• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of illegal dyes in foods using a polyethersulfone/multi-walled carbon nanotubes composite membrane as a cleanup method

    2018-03-07 11:40:05HEYahuiWANGJing
    Journal of Integrative Agriculture 2018年3期

    HE Ya-hui, WANG Jing

    1 School of Food Science, Xinyang College of Agriculture and Forestry, Xinyang 464000, P.R.China

    2 Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

    1.Introduction

    Membrane technology has been widely used in separation because it is simple and effective (Rowe et al.1988).Recently many types of composite membranes were made to take advantage of variation in mechanical properties and antifouling performance; these membranes are used in many different fields (Gestel et al.2002; Yang et al.2011).Up to now, there has been no report on composite membranes applied in detecting illegal dyes in food matrixes.

    Food colorants are typically used to enhance the organoleptic properties of food.Industrial dyes could potentially be used as food additives by unscrupulous or ignorant producers because of their low cost and strong coloration ability.However, industrial dyes are potential mutagens and have been linked to an increased risk of cancers in humans, and because of that they are prohibited from use in food (Augustine et al.1980; Lv 2015; Uematsu et al.2017).Neve rtheless, industrial dyes have been found in various foods in many countries (Peiperl et al.1995).Detection methods to identify industrial dyes in food need to be developed and used to maintain food safety.

    In order to meet the requirements of the market, a number of analyses are required.At present, there are a number of cleanup techniques for dyes detected in food: microwave pretreatment (Vas 2004); supercritical fluid extraction (Richter et al.1996); stir bar sorptive extraction (Kawaguchi et al.2006); pressurized liquid extraction (Gonzalez et al.2005);and matrix solid-phase dispersion (Beltran et al.2000).The methods used to detect industrial dyes usually cannot detect multiple dyes at the same time; in order to detect multiple dyes, a large number of organic solvents are required, and the process takes a long time.Therefore, the development of simple, fast, and effective analysis and detection methods for industrial dyes is very valuable.

    Carbon nanotubes (CNTs) were first described by Iijiama (1991).There are two types of CNTs, according to the principle of carbon atom layers: single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) (Iijima 1991).CNTs are reported to have special chemical and physical characteristics(Zhou et al.2006; Wang et al.2007; El-Sheikh et al.2008), including an excellent adsorption capacity due to their large surface area and unique structure.CNTs have been used as sorbents in many fields: CNTs were used in the solid phase extraction (SPE) method to extract pesticides from water samples (Du et al.2008; Ravelo-Pérez et al.2008); a new method using MWCNTs as sorbents for SPE in the determination of benzodiazepine residues in meat was developed by Zhao et al.(2015) and a new analytical method to detect organophosphate pesticides in garlic using MWCNTs in SPE was developed by Zhao et al.(2012).Polyethersulfone (PES) has been widely used as a material for membrane substrates in microfiltration, ultrafiltration, and nanofiltration.PES ultrafiltration membranes can be used in separation, concentration,and purification of food.However, despite these uses of MWCNTs and PES, there are no reports of using PES/MWCNTs composite membranes as an effective detection and cleanup method for illegal dyes in foods.In this paper, the use of PES/MWCNTs composite membranes in detecting illegal dyes in food matrixes is shown to be effective, simple, and rapid.

    2.Materials and methods

    2.1.Materials

    MWCNTs nanoparticles of a quantum size 8-12 nm were obtained with the help of Tianjing Agela Co., Ltd.(China).Dimethylformamide (DMF) and polyethylene glycol (PEG)(with molecular weights of 400), and PES were purchased from Shanghai Chemical Regents Company (Shanghai,China).A total of 15 industrial dye standards were purchased from the company of Dr.Ehrenstorfer GmbH(Germany).The molecular and structural formulas for all standards are shown in

    AppendixA.

    2.2.Preparation of the composite membrane

    The phase-inversion method was used to prepare the PES/MWCNTs composite membrane.The membrane forming solution consisted of DMF (86% weight percentage), PEG(2% weight percentage), and PES (12% weight percentage),and which were dissolved at 65°C for 3 h with constant stirring.MWCNTs were added to the solution after the uniform polymer solution was formed with strong stirring for 2 h.The ratio (w/w) of MWCNTs/PES was 0.3.To remove air bubbles, the solution was kept in the dark for 12 h.Then the membrane was formed by casting the solution using a 100-μm casting knife onto a polyester non-woven fabric.The composite membrane was immersed in a (15±1)°C deionized water coagulation bath after evaporation at (20±1)°C and(60±5)% relative humidity for 1 min.

