• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into the interaction of inhaled corticosteroids with human serum albumin:A spectroscopic-based study

    2018-03-06 01:51:06CrlottPontremoliNdiBreroGuidoViscrdiSonjVisentin
    Journal of Pharmaceutical Analysis 2018年1期

    Crlott Pontremoli,Ndi Brero,Guido Viscrdi,Sonj Visentin

    aDepartment of Applied Science and Technology(DISAT),Politecnico of Torino,Corso Duca degli Abruzzi 24,Torino 10129,Italy

    bDepartment of Chemistry and NIS Interdepartmental Centre,University of Torino,via Pietro Giuria 7,10125 Torino,Italy

    cMolecular Biotechnology and Health Sciences Department,University of Torino,via Quarello 15,10135 Torino,Italy

    1.Introduction

    The study of protein–drug interactions plays an important role in pharmacokinetics and pharmacodynamics of drugs.They influence the distribution and elimination speed;only non-binding drug can spread and reach the target producing a biological response.One of the most important factors affecting the distribution and the free,active concentration of many administered drugs is binding affinity for human serum albumin(HSA).Drug binding to HSA increases drug half-life and lowers the free drug concentration in blood,which makes it extremely important for clinical care.In early drug discovery,the plasma protein binding is important in order to evaluate drug dosing needs and clearance from the body.

    HSA is the most abundant drug carrier protein,with a well known primary structure.Its tertiary structure has been determined by X-ray crystallography[1].It has an important role in maintaining the colloidal osmotic pressure in blood and in the transport of exogenous and endogenous substances,including fatty acids,amino acids,steroids,bilirubin and drugs[2,3].Backbone of protein consists of a single polypeptide chain of 585 amino acid residues that form three homologous domains(I,II,and III),stabilized by 17 disulfide bridges due to the 34 cysteines present in the molecule;each domain contains two subdomains(A and B),respectively constituted by 6 and 4 α-helices[4–6].Crystallographic studies have revealed that HSA possesses binding sites for aromatic and heterocyclic ligands within two hydrophobic pockets:in subdomains IIA(Sudlow's site I:warfarin-binding site)and IIIA(Sudlow's site II:indole/benzodiazepine site).Both hydrophobic and electrostatic interactions play a major role in controlling the affinity towards drug binding for sites I and II.For site I,mainly hydrophobic interactions are dominant,while for site II,a combination of hydrophobic,hydrogen bonding and electrostatic interactions plays a crucial role.The tryptophan residue(Trp 214)of HSA is in subdomain IIA(site I)and plays a crucial role in spectrophotometric studies[2,3].When a ligand binds to one domain,it can induce distinct conformational changes on the other domain,as both sub domains share a common interface.For this reason,the binding of a drug to serum albumin may change considerably the binding abilities of HSA towards other molecules[7].

    Fig.1.The interaction of ICSs with albumin plays an important role in governing systemic side effects.

    From a pharmaceutical point of view,the interaction between inhaled corticosteroids(ICSs)and HSA is very interesting.Corticosteroids are the most potent and effective anti-inflammatory agents in many respiratory chronic diseases.In this case,the preferred way of administration of a corticosteroid is inhalation;this way permits to deliver the drug directly to the lung,where it acts locally in order to minimise the systemic side effects,compared to oral or parenteral administration.Clinical studies have shown that ICSs significantly reduce airway hy-perresponsiveness,effectively prevent acute exacerbations,improve lung function and decrease symptoms severity[8].Corticosteroids are involved in different physiological processes;in particular,they alter the production of inflammatory mediators in the airways,such as macrophages,eosinophils,lymphocytes,mast cells and dendritic cells[9].

    It is well known that the safety and efficacy profile of an ICS is influenced by the pharmacokinetic properties and associated pharmacodynamic effects of the drug[10,11].If ICSs are not bound,they can circulate freely and cause systemic adverse effects.In fact,the freely circulating ICSs can bind to nonpulmonary glucocorticoids receptors and cause adverse effects such as a reduction in the function of the hypothalamic-pituitary-adrenal(HPA)axis and growth impairment[12].Extensive protein binding can,therefore,be viewed as a way to temporarily remove an ICS that is available to the tissues from the systemic circulation,thereby reducing the potential for development of adverse effects[12–14].Among other pharmacological properties,high plasma protein binding is a desirable property for any ICS,since this reduces the potential for systemic side effects[15].Therefore,adetailed investigation of drug–protein interaction assumes significance for thorough understanding of the pharmacokinetic behaviour of corticosteroids and for the design of analogues with effective pharmacological properties(Fig.1).

    The purpose of this study was to evaluate the extent of protein binding of different ICSs,like betamethasone(A), flunisolide(B),prednisolone(C)and triamcinolone(D)(Fig.2)in order to develop a rapid spectroscopic method to study the interaction and eventually compare the affinity of ICSs with HSA.To our knowledge,the interaction between ICS and HSA has never been investigated by spectroscopic techniques.

