• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models

    2018-03-07 06:58:03RenpingLINFeiZHENGandXiaoDONG
    Advances in Atmospheric Sciences 2018年5期

    Renping LIN,Fei ZHENG?,2,and Xiao DONG

    1International Center for Climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China

    1.Introduction

    The El Ni?o–Southern Oscillation(ENSO),as the most important natural variation on the interannual timescale,exerts considerable impacts on global climate.Thus,for several decades,great attention has been paid to investigating the mechanisms of ENSO(Bjerknes,1969;Jin,1997;Wang and Picaut,2004).In recent years,the decadal modulations of ENSO have attracted significant attention(An and Wang,2000).Timmermann(2003)suggested a nonlinear mechanism that generates decadal ENSO amplitude modulations without invoking extratropical dynamics.Yeh et al.(2004)stated that the decadal modulation of ENSO is primarily due to atmospheric noise processes.

    The Pacific Decadal Oscillation(PDO)is a climate mode on the decadal timescale that can influence global and regional climate(Mantua et al.,1997;Newman et al.,2016).Yeh and Kirtman(2005)investigated the relationship between Pacific decadal variability and decadal ENSO amplitude modulation and found that the PDO is unrelated to the modulation of ENSO amplitude.However,others have argued that the decadal modulations of ENSO variability are related to decadal climate modes,such as the PDO(Kravtsov,2011).Besides,Feng et al.(2014)claimed that the PDO can impact the evolution of ENSO,e.g.,El Ni?o(EN)decays slowly(rapidly)during positive(negative)PDO phases.Verdon and Franks(2006)investigated the interaction between ENSO and the PDO using proxy climate records derived from paleoclimate data of the past 400 years.

    However,decadal modulation of ENSO frequency asymmetry has not been intensively studied.For example,are there more(fewer)EN events than La Ni?a(LN)events in positive(negative)PDO phases?In this study,using the output of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5)experiments combined with observational data,we investigate the modulation of ENSO frequency asymmetry(EN and LN occurrence frequency)by the phases of the PDO.Specifically,the following two questions are addressed:(1)Is the frequency of EN and LN events modulated by different PDO phases?(2)If so,what is the reason for this decadal modulation?

    2.Data and methods

    The following datasets are used in this study:(1)monthly mean sea surface temperature data provided by the NOAA’s Extended Reconstructed SST dataset,version 3b(ERSST.v3b),with a horizontal resolution of2°×2°(Smith et al.,2008).This dataset is available from 1854 to the present day.(2)The Kalnay et al.(1996)NCEP–NCAR reanalysis(R1)dataset,with a resolution of 2.5°×2.5°and covering the period 1948–2014.(3)Global sea level pressure(SLP)data from the Second Hadley Centre SLP dataset(HadSLP2),with a resolution of 5°×5°(Allan and Ansell,2006).The period 1900–2014 is used to investigate the modulation of ENSO frequency asymmetry by the PDO.When the mechanism is examined,we use the circulation data from R1 over the period 1948–2014.

    Additionally,outputs from the pre-industrial runs of 19 CMIP5 models are analyzed to validate observational results(Taylor et al.,2012).Details of the CMIP5 models used in this study are listed in Table 1.The coupled models are freely integrated for several hundred years—much longer than the time span of the observational data.Thus,more robust conclusions can be drawn if the results derived from the ensemble mean of the models are consistent with those from observation.

    The commonly used Ni?o3.4 index associated with ENSO is defined as the area average of monthly SST anomalies in the region(5°N–5°S,170°–120°W)(Trenberth et al.,2002).The climatology is derived from the whole period of each dataset.The December–January–February(DJF)averaged Ni?o3.4 SST anomalies from the ERSST.v3b observations of 1900–2014 are shown in Fig.1a.The Ni?o3.4 index reveals substantial multi-decadal oscillations superimposed on interannual variability.Because our focus here is on the interannual variability of the Ni?o3.4 index,we apply a nineyear high-pass filter to the original Ni?o3.4 index,and obtain a new result for the Ni?o3.4 index without multi-decadal variability(Fig.1b).

    We select EN(LN)events by identifying years when the Ni?o3.4 SST index exceeds 1(is less than?1)standard deviation.Additionally,the an indexRis calculated to reveal the difference between EN and LN event occurrence:

    in whichNEN(NLN)denotes the number of EN(LN)events.R=0 means that the number of EN events is the same as the number of LN events.