    2.3.Characterization of the membrane

    Characterization of PES/MWCNTs composite membrane and MWCNTsThe surface morphology and internal structure of the membrane were observed using a scanning electron microscope (TSM-6700F, TESCAN, Germany).The morphologies of the MWCNTs before and after adsorption of industrial dyes were observed with the TSM-6700F.To observe MWCNTs after adsorption of industrial dyes, a rhodamine B standard (10 μg L-1) was added into a 5-mL Teflon centrifuge tube with 5 mg MWCNTs.The mixture was thoroughly vortexed and then centrifuged with a microcentrifuge at 10 000 r min-1for 3 min.Then the MWCNTs were removed for observation with the TSM-6700F.

    Molecular weight (MW) cut-off of the membraneDifferent molecular weight proteins were used to determine the molecular weight cut-off of the composite membrane.The proteins used were: lysozyme (MW=14.7 kDa); chymotrypsin (MW=24.5 kDa); α-amylase (MW=45 kDa); and bovine serum albumin (MW=67 kDa).The protein solution was ultrafiltrated at 20°C and 0.15 MPa.The samples were removed from the feed side and permeate flow side of the composite membrane and were measured with a UV-spectrophotometer (UV-1600) at a wavelength of 280 nm when the process was in a steady state.

    The rejection rate of proteins through the membrane was calculated according to eq.(1):

    Where, R is defined as the rejection rate, Cperis the concentration of the permeation, and Cfeedis the concentration of the feed.

    Pure water fluxMembrane performance was tested using a cross-flow ultrafiltration unit as a flat plate module with an effective membrane area of 2.01×10-2m2.The water flux was calculated as follows:

    Where, J is the membrane flux (L m-2h-1), V is the volume permeated (L), A is the area of the membrane (m2), and t is the time (h).

    2.4.Sample extraction and cleanup

    Blank (free of industrial dye) millet and corn flour were obtained from a local supermarket.A total of 10 g of experimental samples and 10 mL of acetonitrile were added to a 50-mL Teflon centrifuge tube and vortexed vigorously for 1 min.Then, NaCl (1 g) and MgSO4(4 g) were added into the tube and the mixture was vortexed vigorously for 1 min.Finally, the tube was placed into an ice-water bath immediately after vortexing for 5 min, and then centrifuged for 5 min at 3 800 r min-1.

    A diagram of the adsorption and elution procedure for industrial dyes in food with the PES/MWCNTs composite membrane is shown in Fig.1.A total of 5 mL of the clarified supernatant was introduced into the PES/MWCNTs composite membrane after centrifugation.The supernatant was filtered by the PES/MWCNTs composite membrane,as shown in the filtration and adsorption step in Fig.1.In this step, the industrial dye was adsorbed onto the composite membrane while other impurities passed through the membrane due to the adsorption of dyes by MWCNTs in the membrane.Then the PES/MWCNTs composite membrane was eluted with 5 mL acetone, acetonitrile,methanol and n-hexane in turn, as shown in the elution step in Fig.1.In this step, the industrial dyes were eluted from the composite membrane.Finally, the eluent was filtered by a 0.22-μm membrane and placed into a liquid chromatograph (LC) vial for chromatographic analysis.

    2.5.Apparatus and conditions

    Extracts were analyzed using a liquid chromatograph(Waters LC ACQUITY UPLC, Waters, USA) with a mass spectrometric detector (Waters Xevo TQ-S, Waters, USA)in selected ion monitoring (SIM) mode.

    Chromatographic separation was carried out on a Waters Quattro Premier XE Mass Spectrometer equipped with a C18 column (2.1 mm×50 cm, 1.7 mm; Waters, USA).Preliminary experiments were carried out to systematically change the strength of the mobile phase and fragmentor voltage in full scan mode using compound standard solutions to find the retention times and the best resolution in the analytic peaks.

    Based on the ion suppression produced, no ion-pairing reagent was introduced into the mobile phase, and formic acid was employed in reversed-phase chromatography.CH3CN/H2O (0.05% HCOOH) 10/90 (v/v) was used as the mobile phase.Gradient elution with aqueous acetonitrile-formic acid was used as the mobile phase to get effective and sensitive separation in liquid chromatography.

    Fig.1 Diagram of sample cleanup process.1, constant temperature trough; 2, pump; 3, flowmeter; 4, throttle; 5, pressure gauge; 6, waste liquid; 7, eluent; 8, solution for analysis.

    A tandem mass detector was used for analysis.The mass spectrometric parameters were operated using full scan and daughter scan for the compounds.The M+ion was chosen as the precursor ion for all analytes.The ion mass spectra of the industrial dyes were obtained using electrospray ionization.The collision energy was optimized for two selective ion transitions for every industrial dye.The most sensitive transition of the multiple reaction monitoring(MRM) transitions was selected for quantification analysis.