    In this study,UV–Vis and fluorescence spectroscopy were used to elucidate the mode of binding and probable structural alterations of HSA upon drug binding.The binding constant and the nature of binding forces were determined.Lastly,the thermodynamic and F?rster's parameters associated with the binding process were also calculated.All the data obtained could clarify the type of interaction that can occur between ICS and HSA and could be fundamental to understand if and how the structural features of the drugs could modulate this interaction.Moreover,it may pave the comprehension of the bioavailability of corticosteroids,justifying the major use as inhaled administration,and facilitate the interpretation of absorption and distribution process of corticosteroids.

    2.Materials and methods

    2.1.Materials

    Albumin from human serum(HSA)lyophilized powder,≥97%(agarose gel electrophoresis),was purchased from Sigma Aldrich(Italy).To prepare the stock solution(100μM),HSA was dissolved in 2 mM phosphate buffer solution(PBS,pH 7.4).

    Betamethasone(≥98%), flunisolide(≥97%),prednisolone(≥99%)and triamcinolone were all purchased from Sigma Aldrich(Italy);the stock solutions(3 mM)were prepared by dissolving drugs in a solution of 96%ethanol and PBS(1:1,v/v).

    2.2.Apparatus

    All fluorescence spectra were recorded with a Horiba Jobin Yvon Fluorolog3 TCSPC spectrofluorophotometer(Bernsheim,Germany)with 1.0 cm quartz cells.UV–Vis spectra were recorded on a UH5300 Hitachi spectrophotometer(Hitachi Europe,Milan,Italy).The pH measurements were made with a Eutech Instruments pH2700(Landsmeer,The Netherlands).

    2.3.Experimental conditions

    UV–Vis measurements were carried out in the range of 200–400 nm.UV–Vis absorption spectra were recorded at room temperature,by using different concentrations of drugs(betametha-sone,prednisolone,and triamcinolone=2.0,4.0,6.0,8.0,10.0μM;flunisolide=5.0,10.0,15.0,20.0,25.0μM).

    Fluorescence quenching spectra were measured in the range of 300–500 nm upon excitation at 280 nm.The excitation and emission slits were 6 nm and 10 nm,respectively.The fluorescence spectra were performed at three different temperatures(296 K,303 K,and 310 K).5μM HSA was titrated by successive additions of drug solutions at different concentrations.To reach protein saturation,it is necessary to use a range from 50μM to 500μM for betamethasone and from 50μM to 700μM for flunisolide,prednisolone and triamcinolone.

    Fluorescence resonance energy transfer(FRET)measurements were performed at room temperature(296 K).The overlaps were obtained by using the emission spectrum of 5 μM HSA(λexcitationat 280 nm;the excitation and emission slits were 6 nm and 10 nm,respectively)and the absorption spectra of drugs(betamethasone,prednisolone,and triamcinolone=10.0μM; flunisolide=25.0μM).

    3.Results and discussion

    3.1.UV–Vis spectroscopy

    Absorption spectroscopy is one of the techniques used to explore the structural changes of protein and to investigate proteinligand complex formation[16].HSA has two main absorption bands,and one of them is located at 280 nm,which is the absorption band of the tryptophan(Trp 214)[17,18].

    The absorption spectra of the protein at room temperature in absence and in presence of different concentrations of drugs(betamethasone,prednisolone,and triamcinolone=2.0,4.0,6.0,8.0,10.0μM; flunisolide=5.0,10.0,15.0,20.0,25.0μM)were recorded and are shown in Fig.S1.As can be seen,for every sample,the absorption intensity of HSA at around 280 nm increased with the addition of increased concentrations of drugs.Moreover,the absorption spectrum of protein-drug complex was different from that of albumin and drugs alone.The maximum peak position of HSA-drug complex was slightly shifted towards lower wavelength region.These results confirmed that every studied drug can bind the protein.

    3.2.Fluorescence quenching mechanism

    The fluorescence spectrum of albumin was recorded in absence and in presence of drugs at different concentrations.Fig.3 shows spectra at room temperature.HSA shows a typical strong fluorescence emission peak at 350 nm,which does not shift in the presence of the drugs.Every analysed molecule causes a concentration-dependent quenching of the intrinsic fluorescence of protein that decreases gradually with the increase of drug concentration.The quenching of protein fluorescence by drugs was due to the formation of a protein-drug complex.This means that the microenvironment of HSA was changed during the binding interaction.In order to obtain thermodynamic parameters,binding studies were performed at three different temperatures(296 K,303 K and 310 K)and the obtained steady-state maximum fluorescence intensity was recorded.

    Fluorescence quenching data were treated by different methods,as reported in the following paragraphs,to evaluate the equilibrium association(KA)and dissociation(KD)constants.

    3.2.1.Stern-Volmer equation

    First of all, fluorescence quenching of albumin was analysed by Stern-Volmer Eq.(1)[19]:

    whereF0is the fluorescence intensities in the absence of quencher,Fis the steady-state fluorescence intensity in the presence of the quencher,and[Q]is the concentration of the quencher.KSVis the Stern-Volmer quenching constant and describes a collisional quenching of fluorescence.Quenching data are presented as plots ofF0/Fvs.[Q],yielding an intercept of one on the y-axis and a slope equal toKSV.Fig.4 shows Stern-Volmer plots of the fluorescence quenching of HSA by drugs at different temperatures.