    The monthly PDO index is defined as the time series of the leading empirical orthogonal function(EOF)of monthly mean SST anomalies for the Pacific Ocean north of 20°N in the observational data(Mantua et al.,1997;Wang et al.,2012).Before performing the EOF calculation,the global mean SST anomaly is firstly removed to reduce the influence of long-term trends.Here,we mainly concentrate on the decadal modulation by the PDO,as in Feng et al.(2014).Following Wang et al.(2012),the Pacific decadal variability considered in this study is the first two EOFs of monthly SST anomalies in the North Pacific: the PDO and the North Pacific Gyre Oscillation(NPGO).In the observational data,the first(second)EOF is defined as the PDO(NPGO)(Wang et al.,2012).In the CMIP5 models,we provide the pattern correlation coefficients(PCCs)between two EOF modes of CMIP5 models and the observed PDO mode and NPGO mode(Table 2).We define the mode of a model as the PDO mode when the PCC of that mode with the observed PDO(NPGO)mode is higher(lower).According to this criterion,the second mode of eight models(ACCESS1.0,BCC CSM1.1,CanESM2,CESM1(CAM5),CNRM-CM5,CSIRO Mk3.6.0,FGOALS-s2 and MRI-CGCM3)is defined as the PDO mode.The final PDO patterns are also shown in Fig.2.The November–March(NDJFM)average is regarded as the PDO index(Fig.1c).Following Feng et al.(2014),positive(negative)PDO years are identified when the PDO index is greater(less)than zero.Furthermore,to exclude years when the PDO index is rather neutral,we select a threshold of the PDO index as 0.2 standard deviations,rather than zero as in Feng et al.(2014).The black line in Fig.1c denotes 0.2 standard deviations of the PDO index.Actually,the main results are insensitive to our chosen threshold.When identifying the numbers of EN and LN events,positive(negative)PDO years are considered as warm(cold)phases in the following analysis.

    Table 1.Details of the pre-industrial control simulation experiments of the 19 CMIP5 models chosen in this study.

    Fig.1.Time series of(a)unfiltered and(b)nine-year high-pass filtered DJF Ni?o3.4 index,and(c)yearly PDO index,derived from ERSST.v3b during 1900 to 2014.The dashed line in(a)is the nine-year low-pass filtered Ni?o3.4 index.The black lines in(c)denote 0.2 standard deviations of the yearly PDO index.

    To test the significance of the modulation of ENSO frequency asymmetry by PDO phases,we use the Monte Carlo method(Chu and Wang,1997).In the 115 years of the observed time series(1900–2014),there are 45 positive PDO years.Thus,we choose 45 years randomly from the observed time series,one million times,to obtain one million samples.We then calculateRfor each sample.The probability distribution function(PDF)of the one millionRvalues is obtained.If the observedRis outside the 99%range of the PDF,we consider it to have reached the 99%level of significance according to the Monte Carlo test.The method is similar when the negative PDO phase is tested.

    Fig.2.PDO patterns of the(a)observational data and(b–t)simulations of 19 CMIP5 models(names given above each panel).In ACCESS1.0,BCCCSM1.1,CanESM2,CESM1(CAM5),CNRM-CM5,CSIRO Mk3.6.0,FGOALS-s2 and MRI-CGCM3,the PDO patterns are defined as the second EOF mode of the North Pacific SST anomalies.In the observational data and other models,the PDO patterns are defined as the first EOF mode of the North Pacific SST anomalies.

    Table 2.PCCs between the observed EOF1 mode and simulated EOF1 and EOF2 modes in 19 models.

    3.Results

    3.1.SST difference between positive and negative PDO phases

    Before examining the ENSO frequency asymmetry modulated by PDO phases,we firstly show the differences in SST,SLP and the wind field at 850 hPa between positive and negative PDO phases in Fig.3,in the observational data and in the multi-model simulations.The observational data show that the SLP difference between positive and negative PDO phases mainly occurs at midlatitudes.A notable negative anomaly occurs in the North Pacific,which is associated with the deepened Aleutian low in positive PDO phases.Additionally,although the PDO is defined as the leading empirical SST mode in the North Pacific,it has a considerable influence on the tropical Pacific.According to previous studies,this influence of the PDO on the tropics takes place via atmospheric teleconnections associated with the decadal background change(Barnett et al.,1999;Pierce et al.,2000;Wang and An,2002;Feng et al.,2014).In positive PDO phases,the eastern equatorial Pacific is anomalously warm.Similar conclusions have also been made by Feng et al.(2014)and Dong and Xue(2016).Additionally,compared to negative PDO phases,in positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific.These PDO phase–dependent background westerly anomalies on the decadal timescale may be associated with the fact that more EN events tend to occur in positive PDO phases,although it is well known that westerly wind bursts are essential to triggering EN events(Lengaigne et al.,2004).

    Fig.3.(a)Observed and(b–t)simulated(model names given above each panel)differences in SST(color shading;units: °C),SLP(contours;units:hPa)and 850-hPa wind(vectors;units:m s?1)between positive and negative PDO phases.

    As for the simulation results,most models reproduce the negative SLP anomaly in the North Pacific,albeit with a slightly different location of the anomaly center.However,the magnitude of the SST anomaly—especially in the tropical eastern Pacific—is underestimated in most of the CMIP5 coupled models,which is associated with the weakly portrayed low-level westerly anomaly in the equatorial central Pacific.

    3.2.ENSO composition in positive and negative PDO phases

    To compare the EN/LN events between positive and negative PDO phases,we examine the spatial pattern of SST composition in EN/LN mature winter(DJF)in positive and negative PDO phases,separately(Fig.4).In positive PDO phases,in the observational data,with EN events the equatorial eastern Pacific is anomalously warm,and in the northern/southern central Pacific and equatorial western Pacific it is anomalously cool(Fig.4).The cooling anomaly in the northern and southern Pacific may be associated with the occurrence of a positive PDO phase,while that in the equatorial western Pacific may be associated with EN events(Shakun and Shaman,2009).Most models reproduce this spatial pattern of global SST,with respective regional bias( figure omitted).In negative PDO phases,with the positive SST anomaly in the central and eastern equatorial Pacific in EN events,the positive SST anomaly in the North Pacific is more significant than its South Pacific counterpart(Fig.4).Note that in positive PDO phases with EN events,the SST near the western coast of the American continent is anomalously warm;whereas,in negative PDO phases with EN events there is no significant signal.Besides,in the observational data,with EN events the positive SST anomaly in the equatorial eastern Pacific is much stronger in positive PDO phases than in negative PDO phases.Meanwhile,in the simulation results,models cannot reasonably reproduce this difference.That is,in the simulation results the contrast in magnitude between positive and negative PDO phase is negligible.