    2.6.Method performances

    Millet and corn flour were selected for validation.The accuracy, precision, limit of quantification (LOQ), and limit of determination (LOD) of the method were determined during validation of the analytical method.The accuracy and precision were evaluated by recovery and reproducibility experiments that were carried out for each sample of millet and corn flour in five replicates each at two fortification levels(0.01 and 0.10 mg kg-1).The LOD was determined as the concentration of analyte giving a signal to noise ratio (S/N)of 3 for the target ion.And the LOQ was determined as the concentration of analyte giving S/N of 10 for the target ion.

    3.Results

    3.1.Characterization of the composite membrane

    Microstructure of the PES/MWCNTs composite membrane and MWCNTsFig.2 shows scanning electron microscopy (SEM) photographs of the surface and cross-section structure of the MWCNTs/PES composite membrane.Most particles of MWCNTs were distributed uniformly in the surface of the membrane.The cross-section of the membrane showed typical asymmetric morphology with finger-like pores.

    Fig.3 shows SEM photographs of the MWCNTs before and after adsorption of illegal industrial dyes (rhodamine B).Fig.3-B shows that rhodamine B was adsorbed on MWCNTs.The strong adsorption of MWCNTs, which have a layered hollow structure, for illegal dyes may be caused by the benzene ring structures of the dyes.

    Molecular weight cut-offThe molecular weight cut-off of the composite membrane is shown in Fig.4.The cut-off is approximately 20 000, so that carbohydrates, proteins, and other ingredients with a molecular weight greater than 20 000 in food samples will be rejected by the composite membrane.Many sulfur-containing compounds in foods that may cause serious interferences with the matrix during detection will thus be removed by using appropriate molecular weight cut-offs in the membrane.

    Water flux and solute rejectionThe membrane was previously filtered by deionized water for 3 h at 50 kPa.The test was operated at 100 kPa and (20±1)°C.The results of water flux are presented in Fig.5, showing that water flux of the composite membrane tends to be stable at about 80 min.The water flux is about 90 L m-2h-1.

    Fig.2 Scanning electron microscopy (SEM) micrographs of the surface (A) and cross-section (B) structures of the polyethersulfone(PES)/multi-walled carbon nanotubes (MWCNTs) composite membrane.

    3.2.Liquid chromatography-tandem mass spectrometry

    Fig.6 shows LC-MS/MS chromatograms of the 15 industrial dyes.The ionization of 15 industrial dyes in the positive mode electrospray ion source was examined.The previous experiment was carried out to optimize the conditions for interfacing the LC system to the MS.The optimized method of LC-MS/MS was highly selective for monitoring specific MRM and was effective in reducing the risk of false positives.The 15 industrial dyes were separated completely by LC-MS/MS.

    3.3.Validation of the cleanup method

    Recovery and precisionAccuracy was evaluated in terms of recovery.This study was performed using five consecutive extractions (n=5) of spiked matrices at a concentration of 0.1 mg kg-1.The recovery and repeatability data for the 15 industrial dyes in the matrix of millet and corn flour are shown in Table 1.The recoveries of all industrial dyes were in the range of 73-117% (between 75-116% for millet,and between 73-117% for corn flour).Relative standard deviation (RSD) values were all below 15%.

    Fig.3 Scanning electron microscopy (SEM) micrographs of the multi-walled carbon nanotubes (MWCNTs) before (A) and after(B) the adsorption of industrial dye (Rhodamine B).

    Fig.4 Observed retention of the composite membrane.R,rejection rate.MW, molecular weight.

    Fig.5 Water flux of the composite membrane.

    Fig.6 LC-MS/MS chromatograms of the 15 industry dyes.MRM, multiple reaction monitor.

    LOD and LOQThe LOD and LOQ were determined as the concentration of analyte giving a ratio of S/N of 3 and 10 for the target ion, respectively.The LOD and LOQ values for the 15 industrial dyes in millet and corn flour are shown in Table 2.LOD ranged from 0.01 to 1.57 μg kg-1for millet and 0.01 to 1.01 μg kg-1for corn flour.LOQ ranged from 0.03 to 4.82 μg kg-1for millet and 0.03 to 3.15 μg kg-1for corn flour.

    4.Discussion

    The use of PES/MWCNTs composite ultrafiltration membrane as a cleanup method led to satisfactory precision,accuracy, selectivity, and recoveries in cleaning up illegal,industrial dyes in food.The following steps occur when using the PES/MWCNTs composite membrane as a cleanup method in the detection of illegal dyes in foods:

    First, because there are a variety of pore sizes in the membrane, the composite membrane has the ability to separate and filter certain compounds.When the food matrix passes through the PES/MWCNTs composite membrane,some compounds in foods pass through the membrane,and some are preserved by the membrane.This allows for removal of a large amount of sulfur-containing compounds in foods that may interfere with the matrix in the detection of illegal dyes; see the filtration and adsorption step in Fig.1.