    A linear Stern-Volmer plot,however,does not define the quenching mechanism.In order to distinguish dynamic from static quenching,the dependence of the interaction of a drug,described byKSV,on temperature has been proposed.TheKSVvalues decrease with an increase in temperature for static quenching and the reverse effect can be observed for dynamic quenching[19].

    As shown in Table 1,theKSVof the protein-drug complexes A,B,and C decreases with increased temperature.This indicates that a possible static quenching interaction between protein and drug occurs[20].TheKSVof protein-triamcinolone complex is similar to negligible variations by changing the temperature,but it is possible to observe a slight increase also in this case,so probably a static quenching interaction between protein and drug may also occur.

    Fig.3.Fluorescence spectra of HSA–drugs interaction(T=296 K).(A)HSA–betamethasone;(B)HSA– flunisolide;(C)HSA–prednisolone and(D)HSA–triamcininolone.λex=280 nm.

    3.2.2.Non-linear least squares

    Non-linear least squares fit procedure is a simple method to analyse fluorescence data at different temperatures[21]based on Eq.(2):

    where[Q]is the drug concentration,yis the specific binding derived by measuring fluorescence intensity,Bmaxis the maximum amount of the protein-drug complex formed at saturation,andKDis the equilibrium dissociation constant.Fig.5 shows the binding curves obtained;the percentage of bound HSA,i.e.y,derived from the fluorescence intensity emission maximum,is plotted against the drug concentration.

    The correspondingKDandKA(which are reciprocals of each other)at different temperatures are shown in Table 2.The binding constant calculated for HSA-triamcinolone complex suggests the lower affinity of this drug for the protein than the other tested drugs,as reported in literature[15].TheKAof protein-triamcinolone complex is similar to negligible variations by changing the temperature,but it is also possible to observe a slight increase.In this case,affinity seems to be higher for flunisolide.By increasing temperature,for A,B and C HSA-drug complexes,the value of association constant decreases.

    3.3.Binding parameters

    By double logarithm regression curve(shown in Eq.(3))[22],it is possible to obtain the number of binding sites(n).Eq.(3)describes the relationship between fluorescence intensity and the quencher concentration:

    whereF0is the fluorescence intensity of the protein alone,Fis the fluorescence intensity after the addition of the quencher,and[Q]is the quencher/drug concentration.The plots obtained using Eq.(3)are shown in Fig.S2.The slope of the line is the n value.If the value of n is equal to 1,it means that a strong binding exists between the protein and the drug[22].

    The number of binding sites is easily calculated:for HSA–betamethasone complex is 1.50(296 K),1.30(303 K),and 1.50(310 K),for HSA– flunisolide is 1.30(296 K),0.92(303 K),and 1.10(310 K),for HSA–prednisolone complex is 1.30(296 K),1.40(303 K),and 1.30(310 K)and for HSA–triamcinolone is 1.30(296 K),1.40(303 K),and 1.30(310 K).Almost all values are approximately equal to 1,indicating that there is one independent binding site on HSA for each analysed drug[23].

    3.4.Site marker competitive binding experiments

    Fig.4.The Stern-Volmer plots of the fluorescence quenching of HSA by drugs at different temperatures.(A)betamethasone;(B) flunisolide;(C)prednisolone;and(D)triamcinolone.

    Table 1The quenching constants(KSVin M-1)of HSA and drugs at different temperatures.

    In order to further investigate drug binding site and to precisely determine the location of corticosteroids on HSA,competitive binding tests were carried out.Warfarin and ibuprofen are two specific markers for HSA binding sites I and II,respectively[24].In the site marker competitive experiment,warfarin or ibuprofen was gradually added to the solution of HSA-corticosteroids complex and then fluorescence intensity of the system was recorded.As shown in Fig.S3,with the addition of warfarin in the HSA-drug solution,the fluorescence intensity was slightly higher than that without warfarin,including a red shift.Then,when increasing warfarin concentration into the solution of HSA-corticosteroids complex,the fluorescence intensity of HSA solution decreased gradually,reaching saturation at 1 mM of site marker with an effective displacement of about 98%–99%for all the tested drugs,indicating that the binding of the corticosteroids to HSA was affected by warfarin addition.On the contrary,the addition of ibuprofen to the HSA-drug complex only promoted a slight enhancement of the fluorescence intensity(Fig.S4),indicating that site II marker did not prevent the binding of corticosteroids in its usual binding location.These results suggest that corticosteroids compete with warfarin for binding to HSA to site I[24].