    Fig.4.Composite SST anomaly spatial pattern(color shading;units:°C)in(a,b)EN and(c,d)LN mature winter(DJF)in(a,c)positive(i.e.,warm)and(b,d)negative(i.e.,cool)PDO phases,based on the observational data(lefthand panels)and multi-model ensemble mean(right-hand panels).The oblique lines denote values that exceed the 95%confidence level in the observational results.

    With respect to LN events,the observational data in Fig.4c show that in positive PDO phases there are significantly negative SSTs in the equatorial central and eastern Pacific and central and western North Pacific.Meanwhile,a positive SST anomaly is located in most regions of the Pacific Ocean.The magnitude of the negative SST anomaly in the central and eastern equatorial Pacific in the multi-model ensemble of the CMIP5 models is stronger than that in the observational data.Besides,not all of the CMIP5 models reproduce the concurrent negative SST anomaly in both the northern and equatorial Pacific in positive-PDO-phase LN events.Even in those models that do,the location of the negative SST anomaly in the northern Pacific is considerablely biased compared to the observed location.Thus,as stated in previous studies,it is still a difficult task to simulate the connection between the PDO and ENSO,or between the midlatitudes and equatorial ocean(Newman et al.,2016).In negative PDO phases with LN events,the observed positive SST anomaly in the North Pacific shifts eastward compared to in positive phases,and a South Pacific counterpart exists(Fig.4d).Most of the CMIP5 models reproduce the horseshoe pattern in the Pacific reasonably.The main deviation of the models is the overly westward shifted cold tongue in the equatorial Pacific,which is an unresolved problem in the current CMIP5 models.In addition,the negative SST anomaly in the equatorial Pacific is much stronger in negative PDO phases than in positive PDO phases.As mentioned for the EN events,in the simulation results,models cannot reproduce this difference reasonably.The contrast in magnitude between positive and negative PDO phases in the simulation results is negligible.

    Figure 5 shows the SST difference between positive and negative PDO phases in EN/LN events,separately.The results for EN and LN events are similar,i.e.,a negative(positive)center in the western and central North Pacific(equatorial central and eastern Pacific and coastline of the American continent).The multi-model ensemble reproduces the negative center in the North Pacific with only a slight location bias.However,the SST difference in the equatorial Pacific is rather weak.This indicates that many climate models suf-fer from bias in simulating the connection between the PDO and ENSO,or between the midlatitudes and equatorial ocean(Newman et al.,2016).

    Fig.5.Composite spatial pattern of SST anomaly differences(color shading;units:°C)in(a)EN and(b)LN events between different PDO phases[positive(i.e.,warm)minus negative(i.e.,cool)],based on the observational data(left-hand panels)and multi-model ensemble mean(right-hand panels).

    3.3.ENSO frequency asymmetry in different PDO phases

    Next,we investigate the PDO phase–dependent ENSO frequency asymmetry using the method defined in section 2.As shown in Fig.6,results show that in positive(negative)PDO phasesRis positive(negative),indicating that EN is more frequent than LN in positive PDO phases,while LN is more frequent than EN in negative PDO phases.In the observational data,EN is 300%more(58%less)frequent than LN in positive(negative)PDO phases.That is,positive(negative)PDO phases are conducive to the occurrence of more EN(LN)events.Besides,the amplitude ofRis also asymmetric in positive and negative PDO phases.For instance,in positive PDO phases EN is 300%more frequent than LN,which is much larger than its counterpart in negative PDO phases(58%).We also drew the above figure with unfiltered Ni?o3.4 index values,and the results were almost the same( figure not shown).

    To test the significance of our results,we apply the Monte Carlo significant test to the observational data.The PDF ofRin positive and negative PDO phases is shown in Fig.7.In positive(negative)PDO phases,the observedRvalue is positive(negative),which means that in positive(negative)PDO phases EN is more(less)frequent than LN.The same conclusion can be drawn from Fig.6.Besides,from Fig.7 it can be seen that the observedRvalue(red line)is beyond the threshold in both positive and negative PDO phases,indicating that our above conclusion,i.e.,that EN is more(less)frequent than LN in positive(negative)PDO phases,is significant at the 99%confidence level.The PDF distributions of the CMIP5 models are shown in Fig.8.Most of the CMIP5 model results are consistent with the observational results.However,there are six(seven)models that cannot reproduce the significant PDO phase–dependent ENSO asymmetry in positive(negative)PDO phases.This conclusion can also be drawn from Fig.6.

    Fig.6.The R values(percentage difference between the number of EN and LN events relative to the number of LN events)based on the observational data(OBS),multi-model ensemble(MME),and 19 CMIP5 models.The letter“Y”indicates that the R value is statistically significant at the 1%level.The vertical line(orange)denotes one standard deviation for the 19 model results.

