic algorithms[J]. Control and Decision, 2000, 15(3): 263-268, 273. (inChinese with English abstract)
[21] 席裕庚,柴天佑,惲為民. 遺傳算法綜述[J]. 控制理論與應用,1996,13(6):697-708.
Xi Yugeng, Cai Tianyou, Yun Weijun. Survey on genetie algorithm[J]. Control Theory & Applications, 1996, 13(6): 697-708. (inChinese with English abstract)
[22] 王培崇. 人工魚群算法研究綜述[J]. 中國民航飛行學院學報,2013,24(4):22-26.
Wang Peichong. Overview of artificial fish swarm algorithm[J]. Journal of Civil Aviation Flight University of China, 2013, 24(4): 22-26. (inChinese with English abstract)
[23] 王聯國,洪毅,施秋紅. 全局版人工魚群算法[J]. 系統(tǒng)仿真學報,2009,21(23):7483-7486,7502.
Wang Lianguo, Hong Yi, Shi Qiuhong. Global edition artificial fish swarm algorithm[J]. Journal of System Simulation, 2009, 21(23): 7483-7486, 7502. (inChinese with English abstract)
[24] Erik C, Miguel Cienfuegos. A new algorithm inspired in the behavior of social-spider for constrained optimization[J]. Expert Systems with Applications, 2014, 41(1): 412-425.
[25] Erik C, Miguel C, Daniel Z, et al. A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(1): 6374-6384.
[26] 周永華. 算術雜交算子局部搜索能力分析[C]//中國自動化學會控制理論專業(yè)委員會.第二十三屆中國控制會議論文集(下冊).中國自動化學會控制理論專業(yè)委員會,2004:5.
Zhou Yonghua. Analysis of local search ability of arithmetic crossover operators[C]//Chinese Association of automation control theory of Specialized Committee. The proceedings of the twenty third China control conference set(2). Chinese Association of automation control theory of Specialized Committee, 2004: 5. (inChinese with English abstract)
[27] 李娟娟. 木薯收獲機械拔起速度模型的優(yōu)化研究[D]. 南寧:廣西大學,2013.
Li Juanjuan. Optimization of Lifting Speed Model of Cassava Harvester[D]. Nanning: Guangxi University, 2013. (inChinese with English abstract)
[28] 楊望,張栩梓,楊堅,等. 木薯收獲機土薯抖動分離裝置性能仿真及試驗[J]. 農業(yè)工程學報,2017,33(16):18-25.
Yang Wang, Zhang Xuzi, Yang Jian, et al. Simulation and test on performance of soil-cassava jitter separationdevice of cassava harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(16): 18-25. (inChinese with English abstract)
[29] 楊艷妮,韓明軍,張志宏,等. 機電液一體化系統(tǒng)聯合仿真技術研究[J]. 液壓氣動與密封,2013,33(12):15-17.
Yang Yanni, Han Mingjun, Zhang Zhihong, et al. United simulation and research of electromechanical and hydraulic integrated system[J]. Hydraulics Pneumatics & Seals, 2013, 33(12): 15-17. (inChinese with English abstract)
[30] 柴井坤,魏圓圓,曲立國. 基于改進蟻群算法的組播路由算法研究[J]. 電視技術,2009,33(4):57-59.
Chai Jingkun, Wei Yuanyuan, Qu Liguo. Reseach on QoS multicast routing based on improved ant colony algorithm[J]. Wide Band Network, 2009, 33(4): 57-59. (inChinese with English abstract)
[31] 金芬. 遺傳算法在函數優(yōu)化中的應用研究[D]. 蘇州:蘇州大學,2008.
Jin Fen. Application Research of Genetic Algorithm in Function Optimization[D]. Suzhou: Suzhou University, 2008. (inChinese with English abstract)
[32] Yang Wang, Li Juanjuan, Yang Jian, et al. Numerical simulation of an experienced farmer lifting tubers of cassava for designing a bionic harvester[J]. CMES-Computer Modeling in Engineering & Sciences, 2015, 104(6): 471-491.