    Second, MWCNTs in the PES/MWCNTs composite membrane have a strong selective adsorption effect on the 15 industrial dyes we tested.When the food matrix passes through the composite membrane, the industrial dyes in the food are adsorbed by the composite membrane while other components are removed by the membrane, as shown in filtration and adsorption step in Fig.1.

    Third, the membrane was eluted with acetone, acetonitrile, methanol, and n-hexane in turn.A total of 15 kinds of industrial dyes are eluted from the composite membrane by the eluents with different polarities, as shown in the elution step in Fig.1.

    Finally, the eluent is detected by the liquid chromatograph with the massspectrometric detector.

    5.Conclusion

    The PES/MWCNTs composite ultrafiltration membrane was made using the phase-inversion method and represented a new method for the analysis of illegal and industrial dyes in food.A total of 15 industrial dyes in millet and corn flourwere detected using the PES/MWCNTs composite ultrafiltration membrane filtration cleanup method for the adsorption of industrial dyes by MWCNTs.This procedure had satisfactory precision, accuracy, and selectivity, with recoveries ranging from 75-110% and RSD values below 15%.The procedure with the composite membrane used as the cleanup method takes 30 min or less, which is considerably shorter than traditional methods that take around 6-8 h.This cleanup method was proven to be rapid and effective.In conclusion,the PES/MWCNTs composite ultrafiltration membrane is a sensitive method of analysis for industrial dyes in food at trace levels for sample cleanup.

    Table 2 Calibration curve coefficients (R2), limits of determination (LOD) (μg kg-1), and limits of quantification (LOQ) (μg kg-1) for 15 industrial dye standards

    Acknowledgements

    The study was supported by the Fund of Key Projects of Higher Education in Henan Province, China (17A550018)and the Fund of Henan Province Science and Technology Research Project, China (172102310314).

    Appendixassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Augustine G J, Levitan H.1980.Neurotransmitter release from a vertebrate neuromuscular synapse affected by a food dye.Science, 207, 1489-1490.

    Beltran J, López F J, Hernández F.2000.Solid-phase microextraction in pesticide residue analysis.Journal of Chromatography (A), 885, 389-404.

    Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A.2008.Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide.Electrochemistry Communications, 10, 85-89.

    El-Sheikh A H, Sweileh J A, Al-Degs Y S, Insisi A A, Al-Rabady N.2008.Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters.Talanta, 74, 1675-1680.

    Gestel T V, Vandecasteele C, Buekenhoudt A.2002.Alumina and titania multilayer membranes for nanofiltration preparation, characterization and chemical stability.Journal of Membrrane Science, 207, 73-89.

    Gonzalez M, Miglioranza K S, Aizpún de Moreno J E, Moreno V J.2005.Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues.Food and Chemical Toxicology,43, 261-269.

    Iijima S.1991.Helical microtubules of graphitic carbon.Nature,354, 56-58.

    Kawaguchi M, Ito R S, KNakazawa H.2006.Novel stir bar sorptive extraction methods for environmental and biomedical analysis.Journal of Pharmaceutical &Biomedical Analysis, 40, 500-508.

    Lv Z Q.2015.Industrial dyes in food and its hazards.Healthy,32, 25-27.

    Peiperl M D, Prival M J, Bell S J.1995.Determination of combined benzidine in FD&C Yellow No.6 (Sunset Yellow FCF).Food and Chemical Toxicology, 10, 829-839.

    Ravelo-Pérez L M, Hernández-Borges J, Rodríguez-Delgado M A.2008.Multi-walled carbon nanotubes as efficient solidphase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices.Journal of Chromatography (A), 1211, 33-38.

    Richter B E, Jones B A, Ezzell J L, Porter N L.1996.Accelerated solvent extraction: A technique for sample preparation.Analytical Chemistry, 68, 1033-1039.

    Rowe K S.1988.Synthetic food colourings and ‘hyperactivity’: A double-blind crossover study.Australian Paediatric Journal,24, 143-147.

    Uematsu Y, Mizumachi T, Monma K.2017.Simultaneous analysis of oil-soluble, basic, and acidic illegal dyes in foods using liquid chromatography-diode-array detection.Journal of AOAC International, 100, 1102-1109.

    Vas G V.2004.Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis.Journal of Mass Spectrometry, 39, 233-237.

    Wang S, Peng Z, Min G, Fang G Z.2007.Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatographymass spectrometry.Journal of Chromatography (A), 1165,166-171.