    Fig.7.PDF of R in(a)positive and(b)negative phases of the PDO in the Monte Carlo test with a sample size of 1 000 000.The red line denotes the observed value of R and the blue line denotes the threshold[99%percentile for(a)and 1%percentile for(b)]beyond which the observed R can be regarded as significant.

    Fig.8.PDF of R derived from the observational data(OBS)and 19 CMIP5 models in(a)positive and(b)negative phases of the PDO in the Monte Carlo test with a sample size of 1 000 000.The red line denotes the value of R and the blue line denotes the threshold(99%percentile)beyond which R can be regarded as significant.

    Fig.8.(Continued)

    3.4.Discussion on the relationship between the PDO and ENSO

    To examine the possible causes of the ENSO frequency asymmetry between positive and negative PDO phases,the differences in SST,SLP and the wind field at 850 hPa between positive and negative PDO phases can be referred to,as mentioned in subsection 3.1(Fig.3).It can be seen that,although the PDO is defined as the leading empirical SST mode in the North Pacific,it has a considerable influence on the tropical Pacific.In positive PDO phases,the eastern equatorial Pacific is anomalously warm.Additionally,compared to negative PDO phases,in positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific.This PDO-dependent westerly anomaly over the central equatorial Pacific on the decadal timescale may be with the fact that more EN rather than LN events tend to occur in positive PDO phases.However,it should be acknowledged that,from the evidence shown here, one cannot say for certain that it is the PDO that results in the occurrence of more EN events.Notably,previous studies(e.g.,Newman et al.2003)argue that the PDO is an ENSO-forced signal.In this paper,using observational data and CMIP5 coupled model results,we only reveal the phenomenon that there tend to be more EN events in positive PDO phases.Of course,two possibilities exist,i.e.,that the PDO influences ENSO or vice versa.More work(e.g.,numerical sensitivity experiments)should be carried out to explore the mechanisms involved(i.e.,whether the PDO influences ENSO,or the other way around).

    4.Conclusions and discussion

    This study examines the modulation of ENSO frequency asymmetry by the different phases of the PDO.Results from observational data show that more EN(LN)events tend to occur in positive(negative)PDO phases.Specifically,EN is 300%more(58%less)frequent than LN in positive(negative)PDO phases.Monte Carlo testing is used to check the significance of the above observational evidence,and the results show that the conclusion,i.e.,that EN is more(less)frequent than LN in positive(negative)PDO phases,is statistically significant at the 99%confidence level.Besides the observational evidence,the pre-industrial simulations of 19 CMIP5 models are analyzed using the same method as with the observed data.We find that most of the CMIP5 models exhibit the same results as observed in both positive and negative PDO phases,indicating that ENSO frequency asymmetry is indeed modulated by the PDO phases.

    The modulation of ENSO frequency asymmetry by the PDO may be due to the background SST and circulation patterns in different PDO phases.In positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific,which are associated with the warming SST east of the anomalous low-level wind.Thus,this decadal-scale westerly wind anomaly associated with positive PDO phases may encourage more EN events,rather than LN events,to occur.However,in previous studies(e.g.,Newman et al.,2003)it has been argued that the PDO is an ENSO-forced signal.Of course,two possibilities exist—that the PDO influences ENSO or vice versa.In this paper,using observational data and CMIP5 coupled model results,we only seek to reveal the phenomenon that there tend to be more EN events in positive PDO phases,and in doing so we find that this relationship between the PDO and ENSO is statistically significant based on the Monte Carlo test.

    Besides analysis of observational data and CMIP5 multimodel pre-industrial control simulations,sensitivity experiments using numerical models are necessary to fully explore the modulation of ENSO frequency asymmetry by the different PDO phases.Such work has recently begun using a coupled climate model with assimilated SST in the ocean component(Dong et al.,2016).Indeed,it has already been found that this method can reproduce the decadal variation of the East Asian summer monsoon reasonably well(Lin et al.,2016).Thus,further study using model experiments to investigate the associated mechanisms is warranted.

    Acknowledgements.We appreciate the suggestions and comments from the two anonymous reviewers and the Editor,which helped to improve the quality of the original paper.This work was jointly supported by the National Key R&D Program of China(Grant No.2017YFA0604201),the National Natural Science Foundation of China(Grant Nos.41576019,41606027 and 41706028),and the China Postdoctoral Science Foundation(Grant No.2015M571095).

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(HadSLP2):1850-2004.J.Climate,19,5816–5842,https://doi.org/10.1175/JCLI3937.1.

    An,S.I.,and B.Wang,2000:Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency.J.Climate,13,2044–2055,https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    Barnett,T.P.,D.W.Pierce,M.Latif,D.Dommenget,and R.Saravanan,1999:Interdecadal interactions between the tropics and midlatitudes in the Pacific basin.Geophys.Res.Lett.,26,615–618,https://doi.org/doi:10.1029/1999GL900042.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacific.Mon.Wea.Rev.,97(3),163–172,https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Chu,P.S.,and J.X.Wang,1997:Tropical cyclone occurrences in the vicinity of Hawaii:Are the differences between El Ni?o and non-El Ni?o years significant?J.Climate,10(10),2683–2689,https://doi.org/10.1175/1520-0442(1997)010<2683:TCOITV>2.0.CO;2.

    Dong,X.,and F.Xue,2016:Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century.Adv.Atmos.Sci.,33(3),330–338,https://doi.org/doi:10.1007/s00376-015-5130-7.