Optimization of tuber lifting velocity of cassava harvester based on improved spider clustering algorithm
Yang Wang1, Li Yang1, Zheng Xian1, Chen Keyu2, Yang Jian1※, Mo Jianlin3, Sui Mingjun1
(1.,,530004,; 2.,,530004,; 3.530007,)
When the cassava tubers are lifted up by the dig-pull cassava tuber harvester, the harvester has low power consumption and a high adaptability to the soil. However, the control precision of the lifting velocity of cassava tuber is low, thus, the broken and loss rate of the cassava tubers are larger in the cassava tuber harvesting. And the control precision of the control system of the tuber lifting velocity mainly depends on the quality of control system’s control parameters. Whether the optimal control parameters could be obtained by the optimization algorithm of the control system’s control parameters determines the quality of the parameters. Therefore, the optimization algorithm of the control parameters of the lifting velocity control system of the cassava tuber lifting mechanism is studied using the advanced method and technology which has important significance to improve the control precision of the cassava tuber lifting velocity and the harvesting quality of the cassava tubers. The broken and loss rate of the cassava tubers are larger in the cassava tuber harvesting when the control precision of the tuber lifting velocity of the dig-pull cassava harvester is low. Firstly, the co-simulation model of the control system of the tuber lifting mechanism of the dig-pull type cassava tuber harvester was established. The fuzzy PI algorithm was used as the control algorithm of the mechanically optimal tuber lifting velocity of the tuber lifting mechanism. The multi-domain dynamics simulation technology was also used in the co-simulation model. The mechanically optimal lifting velocity model of the cassava tuber was obtained using the cassava tuber lifting tests of the experienced farmers and the optimized velocity model of manually pulling tubers as well as the numerical simulation tests. The mechanically optimal lifting velocity model of the cassava tuber was used as the control target, and meanwhile, the constant cassava tuber lifting force, the cassava tuber lifting force in the soft soil as well as the cassava tuber lifting force in the hard soil, respectively, were used as the condition. The study of the spider clustering algorithm combined with the local search operator was carried out. Then, using a combination of local search operator and spider cluster algorithm, the control parameters of the cassava tuber lifting mechanism system were optimized by iterative optimization. In addition, the common test function was used to verify the convergence and search accuracy of the spider cluster algorithm combined with local search operator. Finally, the cassava tuber lifting test verification was carried out in the field. The error analysis of the verification test was carried out by means of the mean error and the maximum error. The results show that the spider cluster algorithm combined with local search operator which can avoid getting into the local optimal solution in the iterative process, has faster convergence speed and higher search accuracy than the spider clustering algorithm. The spider clustering algorithm combined with the local search operator is suitable for solving the extremum problems of high-dimensional complex function. The optimization result of the Fuzzy PI control system’s control parameters:KandKare 0.841 and 0.203 9, respectively. Using the optimized control parameter, the actual lifting speeds of the cassava tuber can follow mechanically optimal lifting velocity model. And the dynamic performance is great. The average relative error between the actual vertical lifting speed of the cassava tuber and mechanically optimal lifting velocity of the cassava tuber is 4.5%. The maximum error is 6.7%. The average relative error between actual slide displacement and the theoretical value is 3.7%. The maximum error is 5.4%. The spider clustering algorithm combined with local search operator can be used in controlling the cassava tuber lifting process of the dig-pull type cassava tuber harvester. The control precision of the tuber lifting velocity has high precision.
mechanization; control; algorithms; cassava harvester; lifting mechanism; co-simulation; local search operator
2017-08-17
2018-01-10
國家自然科學基金項目(51365005);國家自然科學基金項目(51065003);廣西高?,F代設計與先進制造重點實驗室主任課題(GXXD16ZD-02)
楊 望,副教授,博士,主要從事木薯和甘蔗機械設計基礎理論研究。Email:yanghope@163.com
楊 堅,教授,主要從事農業(yè)機械設計及性能優(yōu)化研究。Email:yangokok@gxu.edu.cn。中國農業(yè)工程學會高級會員:楊 望(E041200798S)
10.11975/j.issn.1002-6819.2018.04.004
S225.7+1
A
1002-6819(2018)-04-0029-08
楊 望,李 楊,鄭 賢,陳科余,楊 堅,莫建霖,隋明君. 基于改進蜘蛛群集算法的木薯收獲機塊根拔起速度優(yōu)化[J]. 農業(yè)工程學報,2018,34(4):29-36.doi:10.11975/j.issn.1002-6819.2018.04.004 http://www.tcsae.org
Yang Wang, Li Yang, Zheng Xian, Chen Keyu, Yang Jian, Mo Jianlin, Sui Mingjun. Optimization of tuber lifting velocity of cassava harvester based on improved spider clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 29-36. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.004 http://www.tcsae.org