    Yang C C, Li Y J, Liou T H.2011.Preparation of novelpoly(vinyl alcohol)/SiO2nanocomposite membranes by a solgel process and their application on alkaline DMFC.Desalination, 276, 366-372.

    Zhao P, Wang L, Jiang Y, Zhang F, Pan C.2012.Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents.Journal of Agricultural & Food Chemistry, 60, 4026-4033.

    Zhao P Y, Huang B Y, Gu K J, Zou N P, Pan C P.2015.Analysis of triallate residue and degradation rate in wheat and soil by liquid chromatography coupled to tandem mass spectroscopy detection with multi-walled carbon nanotubes.International Journal of Environmental Analytical Chemistry,95, 1-11.

    Zhou Q X, Xiao J P, Wang W D, Liu G G, Shi Q Z, Wang J H.2006.Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector.Talanta, 68, 1309-1315.

    自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| 一级片'在线观看视频| 亚洲熟女精品中文字幕| av天堂中文字幕网| 一个人免费看片子| 亚洲人与动物交配视频| 激情五月婷婷亚洲| 久久精品久久久久久噜噜老黄| 大香蕉久久网| 国产淫语在线视频| 欧美成人午夜免费资源| 少妇熟女欧美另类| 日韩欧美精品免费久久| 91久久精品国产一区二区三区| 少妇人妻一区二区三区视频| 岛国毛片在线播放| 国产av一区二区精品久久| 三上悠亚av全集在线观看 | 欧美 日韩 精品 国产| 能在线免费看毛片的网站| 国产亚洲最大av| 菩萨蛮人人尽说江南好唐韦庄| 两个人的视频大全免费| 欧美老熟妇乱子伦牲交| 亚洲av在线观看美女高潮| 麻豆乱淫一区二区| 高清欧美精品videossex| 亚洲精品,欧美精品| 欧美激情极品国产一区二区三区 | 国产伦精品一区二区三区视频9| 日本黄大片高清| 国产精品99久久久久久久久| 精品人妻一区二区三区麻豆| 另类精品久久| 国产精品99久久99久久久不卡 | 内射极品少妇av片p| 又黄又爽又刺激的免费视频.| 性色av一级| 最近的中文字幕免费完整| 日本爱情动作片www.在线观看| 成人国产av品久久久| 国产有黄有色有爽视频| 日日摸夜夜添夜夜添av毛片| 新久久久久国产一级毛片| a 毛片基地| 一二三四中文在线观看免费高清| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄色视频一区二区在线观看| 美女xxoo啪啪120秒动态图| 一本色道久久久久久精品综合| 日本与韩国留学比较| 亚洲成人av在线免费| 久久av网站| 亚洲无线观看免费| 国产一区有黄有色的免费视频| 国产乱来视频区| 国产精品一二三区在线看| 麻豆乱淫一区二区| 国产69精品久久久久777片| 精品国产国语对白av| 啦啦啦中文免费视频观看日本| 欧美精品国产亚洲| 亚洲熟女精品中文字幕| 国产免费福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 欧美高清成人免费视频www| 久久久a久久爽久久v久久| 亚洲精品第二区| 天美传媒精品一区二区| 全区人妻精品视频| 中国美白少妇内射xxxbb| 国产高清三级在线| 最近2019中文字幕mv第一页| 人妻人人澡人人爽人人| 王馨瑶露胸无遮挡在线观看| 啦啦啦中文免费视频观看日本| 国产亚洲91精品色在线| 久久久久精品久久久久真实原创| 交换朋友夫妻互换小说| 国产av码专区亚洲av| 国产一区二区三区综合在线观看 | 久久99蜜桃精品久久| 精品熟女少妇av免费看| 女人久久www免费人成看片| 欧美日本中文国产一区发布| 大又大粗又爽又黄少妇毛片口| 国产黄色视频一区二区在线观看| av国产久精品久网站免费入址| av国产精品久久久久影院| 亚洲精品国产成人久久av| 多毛熟女@视频| 少妇的逼好多水| 中国三级夫妇交换| 久久久久久久久大av| 免费观看a级毛片全部| 91午夜精品亚洲一区二区三区| 插逼视频在线观看| 亚洲电影在线观看av| 国产男女超爽视频在线观看| 国产一区二区三区综合在线观看 | av又黄又爽大尺度在线免费看| 国产伦精品一区二区三区视频9| 男女啪啪激烈高潮av片| 三级经典国产精品| 国产在线视频一区二区| 中文资源天堂在线| 青春草视频在线免费观看| 中国三级夫妇交换| 免费观看av网站的网址| 免费观看在线日韩| 日韩av不卡免费在线播放| 边亲边吃奶的免费视频| 亚洲精品视频女| 亚洲精品日韩在线中文字幕| 永久免费av网站大全| 久久鲁丝午夜福利片| 内射极品少妇av片p| 久久狼人影院| 99久久精品一区二区三区| 又黄又爽又刺激的免费视频.