    Dong,X.,R.P.Lin,J.Zhu,and Z.T.Lu,2016:Evaluation of ocean data assimilation in CAS-ESM-C:Constraining the SST field.Adv.Atmos.Sci.,33(7),795–807,https://doi.org/10.1007/s00376-016-5234-8.

    Feng,J.,L.Wang,and W.Chen,2014:How does the East Asian summer monsoon behave in the decaying phase of El Ni?o during different PDO phases?J.Climate,27,2682–2698,https://doi.org/10.1175/JCLI-D-13-00015.1.

    Jin,F.F.,1997: An equatorial ocean recharge paradigm for ENSO.Part I:Conceptual model.J.Atmos.Sci.,54(7),811–829,https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    Kalnay,E.,and Coauthors,1996: The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kravtsov,S.,2011:An empirical model of decadal ENSO variability.Climate Dyn.,39(9–10),2377–2391,https://doi.org/10.1007/s00382-012-1424-y.

    Lengaigne,M.,E.Guilyardi,J.P.Boulanger,C.Menkes,P.Delecluse,P.Inness,J.Cole,and J.Slingo,2004:Triggering of El Ni?no by westerly wind events in a coupled general circulation model.Climate Dyn.,23(6),601–620,https://doi.org/10.1007/s00382-004-0457-2.

    Lin,R.,J.Zhu,and F.Zheng,2016:Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols.Scientific Reports,6,38546,https://doi.org/10.1038/srep38546.

    Mantua,N.J.,S.R.Hare,Y.Zhang,J.M.Wallace,and R.C.Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production.Bull.Amer.Meteor.Soc.,78,1069–1079,https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    Newman,M.,and Coauthors,2016:The Pacific decadal oscillation,revisited.J.Climate,29(12),4399–4427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    Pierce,D.W.,T.P.Barnett,and M.Latif,2000:Connections between the Pacific Ocean tropics and midlatitudes on decadal time scales.J.Climate,13,1173–1194.

    Shakun,J.D.,and J.Shaman,2009:Tropical origins of North and South Pacific decadal variability.Geophys.Res.Lett.,36,L19711,https://doi.org/10.doi:1029/2009GL040313.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore,2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880-2006).J.Climate,21,2283–2296,https://doi.org/10.1175/2007JCLI2100.1.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor.Soc.,93,485–498,https://doi.org/10.1175/BAMS-D-11-00094.1.

    Timmermann,A.,2003:Decadal ENSO amplitude modulations:A nonlinear paradigm.Global and Planetary Change,37(1–2),135–156,https://doi.org/10.1016/S0921-8181(02)00194-7.

    Trenberth,K.E.,J.M.Caron,D.P.Stepaniak,and S.Worley,2002:Evolution of El Ni?o–Southern Oscillation and global atmospheric surface temperatures.J.Geophys.Res.,107,4065,https://doi.org/doi:10.1029/2000JD000298.

    Verdon,D.C.,and S.W.Franks,2006:Long-term behaviour of ENSO:interactions with the PDO over the past 400 years inferred from paleoclimate records.Geophys.Res.Lett.,33(6),L06712,https://doi.org/10.1029/2005GL025052.

    Wang,B.,and S.I.An,2002:A mechanism for decadal changes of ENSO behavior:Roles of background wind changes.Climate Dyn.,18,475–486,https://doi.org/10.1007/s00382-001-0189-5.

    Wang,C.Z.,and J.Picaut,2004:Understanding ENSO physics—a review.Earth’s Climate:The Ocean-Atmosphere Interaction,C.Wang et al.,Eds.,American Geophysical Union,21–48,https://doi.org/10.1029/147GM02.

    Wang,H.,A.Kumar,W.Q.Wang,and Y.Xue,2012:Influence of ENSO on Pacific decadal variability:An analysis based on the NCEP climate forecast system.J.Climate,25,6136–6151,https://doi.org/10.1175/JCLI-D-11-00573.1.

    Yeh,S.W.,and B.P.Kirtman,2005:Pacific decadal variability and decadal ENSO amplitude modulation.Geophys.Res.Lett.,32(5),L05703,https://doi.org/10.1029/2004GL021731.

    Yeh,S.W.,J.G.Jhun,I.S.Kang,and B.P.Kirtman,2004:The decadal ENSO variability in a hybrid coupled model.J.Climate,17(6),1225–1238,https://doi.org/10.1175/1520-0442(2004)017<1225:TDEVIA>2.0.CO;2.