    3.5.Thermodynamic parameters

    The interaction forces between small molecules and macromolecules include four binding modes:H-bonding,Van der Waals,electrostatics and hydrophobic interactions[25].The model of interaction between drug and the protein could be obtained,according to the data of enthalpy(ΔH)and entropy change(ΔS)[26]:(1)ΔH>0 andΔS>0,hydrophobic forces;(2)ΔH<0 and ΔS<0,van der Waals interactions and hydrogen bonds;(3)ΔH<0 andΔS>0,electrostatic interactions.The thermodynamic parameters,enthalpy and entropy of the HSA-drugs complex reaction are important to confirm binding modes.The temperature-dependence of the binding constant was analysed at 296 K,303 K,and 310 K and thermodynamic parameters were calculated from the following Van’t Hoff equations[19]:

    whereKAis the binding constant,R is the gas constant andTis the experimental temperature.The values ofΔHandΔSobtained for the binding sites are shown in Table S1.The negative sign forΔG means that the binding process is spontaneous for every studied interaction[23].

    Fig.5.The binding curves of HSA–drugs complex at different temperatures.(A)betamethasone;(B) flunisolide;(C)prednisolone and(D)triamcinolone.

    From Table S1 it can be seen that for HSA-betamethasone,HSA-flunisolide and HSA-prednisolone complexes,bothΔHandΔShave negative values.This indicates that van der Waals interactions and hydrogen bonds may play a major role in the binding.Conversely,in the formation of HSA-triamcinolone complex,an exothermic reaction occurs,characterized by a negativeΔHvalue and a positiveΔSvalue.From the point of view of water structure,a positiveΔSvalue is frequently taken as a typical evidence for hydrophobic interaction.Furthermore,specific electrostatic interactions between ionic species in aqueous solution are characterized by a positiveΔSvalue and a negativeΔHvalue[27].In order to evaluate the thermodynamic parameters of HSA-triamcinolone complex,it is not possible to take account of a single intermolecular force model.As described in literature for another complex(HSA-dexamethasone)[28],the binding,in this case,might involve hydrophobic interaction strongly,as evidenced by the positive values of ΔS,but electrostatic interaction can not be excluded either.

    3.6.Energy transfer

    FRET is a simple method to measure the distance between the acceptor(ligand)and the donor(tryptophan residues in the protein)[29].According to F?rster's non-radiative energy transfer theory,energy efficiency(E),critical energy-transfer distance(R0,E=50%),the energy donor and the energy acceptor distance(r)and the overlap integral between the fluorescence emission spectrum of the donor and the absorption spectrum of the acceptor(J)can be calculated by the following equations[30]:

    Table 2Values of the equilibrium dissociation and association constants of HSA-drug complexes at different temperatures obtained by a non linear fit equation.

    Table 3Parameters of J,E,R0and r of HSA-drug complexes at 296 K.

    wherek2is the orientation factor,φis the fluorescence quantum yield of the donor,nis the refractive index of the medium,F(λ)is the fluorescence intensity of the donor at wavelength λ and ε(λ)is the molar absorption coefficient of the acceptor at wavelength λ.In this case,k2=2/3,n=1.336 andφ=0.118[16].

    The overlaps of the emission spectra of the protein and the absorption spectra of drugs at room temperature were obtained(Fig.S5).Using these equations,it is possible to calculate J,E,R0and r for every interaction.Data are reported in Table 3.

    The distance r<7 nm indicates that the energy transfer between protein and drugs occurred with a high possibility[16,23].This is in agreement with conditions of F?ster's non-radiative energy transfer theory[31],indicating again the static quenching interaction between protein and drugs.According to Stern-Volmer plots,data obtained with different methods are comparable with each other.

    3.7.Conformation investigation

    Synchronous fluorescence spectroscopy introduced by Lloyd[32]has been used to investigate the conformational change of proteins.The synchronous fluorescence spectrum could be obtained by synchronously scanning the excitation and emission monochromators with a wavelength difference between excitation and emission as a constant.The intrinsic fluorescence of HSA is manifested by emission of Trp and Tyr residues present in the protein[33].

    The synchronous fluorescence spectra obtained with Δλ=60 nm exclusively characterize the fluorescence of tryptophan residue.After complex formation,the local environment could change and induce a red or blue shift of the tryptophan emission spectra.The shift in the position of fluorescence emission maximum corresponds to changes of the polarity around the chromophore molecule.A blue shift of λmaxmeans that the aminoacid residues are located in a more hydrophobic environment and are less exposed to the solvent,while a red shift of λmaximplies that the amino acid residues are in a polar environment and are more exposed to the solvent[34].By synchronous fluorescence spectral changes of aminoacid residues,the conformational changes of protein can be predicted.We can also obtain the information about the location of corticosteroids binding site from the synchronous fluorescence data.

    The synchronous fluorescence spectra of HSA in presence of betamethasone, flunisolide,prednisolone and triamcinolone were recorded and are shown in Fig.6.For every analysed complex,the emission maximum of tryptophan residues showed significant red shift of tryptophan residue fluorescence,confirming that every analysed drugs reached subdomain IIA,where only one Trp residue(Trp 214)is located.High concentration of drugs makes protein molecules extend,thus reducing energy transfer between aminoacids and reducing the fluorescence intensity[35].Since Trp 214 is at site I,these results indicated that corticosteroids can bind to HSA in the hydrophobic cavity on subdomain IIA,which is in full agreement with quenching and competitive binding experiments.