| 如何舔出高潮| 97精品久久久久久久久久精品| 国产在视频线精品| 一级毛片我不卡| 亚洲欧美清纯卡通| 男男h啪啪无遮挡| 免费观看的影片在线观看| 观看免费一级毛片| 国产无遮挡羞羞视频在线观看| 免费看日本二区| 久久久久久人妻| 乱码一卡2卡4卡精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品,欧美精品| 男女边摸边吃奶| 一区二区三区精品91| 亚洲精品,欧美精品| 中文欧美无线码| 亚洲av中文av极速乱| 汤姆久久久久久久影院中文字幕| 免费观看在线日韩| 久久久久久久久久人人人人人人| 亚洲人成网站在线观看播放| 国产精品国产av在线观看| 亚洲国产精品999| 人妻制服诱惑在线中文字幕| 中文资源天堂在线| 国产精品一区二区在线观看99| 亚洲人成网站在线观看播放| 国产av一区二区精品久久| 欧美成人午夜免费资源| 麻豆乱淫一区二区| 成人二区视频| 国产乱来视频区| 精品亚洲乱码少妇综合久久| 精品人妻一区二区三区麻豆| 熟妇人妻不卡中文字幕| 曰老女人黄片| 国精品久久久久久国模美| 自拍欧美九色日韩亚洲蝌蚪91 | 日日爽夜夜爽网站| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 国产精品国产三级国产专区5o| 狂野欧美白嫩少妇大欣赏| 韩国av在线不卡| 中文字幕免费在线视频6| 如何舔出高潮| 晚上一个人看的免费电影| 免费看日本二区| 久久久久久久国产电影| av线在线观看网站| 在线观看人妻少妇| 伊人久久国产一区二区| 极品少妇高潮喷水抽搐| kizo精华| 精品酒店卫生间| av福利片在线观看| 亚洲精品一二三| 国产伦在线观看视频一区| 日日摸夜夜添夜夜添av毛片| 99国产精品免费福利视频| 久久鲁丝午夜福利片| av有码第一页| 国产高清不卡午夜福利| 成年美女黄网站色视频大全免费 | kizo精华| 日日摸夜夜添夜夜添av毛片| 人妻一区二区av| 日韩成人伦理影院| 免费大片黄手机在线观看| 亚洲经典国产精华液单| 男女啪啪激烈高潮av片| 一区二区av电影网| 免费久久久久久久精品成人欧美视频 | 一区在线观看完整版| 一本色道久久久久久精品综合| 国产亚洲最大av| 国产精品一区二区在线观看99| 两个人免费观看高清视频 | 久久精品久久久久久噜噜老黄| 亚洲精品亚洲一区二区| 国产精品国产三级专区第一集| 久久久午夜欧美精品| 亚洲国产av新网站| 欧美国产精品一级二级三级 | 少妇精品久久久久久久| 另类亚洲欧美激情| 国产av码专区亚洲av| 男人舔奶头视频| 久久国产乱子免费精品| 亚洲第一区二区三区不卡| 免费观看av网站的网址| 婷婷色麻豆天堂久久| 亚洲天堂av无毛| 3wmmmm亚洲av在线观看| av福利片在线| 多毛熟女@视频| 一区二区三区四区激情视频| 卡戴珊不雅视频在线播放| 精品卡一卡二卡四卡免费| 黄色毛片三级朝国网站 | 亚洲美女搞黄在线观看| 在线观看www视频免费| 国产淫语在线视频| 久久国产精品大桥未久av | 青青草视频在线视频观看| 一级毛片久久久久久久久女| 精品久久久精品久久久| 妹子高潮喷水视频| 久久久久久久久久久丰满| 另类亚洲欧美激情| 中文字幕人妻丝袜制服| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| 啦啦啦啦在线视频资源| 在线观看免费视频网站a站| 欧美区成人在线视频| 汤姆久久久久久久影院中文字幕| 精品卡一卡二卡四卡免费| 赤兔流量卡办理| 欧美日韩视频精品一区| 99热全是精品| 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区成人| 欧美精品高潮呻吟av久久| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 18+在线观看网站| 日本wwww免费看| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 精品久久久久久久久av| 自线自在国产av| 久久99精品国语久久久| 黄色视频在线播放观看不卡| 欧美三级亚洲精品| 人妻人人澡人人爽人人| 免费av不卡在线播放| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 午夜视频国产福利| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 欧美激情极品国产一区二区三区 | 中文欧美无线码| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 久久久久人妻精品一区果冻| 久久狼人影院| 