    国产av码专区亚洲av| 国产高潮美女av| 久久久久久九九精品二区国产| 国产极品天堂在线| 成人黄色视频免费在线看| 国产女主播在线喷水免费视频网站| 欧美亚洲 丝袜 人妻 在线| 国产一区亚洲一区在线观看| 国产成人精品婷婷| 美女内射精品一级片tv| 欧美3d第一页| 别揉我奶头 嗯啊视频| 国产又色又爽无遮挡免| 最近中文字幕2019免费版| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| av卡一久久| 免费看av在线观看网站| 亚洲,欧美,日韩| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 国产午夜精品久久久久久一区二区三区| 大码成人一级视频| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 欧美变态另类bdsm刘玥| 国产精品一区二区性色av| 高清日韩中文字幕在线| av国产精品久久久久影院| 青春草国产在线视频| 成人一区二区视频在线观看| 国产永久视频网站| 久久人人爽人人爽人人片va| 丰满少妇做爰视频| 又爽又黄无遮挡网站| 午夜视频国产福利| av在线蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久99热这里只频精品6学生| 99热6这里只有精品| 青春草视频在线免费观看| 久久久久久久久久久免费av| 在线观看一区二区三区| 一区二区三区免费毛片| 伊人久久国产一区二区| av.在线天堂| 又大又黄又爽视频免费| 2021天堂中文幕一二区在线观| 三级男女做爰猛烈吃奶摸视频| 国产伦理片在线播放av一区| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| 日韩av在线免费看完整版不卡| 少妇被粗大猛烈的视频| 精品国产三级普通话版| 国产精品无大码| 欧美区成人在线视频| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 国产伦理片在线播放av一区| 欧美激情国产日韩精品一区| 1000部很黄的大片| 丰满人妻一区二区三区视频av| av在线天堂中文字幕| 亚洲最大成人av| 禁无遮挡网站| 国产伦精品一区二区三区四那| 永久网站在线| 亚洲欧洲日产国产| 狂野欧美激情性bbbbbb| 成人综合一区亚洲| 日本免费在线观看一区| 亚洲自偷自拍三级| 成年人午夜在线观看视频| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 男女下面进入的视频免费午夜| 69人妻影院| 国产成人免费无遮挡视频| 内地一区二区视频在线| 看免费成人av毛片| 在线观看一区二区三区| 国产精品熟女久久久久浪| 国产 一区 欧美 日韩| 日韩国内少妇激情av| 看非洲黑人一级黄片| 色视频在线一区二区三区| 热re99久久精品国产66热6| 免费av观看视频| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 久久99热6这里只有精品| 国产伦在线观看视频一区| 色网站视频免费| 男女边摸边吃奶| 国产精品人妻久久久久久| 伦理电影大哥的女人| 永久网站在线| av在线蜜桃| 肉色欧美久久久久久久蜜桃 | 欧美日韩精品成人综合77777| 亚洲国产欧美人成| 日韩欧美精品免费久久| 热re99久久精品国产66热6| 国产在线男女| 1000部很黄的大片| 搡女人真爽免费视频火全软件| 成人特级av手机在线观看| 午夜老司机福利剧场| 超碰97精品在线观看| 一级毛片aaaaaa免费看小| 国产精品一区二区在线观看99| 汤姆久久久久久久影院中文字幕| 各种免费的搞黄视频| 女人十人毛片免费观看3o分钟| 日韩一区二区三区影片| 中文字幕久久专区| 80岁老熟妇乱子伦牲交| 久久久久久久久久成人| 寂寞人妻少妇视频99o| 亚洲成人中文字幕在线播放| 在线观看一区二区三区| 97超视频在线观看视频| 在线观看免费高清a一片| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 婷婷色综合大香蕉| 日韩欧美 国产精品| 在线观看av片永久免费下载| 夫妻性生交免费视频一级片| 男女啪啪激烈高潮av片| 禁无遮挡网站| 女人被狂操c到高潮| 国产精品麻豆人妻色哟哟久久| 午夜精品一区二区三区免费看| 国产欧美亚洲国产| 一区二区三区精品91| 精品久久久久久久久av| 欧美xxxx黑人xx丫x性爽| 在线 av 中文字幕| 如何舔出高潮| 中文字幕制服av| 国产日韩欧美亚洲二区| 久久久久久久亚洲中文字幕| 成年女人在线观看亚洲视频 | 亚洲av日韩在线播放| 成人亚洲欧美一区二区av| 亚洲精品影视一区二区三区av| 亚洲国产精品国产精品| 91精品一卡2卡3卡4卡| 欧美日韩视频精品一区| 男女那种视频在线观看| 亚洲欧美一区二区三区国产| 性插视频无遮挡在线免费观看| 国产成人91sexporn| 精华霜和精华液先用哪个| 亚洲精品一二三| 高清在线视频一区二区三区| 亚洲人成网站在线播| 禁无遮挡网站| 麻豆成人午夜福利视频| 一区二区三区免费毛片| 国语对白做爰xxxⅹ性视频网站| 青春草亚洲视频在线观看| 欧美性感艳星| 国国产精品蜜臀av免费| 亚洲国产精品专区欧美| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 亚洲国产最新在线播放| 18禁裸乳无遮挡免费网站照片| 最近手机中文字幕大全| 亚洲精品日本国产第一区| 一区二区三区免费毛片| 禁无遮挡网站| 久久久精品欧美日韩精品| 亚洲欧美日韩卡通动漫| 欧美日韩国产mv在线观看视频 | 欧美一级a爱片免费观看看| 黄色欧美视频在线观看| 免费看不卡的av| 国产色婷婷99| 天天躁日日操中文字幕| 毛片一级片免费看久久久久| 嫩草影院入口| 国产欧美另类精品又又久久亚洲欧美| 我的女老师完整版在线观看| 午夜激情久久久久久久| 免费观看a级毛片全部| 91aial.com中文字幕在线观看| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利在线在线| 久久国产乱子免费精品| 久久99蜜桃精品久久| 国产精品av视频在线免费观看| 久久久久久久久大av| 亚洲国产av新网站| 啦啦啦在线观看免费高清www| 国产精品三级大全| 黄色怎么调成土黄色| 欧美成人一区二区免费高清观看| 一级毛片我不卡| 久久久久网色| 99久国产av精品国产电影| 久久久久性生活片| 蜜桃久久精品国产亚洲av| 可以在线观看毛片的网站| 