    Fig.6.Synchronous fluorescence spectra of HSA-drugs at 296 K,Δλ=60 nm.[HSA]:black line;[Drugs]:50.0–800.0 μM.(A)betamethasone;(B) flunisolide;(C)prednisolone;and(D)triamcinolone.

    4.Conclusions

    Drug binding to HSA is a major problem in pharmaceutical research because the binding to albumin influences the effective drug concentration that can reach the target site.In this work,the interaction of albumin with four different corticosteroids was investigated at different temperatures by different spectroscopic approaches.UV–Vis spectroscopy confirmed that all the investigated drugs can bind to HSA to form a protein–drug complex.Quenching fluorescence data revealed that the protein can be bound by the studied corticosteroids,around the Trp 214(as confirmed by competitive binding experiments and synchronous fluorescence)and that the quenching is governed by a static quenching(data are comparable with results obtained by FRET).According to thermodynamic parameters(negativeΔHandΔSvalues),the hydrogen bonds and van der Waals forces play a major role in the binding process between albumin and betamethasone, flunisolide and prednisolone,while hydrophobic forces may play a major role in stabilizing albumin-triamcinolone complex.The evaluation of the equilibrium association(KA)and dissociation(KD)constants was obtained by a non-linear method at different temperatures.The data showed that temperature does not influence the formation of HSA-triamcinolone complex,while it can influence the interaction between albumin and betamethasone, flunisolide and prednisolone.This means that the drug structure may play a crucial role in the binding with the protein.Usually,drugs bind to HSA high-affinity sites with typical association constants in the range of 104–106M-1[36].As reported in literature[8],serum analysis revealed that the present corticosteroids can bind the HSA in a range between 70%and 80%thus with a low affinity.These data are in agreement with the equilibrium association constants obtained in this study.Usually a binder with high affinity,such as warfarin,showsKAaround 105M-1[37]while the studied ICSs haveKAin the order of 103M-1.

    The present spectroscopic approach offers a fast screening method to eventually investigate the structure-activity relationship(SAR)of new therapeutic molecules since it can discriminate the binding affinity with simple and reliable experiments.

    Conflicts of interest

    The authors declare that there are no Conflicts of interest.

    This work was supported by a grant from the University of Torino(Ricerca Locale ex-60%,Bando 2015).

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jpha.2017.07.003.

    [1]X.M.He,D.C.Carter,Atomic structure and chemistry of human serum albumin,Nature 358(1992)209–215.

    [2]T.K.Maiti,K.S.Ghosh,J.Debnath,et al.,Binding of all-trans retinoic acid to human serum albumin: fluorescence,FT-IR and circular dichroism studies,Int.J.Biol.Macromol.38(2006)197–202.

    [3]M.X.Xie,M.Long,Y.Liu,et al.,Characterization of the interaction between human serum albumin and morin,Biochim.Biophys.Acta 2006(1760)1184–1191.

    [4]Y.Wang,H.Yu,X.Shi,et al.,Structural mechanism of ring opening reaction of glucose by human serum albumin,J.Biol.Chem.288(2013)15980–15987.

    [5]F.Keshavarz,M.M.Alavianmehr,R.Youse fi,Molecular interaction of benzalkoniumibuprofenate and its discrete ingredients with human serum albumin,Phys.Chem.Res.2(2013)111–116.

    [6]C.D.Kanakis,P.A.Tarantilis,M.G.Polissiou,et al.,Antioxidant flavonoids bind human serum albumin,J.Mol.Struct.798(2006)69–74.

    [7]L.Trynda-Lemiesz,Paclitaxel–HSA interaction.Binding sites on HSA molecule,Bioorg.Med.Chem.12(2004)3269–3275.

    [8]J.W.Georgitis,The 1997 asthma management guidelines and therapeutic issues relating to the treatment of asthma,Chest 155(1999)210–217.

    [9]P.J.Barnes,Effect of corticosteroids on airway hyperresponsiveness,Am.Rev.Respir.Dis.141(1990)70–76.

    [10]C.Crim,L.N.Pierre,P.T.Daley-Yates,A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate,Clin.Ther.231(2001)1339–1354.

    [11]H.Derendorf,Pharmacokinetic and pharmacodynamics properties of inhaled corticosteroids in relation to efficacy and safety,Respir.Med.91(1997)22–28.

    [12]O.D.Wolthers,J.W.Honour,Measures of hypothalamic-pituitary-adrenal function in patients with asthma treated with inhaled glucocorticoids:clinical and research implications,J.Asthma 36(1999)477–486.

    [13]S.Rohatagi,S.Appajosyula,H.Derendorf,et al.,Risk-benefit value of inhaled glucocorticoids:a pharmacokinetic/pharmacodynamic perspective,J.Clin.Pharmacol.44(2004)37–47.