色吧在线观看| 在线亚洲精品国产二区图片欧美 | 免费久久久久久久精品成人欧美视频 | 最黄视频免费看| 黄色视频在线播放观看不卡| 亚洲av日韩在线播放| 精品少妇内射三级| 尾随美女入室| 大片电影免费在线观看免费| 久久久久久久亚洲中文字幕| 搡女人真爽免费视频火全软件| 国产中年淑女户外野战色| 大陆偷拍与自拍| av国产精品久久久久影院| 免费看不卡的av| 国产亚洲欧美精品永久| 丁香六月天网| 亚洲av男天堂| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 插逼视频在线观看| 插阴视频在线观看视频| 夫妻性生交免费视频一级片| 卡戴珊不雅视频在线播放| 久久久久久久久久成人| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂| 国产真实伦视频高清在线观看| 精品一区二区三区视频在线| av.在线天堂| 18禁在线无遮挡免费观看视频| 亚洲无线观看免费| 2018国产大陆天天弄谢| 久久狼人影院| 精品久久久久久久久av| 精品久久久噜噜| 亚洲国产精品专区欧美| 十八禁高潮呻吟视频 | 亚洲精品国产av蜜桃| 欧美亚洲 丝袜 人妻 在线| 国产 精品1| 日本黄大片高清| 亚洲高清免费不卡视频| 老司机影院毛片| av国产精品久久久久影院| 亚洲性久久影院| 久久ye,这里只有精品| 国产欧美日韩精品一区二区| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片 | 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 久久久国产欧美日韩av| 各种免费的搞黄视频| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品中文字幕在线视频 | 亚洲综合精品二区| 最近中文字幕2019免费版| 午夜福利视频精品| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 国产 精品1| 欧美xxⅹ黑人| av国产久精品久网站免费入址| 99国产精品免费福利视频| 亚洲国产精品一区三区| 亚洲,欧美,日韩| 多毛熟女@视频| 秋霞伦理黄片| 欧美另类一区| 熟女av电影| av一本久久久久| 日韩一区二区视频免费看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 欧美激情极品国产一区二区三区 | 欧美国产精品一级二级三级 | 偷拍熟女少妇极品色| 国产在线男女| 中文精品一卡2卡3卡4更新| 成人美女网站在线观看视频| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人精品一二三区| 欧美成人午夜免费资源| 我的女老师完整版在线观看| videos熟女内射| 国产成人91sexporn| 国产日韩欧美亚洲二区| 免费不卡的大黄色大毛片视频在线观看| 欧美成人午夜免费资源| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 亚洲国产av新网站| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 在线观看一区二区三区激情| 一级片'在线观看视频| 精品视频人人做人人爽| 成人影院久久| 亚洲,欧美,日韩| 国产日韩一区二区三区精品不卡 | 日韩,欧美,国产一区二区三区| 一级毛片久久久久久久久女| 内射极品少妇av片p| 久久人人爽av亚洲精品天堂| 欧美激情极品国产一区二区三区 | 国产日韩一区二区三区精品不卡 | 老司机影院毛片| 欧美日韩国产mv在线观看视频| 亚洲经典国产精华液单| 久久国内精品自在自线图片| 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 成人二区视频| 国产伦精品一区二区三区视频9| 亚洲人成网站在线播| av免费观看日本| 久久久久久人妻| 美女国产视频在线观看| 亚洲三级黄色毛片| 有码 亚洲区| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 麻豆成人av视频| av国产精品久久久久影院| 看十八女毛片水多多多| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 日韩亚洲欧美综合| 天天操日日干夜夜撸| 狂野欧美白嫩少妇大欣赏| 日韩av在线免费看完整版不卡| 国产美女午夜福利| 午夜日本视频在线| 国产精品蜜桃在线观看| 亚洲综合色惰| 丝袜喷水一区| 男女国产视频网站| 久久鲁丝午夜福利片| 大片免费播放器 马上看| 你懂的网址亚洲精品在线观看| 春色校园在线视频观看| 一级,二级,三级黄色视频| 久久精品久久久久久久性| 久久精品国产自在天天线| 国产91av在线免费观看| 久久久久视频综合| 18+在线观看网站| 一级二级三级毛片免费看| 不卡视频在线观看欧美| 人妻人人澡人人爽人人| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 