在线播放无遮挡| 亚洲国产高清在线一区二区三| 国内少妇人妻偷人精品xxx网站| 日本午夜av视频| 久久人人爽人人爽人人片va| 久久ye,这里只有精品| 一个人观看的视频www高清免费观看| 在现免费观看毛片| 在线免费十八禁| 免费黄色在线免费观看| 免费黄网站久久成人精品| 国产精品蜜桃在线观看| 亚洲国产精品国产精品| 国产成人精品一,二区| 欧美潮喷喷水| 国产成人精品福利久久| 欧美亚洲 丝袜 人妻 在线| 哪个播放器可以免费观看大片| 五月玫瑰六月丁香| 天美传媒精品一区二区| 久久久久网色| 蜜桃久久精品国产亚洲av| 成人午夜精彩视频在线观看| 天天一区二区日本电影三级| 在线看a的网站| 亚洲精品成人久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品一二三| av天堂中文字幕网| 久久久久久久久久久免费av| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 亚洲四区av| 秋霞在线观看毛片| 亚洲国产成人一精品久久久| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 永久免费av网站大全| 久久久亚洲精品成人影院| 街头女战士在线观看网站| 日本黄大片高清| 天天躁夜夜躁狠狠久久av| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 久久6这里有精品| 69人妻影院| 男插女下体视频免费在线播放| 下体分泌物呈黄色| 亚洲美女搞黄在线观看| 另类亚洲欧美激情| .国产精品久久| 国产一区二区三区av在线| 国产精品国产三级国产av玫瑰| 日韩大片免费观看网站| 视频中文字幕在线观看| 简卡轻食公司| 日本三级黄在线观看| 在线精品无人区一区二区三 | 免费大片黄手机在线观看| 黄色日韩在线| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 亚洲伊人久久精品综合| 国产一区二区亚洲精品在线观看| 国产av国产精品国产| 美女cb高潮喷水在线观看| 免费黄网站久久成人精品| 亚洲国产精品国产精品| 日韩欧美一区视频在线观看 | av卡一久久| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 伦理电影大哥的女人| 国产午夜福利久久久久久| 欧美日韩视频精品一区| 国产亚洲午夜精品一区二区久久 | 80岁老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 国产精品一及| 久久6这里有精品| 女人被狂操c到高潮| 亚洲国产精品999| 91久久精品电影网| 亚洲精品色激情综合| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 国产成人a区在线观看| 国产精品.久久久| 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 国产乱来视频区| 夫妻性生交免费视频一级片| 亚洲精品乱码久久久久久按摩| 啦啦啦在线观看免费高清www| 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| www.av在线官网国产| 黄片wwwwww| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的 | 国产亚洲av片在线观看秒播厂| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 日本一二三区视频观看| 丝袜喷水一区| 日本黄大片高清| 国产黄a三级三级三级人| 美女内射精品一级片tv| 99热全是精品| 可以在线观看毛片的网站| 欧美精品一区二区大全| 国产成人精品婷婷| 午夜老司机福利剧场| 中文字幕免费在线视频6| 日本一本二区三区精品| 日本免费在线观看一区| 97超视频在线观看视频| 久久久久九九精品影院| 国产综合懂色| 伊人久久精品亚洲午夜| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 大片电影免费在线观看免费| 欧美日韩国产mv在线观看视频 | 久久久久久久国产电影| 国产精品一区二区三区四区免费观看| 美女主播在线视频| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 日韩欧美一区视频在线观看 | 一级毛片 在线播放| 我要看日韩黄色一级片| 三级国产精品片| 欧美一级a爱片免费观看看| 中文字幕人妻熟人妻熟丝袜美| 国产成人freesex在线| 不卡视频在线观看欧美| 久久99精品国语久久久| 成人特级av手机在线观看| 国产美女午夜福利| 赤兔流量卡办理| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看| 日韩一区二区三区影片| 国产成人一区二区在线| 国产乱人视频| 免费电影在线观看免费观看| 久久久久九九精品影院| 内地一区二区视频在线| 99热全是精品| 精品少妇黑人巨大在线播放| 男女边摸边吃奶| 一级毛片电影观看| 国产精品99久久99久久久不卡 | 激情五月婷婷亚洲| 色视频www国产| 亚洲欧美日韩东京热| 午夜福利高清视频| 国产黄a三级三级三级人| 免费黄色在线免费观看| 高清视频免费观看一区二区| 亚洲自拍偷在线| 免费观看无遮挡的男女| 99热这里只有精品一区| 大陆偷拍与自拍| 大码成人一级视频| 国产美女午夜福利| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看| 国产成人精品婷婷| 少妇人妻精品综合一区二区| 在线精品无人区一区二区三 | 国产 一区精品| 在线观看三级黄色| 王馨瑶露胸无遮挡在线观看| 久久久久久久亚洲中文字幕| 午夜福利高清视频| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 色网站视频免费| 国产av不卡久久| 国产乱来视频区| 国产一区二区三区综合在线观看 | 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜添av毛片| 26uuu在线亚洲综合色| 婷婷色综合www| 欧美变态另类bdsm刘玥| 国产精品无大码| 国产免费视频播放在线视频| 狠狠精品人妻久久久久久综合| 高清午夜精品一区二区三区| 国产成年人精品一区二区| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 99久久九九国产精品国产免费| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 看免费成人av毛片| 亚洲综合色惰| 男插女下体视频免费在线播放| 80岁老熟妇乱子伦牲交| 看非洲黑人一级黄片| 亚洲最大成人手机在线| 中国美白少妇内射xxxbb| av免费观看日本| 久久午夜福利片| 成人午夜精彩视频在线观看| 久久99蜜桃精品久久| 亚洲va在线va天堂va国产| 小蜜桃在线观看免费完整版高清| 美女主播在线视频| 大片免费播放器 马上看| 中文字幕久久专区| av在线观看视频网站免费| 日本爱情动作片www.