    [14]H.Derendorf,G.Hochhaus,B.Meibohm,et al.,Pharmacokinetics and pharmacodynamics of inhaled corticosteroids,J.Allergy Clin.Immunol.101(1998)440–446.

    [15]H.Derendorf,R.Nave,A.Drollmann,et al.,Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma,Eur.Respir.J.28(2006)1042–1050.

    [16]H.M.Ma,X.Chen,N.Zhang,et al.,Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins,Spectrochim.Acta Part A:Mol.Biomol.Spectrosc.72(2009)465–469.

    [17]J.Liu,J.N.Tian,J.Zhang,et al.,Interaction of magnolol with bovine serum albumin:a fluorescence-quenching study,Anal.Bioanal.Chem.376(2003)864–867.

    [18]Y.Yue,X.Chen,J.Qin,et al.,Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches,J.Pharm.Biomed.49(2009)753–759.

    [19]J.R.Lakowicz,Principles of Fluorescence Spectroscopy,Springer-Verlag,New York,2006.

    [20]Y.J.Hu,Y.Liu,W.Jiang,et al.,Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine,J.Photochem.Photobiol.B 80(2005)235–242.

    [21]N.Barbero,E.Barni,C.Barolo,et al.,A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,Dyes Pigments 80(2009)307–313.

    [22]K.H.Ulrich,Molecular aspects of ligand binding to serum albumin,Pharmacol.Rev.33(1981)17–53.

    [23]B.Valeur,J.C.Brochon,New Trends in Fluorescence Spectroscopy,Springer Press,Berlin,1999.

    [24]F.Ding,N.Li,B.Han,et al.,The binding of C.I.Acid Red 2 to human serum albumin:determination of binding mechanism and binding site using fluorescence spectroscopy,Dyes Pigments 83(2009)249–257.

    [25]J.B.Madsen,K.I.Pakkanen,S.Lee,Investigation of the thermostability of Bovine Submaxillary Mucin(BSM)and its impact on lubrication,APCBEE Proc.7(2013)21–26.

    [26]Y.N.Ni,G.L.Liu,S.Kokot,Fluorescence spectrometric study on the interactions of isoprocarb and sodium 2-isopropylphenate with bovine serum albumin,Talanta 76(2008)513–521.

    [27]D.P.Ross,S.Subramanian,Thermodynamics of protein association reactions:forces contributing to stability,Biochemistry 20(1981)3096–3102.

    [28]P.N.Naik,S.A.Chimatadar,S.T.Nandibewoor,Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin:a fluorescence quenching and fourier transformation infrared spectroscopy study,J.Photochem.Photobiol.B 100(2010)147–159.

    [29]T.F?rster,Transfer mechanisms of electronic excitation,Discuss.Faraday Soc.27(1959)7–17.

    [30]C.Pontremoli,N.Barbero,G.Viscardi,S.Visentin,Mucin–drugs interaction:the case of theophylline,prednisolone and cephalexin,Bioorg.Med.Chem.23(2015)6581–6586.

    [31]F.L.Cui,J.Fan,J.P.Li,et al.,Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin:investigation by fluorescence spectroscopy,Bioorg.Med.Chem.12(2004)151–157.

    [32]P.Qu,H.Lu,X.Y.Ding,et al.,Study on the interaction of 6-thioguanine with bovine serum albumin by spectroscopic techniques,J.Mol.Struct.920(2009)172–177.

    [33]B.Tang,M.Du,Z.Z.Chen,et al.,Studies on luminescence of Trp and Tyr residues in protein denaturation by three-dimensional-synchronous-polarized spectrofluorimetry,Acta Chim.Sin.62(2004)1153–1157.

    [34]T.C.O’Haver,A.F.Fell,G.Smith,Derivative spectroscopy and its applications in analysis,Anal.Proc.19(1982)22–46.

    [35]X.H.Wu,J.H.Zhou,X.T.Gu,et al.,Study on interaction between hypocrellin A and hemoglobin or myoglobin using synchronous fluorescence spectra,Spectrosc.Spect.Anal.26(2006)2287–2290.

    [36]L.Trynda-Lemiesz,K.Wiglusz,Interactions of human serum albumin with meloxicam.Characterization of binding site,J.Pharm.Biomed.52(2010)300–304.

    [37]S.Baroni,M.Mattu,A.Vannini,R,et al.,Effect of ibuprofen and warfarin on the allosteric properties of haem–human serum albumin.A spectroscopic study,Eur.J.Biochem.268(2001)6214–6220.