99久久精品热视频| 国产成人精品一,二区| 国产精品欧美亚洲77777| 亚洲性久久影院| 美女福利国产在线| 高清黄色对白视频在线免费看 | 五月伊人婷婷丁香| 乱人伦中国视频| 国产一区亚洲一区在线观看| 一级毛片aaaaaa免费看小| 青春草亚洲视频在线观看| 成年人免费黄色播放视频 | 欧美日本中文国产一区发布| 午夜福利视频精品| 我的老师免费观看完整版| 亚洲精品日本国产第一区| 亚洲av中文av极速乱| 美女视频免费永久观看网站| av免费在线看不卡| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡 | 中文字幕人妻丝袜制服| 亚洲精品第二区| 美女主播在线视频| 国产一区有黄有色的免费视频| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 乱人伦中国视频| 一级片'在线观看视频| 色5月婷婷丁香| 日日爽夜夜爽网站| 久久99一区二区三区| 日本黄色片子视频| 亚洲av成人精品一二三区| 成人美女网站在线观看视频| 一级毛片电影观看| 女人久久www免费人成看片| 日本欧美国产在线视频| av播播在线观看一区| 久久精品国产鲁丝片午夜精品| 亚洲一级一片aⅴ在线观看| 另类亚洲欧美激情| 精品少妇内射三级| av网站免费在线观看视频| 婷婷色av中文字幕| 中国三级夫妇交换| 中文资源天堂在线| 丰满少妇做爰视频| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 国产精品人妻久久久影院| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 一区二区av电影网| 人妻 亚洲 视频| 免费观看无遮挡的男女| 两个人的视频大全免费| 在线观看www视频免费| 亚洲av男天堂| a级片在线免费高清观看视频| 最近中文字幕高清免费大全6| 久久久久久久久久人人人人人人| 曰老女人黄片| 日韩伦理黄色片| 国产免费又黄又爽又色| 日本爱情动作片www.在线观看| 亚洲成人av在线免费| 免费黄色在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 亚洲成人av在线免费| 国产中年淑女户外野战色| av福利片在线| 亚洲丝袜综合中文字幕| 日日摸夜夜添夜夜爱| 欧美xxⅹ黑人| 91精品国产九色| 国产男人的电影天堂91| 欧美日本中文国产一区发布| 五月天丁香电影| 哪个播放器可以免费观看大片| av在线app专区| 成人特级av手机在线观看| 九草在线视频观看| 欧美日韩av久久| 久久久久精品久久久久真实原创| 欧美一级a爱片免费观看看| 久久午夜综合久久蜜桃| 熟女电影av网| 超碰97精品在线观看| 有码 亚洲区| 99re6热这里在线精品视频| 2021少妇久久久久久久久久久| 男人舔奶头视频| 又爽又黄a免费视频| 久久久久视频综合| 不卡视频在线观看欧美| 精品一区二区三区视频在线| 亚洲熟女精品中文字幕| 久久狼人影院| 毛片一级片免费看久久久久| 午夜日本视频在线| 乱码一卡2卡4卡精品| 亚洲精品国产色婷婷电影| 欧美日韩综合久久久久久| 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 国产成人freesex在线| 亚洲国产色片| 最黄视频免费看| 人妻 亚洲 视频| 久久午夜福利片| 久久久久久久久久久久大奶| 久久精品国产a三级三级三级| √禁漫天堂资源中文www| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 亚洲美女黄色视频免费看| 99热这里只有是精品50| 天堂8中文在线网| 久久99一区二区三区| 国产爽快片一区二区三区| 国产精品三级大全| 国产欧美亚洲国产| 久久精品夜色国产| 桃花免费在线播放| 伊人久久精品亚洲午夜| 在现免费观看毛片| 日本色播在线视频| 99久久精品一区二区三区| 卡戴珊不雅视频在线播放| 国产黄色免费在线视频| 亚洲国产毛片av蜜桃av| 亚洲欧美日韩卡通动漫| 成人毛片a级毛片在线播放| 亚洲精品国产av蜜桃| 国产亚洲最大av| av.在线天堂| 中文字幕制服av| 97在线视频观看| 国产有黄有色有爽视频| 特大巨黑吊av在线直播| 亚洲内射少妇av| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 爱豆传媒免费全集在线观看| 大香蕉久久网| 青春草国产在线视频| 大片电影免费在线观看免费| 免费av不卡在线播放| 免费在线观看成人毛片| xxx大片免费视频| h日本视频在线播放| 亚洲精品成人av观看孕妇| 日韩中文字幕视频在线看片| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频 | 美女福利国产在线| 在线观看免费日韩欧美大片 | 日本-黄色视频高清免费观看| 一级av片app| 2018国产大陆天天弄谢| 最近中文字幕2019免费版| 欧美成人精品欧美一级黄| 国产视频首页在线观看| 亚洲国产精品一区二区三区在线| 午夜精品国产一区二区电影|