在线观看| 高清毛片免费看| 纵有疾风起免费观看全集完整版| 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 中文字幕av成人在线电影| 久久6这里有精品| 大又大粗又爽又黄少妇毛片口| 男人舔奶头视频| 国产成人福利小说| 大香蕉97超碰在线| 日韩,欧美,国产一区二区三区| 国产精品无大码| 免费观看的影片在线观看| 欧美变态另类bdsm刘玥| 久久99热这里只有精品18| 亚洲精品第二区| 网址你懂的国产日韩在线| 国产成人福利小说| 欧美成人午夜免费资源| 国产高潮美女av| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄| 男人和女人高潮做爰伦理| av.在线天堂| 麻豆成人av视频| eeuss影院久久| 好男人视频免费观看在线| 日韩一区二区视频免费看| 秋霞在线观看毛片| 国产精品一二三区在线看| 精品国产露脸久久av麻豆| 欧美一区二区亚洲| 在线观看一区二区三区激情| 97人妻精品一区二区三区麻豆| 亚洲国产色片| www.av在线官网国产| 国产亚洲午夜精品一区二区久久 | 国产老妇女一区| 久久综合国产亚洲精品| 欧美一级a爱片免费观看看| 日韩不卡一区二区三区视频在线| 免费在线观看成人毛片| 国产伦理片在线播放av一区| 最近最新中文字幕免费大全7| 又爽又黄无遮挡网站| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 久热这里只有精品99| 亚洲av.av天堂| 韩国高清视频一区二区三区| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 欧美日本视频| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 日韩欧美精品v在线| 一级毛片我不卡| 免费大片黄手机在线观看| 精品一区在线观看国产| 九九爱精品视频在线观看| 日本与韩国留学比较| 人妻少妇偷人精品九色| 插逼视频在线观看| 国产免费视频播放在线视频| 亚洲无线观看免费| 色哟哟·www| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 99热6这里只有精品| 日本黄大片高清| 亚洲国产最新在线播放| 黄色一级大片看看| 男女国产视频网站| 日韩电影二区| 亚洲av成人精品一二三区| 男人狂女人下面高潮的视频| 亚洲精品自拍成人| 国模一区二区三区四区视频| 亚洲欧美日韩东京热| 久久影院123| 真实男女啪啪啪动态图| 菩萨蛮人人尽说江南好唐韦庄| 男人狂女人下面高潮的视频| freevideosex欧美| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| av国产久精品久网站免费入址| 国产成人一区二区在线| 男女国产视频网站| 一级毛片aaaaaa免费看小| 蜜臀久久99精品久久宅男| 男人爽女人下面视频在线观看| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 免费看光身美女| 国产精品女同一区二区软件| 欧美潮喷喷水| 一级a做视频免费观看| 成人一区二区视频在线观看| 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 一个人观看的视频www高清免费观看| 日韩欧美一区视频在线观看 | 亚洲欧美一区二区三区国产| 两个人的视频大全免费| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 久久久久网色| 成人毛片60女人毛片免费| 69av精品久久久久久| 黄色配什么色好看| 青青草视频在线视频观看| 国产精品人妻久久久久久| 97在线视频观看| 欧美变态另类bdsm刘玥| 久久久久久国产a免费观看| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 亚洲在线观看片| 中文精品一卡2卡3卡4更新| 国产综合懂色| 国产精品国产三级国产av玫瑰| 观看免费一级毛片| 丰满人妻一区二区三区视频av| 涩涩av久久男人的天堂| 国产精品一及| 老女人水多毛片| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 中国三级夫妇交换| 别揉我奶头 嗯啊视频| 久久久成人免费电影| 97在线人人人人妻| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 美女国产视频在线观看| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 国产 一区精品| 欧美极品一区二区三区四区| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 久久99热这里只有精品18| 中文在线观看免费www的网站| 亚州av有码| 成人综合一区亚洲| 亚洲国产欧美在线一区| 欧美潮喷喷水| 综合色av麻豆| 亚洲性久久影院| 久久精品久久精品一区二区三区| 久久久久国产网址| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频| 大香蕉97超碰在线| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 大又大粗又爽又黄少妇毛片口| 久久久久久久午夜电影| 日韩成人伦理影院| 国产精品女同一区二区软件| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 亚洲电影在线观看av| 男人爽女人下面视频在线观看| 亚洲精品自拍成人| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 国产在线一区二区三区精| 亚洲自偷自拍三级| 另类亚洲欧美激情|