    国产av一区在线观看免费| 99久久精品热视频| 制服丝袜大香蕉在线| 1024手机看黄色片| 国产又黄又爽又无遮挡在线| 久热爱精品视频在线9| 成人三级黄色视频| 51午夜福利影视在线观看| 在线观看日韩欧美| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 亚洲自拍偷在线| 亚洲av日韩精品久久久久久密| 日韩大码丰满熟妇| 观看免费一级毛片| 黄色 视频免费看| 黄片小视频在线播放| 亚洲aⅴ乱码一区二区在线播放 | 国语自产精品视频在线第100页| 久久国产乱子伦精品免费另类| av有码第一页| 国产黄色小视频在线观看| 久久久久九九精品影院| 精品一区二区三区四区五区乱码| 99久久综合精品五月天人人| 久久久久精品国产欧美久久久| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦韩国在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲va日本ⅴa欧美va伊人久久| 激情在线观看视频在线高清| 又紧又爽又黄一区二区| 婷婷精品国产亚洲av| 久久久久久九九精品二区国产 | 夜夜夜夜夜久久久久| 国产成人啪精品午夜网站| www日本在线高清视频| 久久人人精品亚洲av| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合久久99| 正在播放国产对白刺激| 精品久久久久久久人妻蜜臀av| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av| 亚洲专区中文字幕在线| 亚洲av成人不卡在线观看播放网| 巨乳人妻的诱惑在线观看| 精品午夜福利视频在线观看一区| 蜜桃久久精品国产亚洲av| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 一进一出好大好爽视频| 真人一进一出gif抽搐免费| 亚洲人成网站高清观看| 精品国产亚洲在线| 欧美日韩中文字幕国产精品一区二区三区| 国产精品美女特级片免费视频播放器 | 色av中文字幕| 精品不卡国产一区二区三区| 免费高清视频大片| 最近在线观看免费完整版| 最新美女视频免费是黄的| 三级男女做爰猛烈吃奶摸视频| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久人妻精品电影| 久久久久国产一级毛片高清牌| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 午夜福利在线在线| 日本a在线网址| 特大巨黑吊av在线直播| 老熟妇乱子伦视频在线观看| 美女黄网站色视频| 亚洲成人久久爱视频| 麻豆一二三区av精品| 久久久久亚洲av毛片大全| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 久久香蕉精品热| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器 | 国产亚洲精品av在线| 亚洲精品一区av在线观看| 欧美日韩亚洲综合一区二区三区_| 最新在线观看一区二区三区| 久久久久免费精品人妻一区二区| 国产精品香港三级国产av潘金莲| 成人手机av| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 女生性感内裤真人,穿戴方法视频| 黄色片一级片一级黄色片| 成人精品一区二区免费| 巨乳人妻的诱惑在线观看| av超薄肉色丝袜交足视频| 久久午夜综合久久蜜桃| 97碰自拍视频| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 日韩大码丰满熟妇| netflix在线观看网站| 村上凉子中文字幕在线| 色精品久久人妻99蜜桃| 国产av麻豆久久久久久久| 久久欧美精品欧美久久欧美| 久久精品91无色码中文字幕| 亚洲av中文字字幕乱码综合| 搡老岳熟女国产| av超薄肉色丝袜交足视频| 两个人看的免费小视频| 嫩草影视91久久| 99国产综合亚洲精品| 久99久视频精品免费| 精品日产1卡2卡| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 亚洲av电影在线进入| xxxwww97欧美| 麻豆成人av在线观看| 美女高潮喷水抽搐中文字幕| 欧美中文日本在线观看视频| 全区人妻精品视频| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 久久久久久免费高清国产稀缺| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 搞女人的毛片| 国产精品av视频在线免费观看| 久久久久国内视频| 亚洲国产欧美网| 美女午夜性视频免费| 国模一区二区三区四区视频 | 老汉色∧v一级毛片| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 很黄的视频免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影| 久久久国产成人免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 无限看片的www在线观看| 亚洲美女视频黄频| 国产成人av教育| 天天一区二区日本电影三级| 亚洲av成人av| 欧美中文日本在线观看视频| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 成熟少妇高潮喷水视频| 一区二区三区高清视频在线| 国产成人精品久久二区二区91| 国产aⅴ精品一区二区三区波| 国产午夜福利久久久久久| 91成年电影在线观看| 色av中文字幕| 此物有八面人人有两片| 久久精品成人免费网站| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 国产av又大| 女人爽到高潮嗷嗷叫在线视频| 国产蜜桃级精品一区二区三区| 99精品久久久久人妻精品| 国产免费男女视频| 九色成人免费人妻av| 中出人妻视频一区二区| 亚洲18禁久久av| xxxwww97欧美| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 在线播放国产精品三级| 成人国产一区最新在线观看| 男插女下体视频免费在线播放| 日韩欧美在线乱码| 一进一出好大好爽视频| 老司机午夜福利在线观看视频| 亚洲 欧美 日韩 在线 免费| 日日干狠狠操夜夜爽| 淫妇啪啪啪对白视频| 国产亚洲精品第一综合不卡| 高清毛片免费观看视频网站| 亚洲国产精品合色在线| or卡值多少钱| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 两性夫妻黄色片| 91在线观看av| 国产蜜桃级精品一区二区三区| 亚洲成人久久爱视频| 精品福利观看| 少妇裸体淫交视频免费看高清 | 美女午夜性视频免费| 后天国语完整版免费观看| 欧美绝顶高潮抽搐喷水| 亚洲无线在线观看| 亚洲男人的天堂狠狠| 两个人的视频大全免费| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 国产成人啪精品午夜网站| 18禁观看日本| 成人手机av| 国产免费男女视频| 久久久久久大精品| 黄色a级毛片大全视频| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| av免费在线观看网站| 久久久久久大精品| 免费观看精品视频网站| 国产免费av片在线观看野外av| 很黄的视频免费| 中文亚洲av片在线观看爽| 香蕉丝袜av| 怎么达到女性高潮| 香蕉av资源在线| 国产视频内射| 久久香蕉精品热| 黄频高清免费视频| 在线国产一区二区在线| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 国产av在哪里看| 久久性视频一级片| 在线观看66精品国产| 嫩草影院精品99| 亚洲av成人精品一区久久| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 精品国产乱子伦一区二区三区| 国产一区二区在线观看日韩 | 欧美一区二区国产精品久久精品 | 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 小说图片视频综合网站| 制服丝袜大香蕉在线| 脱女人内裤的视频| 宅男免费午夜| 成年女人毛片免费观看观看9| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 特级一级黄色大片| 国产av一区二区精品久久| 一本一本综合久久| 中文资源天堂在线| 他把我摸到了高潮在线观看| 一级作爱视频免费观看| 亚洲av中文字字幕乱码综合| 国产不卡一卡二| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 日本一本二区三区精品| 久久久久亚洲av毛片大全| 免费人成视频x8x8入口观看| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| xxxwww97欧美| 成年版毛片免费区| 一二三四社区在线视频社区8| 国产区一区二久久| 国产视频一区二区在线看| 九九热线精品视视频播放| 欧美日韩亚洲国产一区二区在线观看| 全区人妻精品视频| 我要搜黄色片| 亚洲天堂国产精品一区在线| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 亚洲国产日韩欧美精品在线观看 | 男男h啪啪无遮挡| 精品人妻1区二区| 国产伦人伦偷精品视频| 国产精品永久免费网站| 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 一级毛片精品| 伊人久久大香线蕉亚洲五| 露出奶头的视频| 国产单亲对白刺激| 曰老女人黄片| 亚洲18禁久久av| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 一级片免费观看大全| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 久久久国产精品麻豆| 久9热在线精品视频| 在线播放国产精品三级| 97碰自拍视频| 69av精品久久久久久| 国产探花在线观看一区二区| 婷婷六月久久综合丁香| 亚洲欧美日韩高清专用| 老司机深夜福利视频在线观看| 国内精品一区二区在线观看| 国产精品免费视频内射| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 黄色毛片三级朝国网站| 国产不卡一卡二| 精品熟女少妇八av免费久了| 成人国产综合亚洲| 亚洲中文av在线| 国产av一区在线观看免费| 校园春色视频在线观看| 亚洲色图av天堂| 哪里可以看免费的av片| 18禁黄网站禁片午夜丰满| 成人国产综合亚洲| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 成人av一区二区三区在线看| 成人午夜高清在线视频| 99热这里只有精品一区 | 亚洲精品av麻豆狂野| 婷婷精品国产亚洲av在线| 搡老妇女老女人老熟妇| 成人国语在线视频| 成年版毛片免费区| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 国产野战对白在线观看| 久久久久国内视频| 国产免费男女视频| 天堂动漫精品| 99久久综合精品五月天人人| 亚洲成人久久性| a级毛片在线看网站| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 国产三级黄色录像| 最近最新中文字幕大全电影3| 成人国产一区最新在线观看| 国产精华一区二区三区| 曰老女人黄片| 成在线人永久免费视频| 久久久精品大字幕| 色综合亚洲欧美另类图片| 精品欧美一区二区三区在线| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 日本免费一区二区三区高清不卡| 亚洲国产精品成人综合色| 一级毛片高清免费大全| 亚洲av美国av| 亚洲国产中文字幕在线视频| 精品国产超薄肉色丝袜足j| 五月玫瑰六月丁香| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 免费电影在线观看免费观看| 国产区一区二久久| 国产午夜福利久久久久久| 18禁美女被吸乳视频| 国产片内射在线| 免费看a级黄色片| 久久久久九九精品影院| 国产熟女xx| 99热只有精品国产| 久久久国产成人精品二区| 999精品在线视频| 色播亚洲综合网| 男男h啪啪无遮挡| 亚洲激情在线av| www国产在线视频色| 亚洲成人久久性| 亚洲五月天丁香| 色综合婷婷激情| 少妇被粗大的猛进出69影院| 真人一进一出gif抽搐免费| 亚洲欧美精品综合一区二区三区| 国产成年人精品一区二区| 成年免费大片在线观看| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看 | 丰满人妻熟妇乱又伦精品不卡| 国产私拍福利视频在线观看| 免费观看精品视频网站| 国产精品自产拍在线观看55亚洲| 岛国在线观看网站| 久久精品91无色码中文字幕| 999精品在线视频| 亚洲人与动物交配视频| 国产成人系列免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美精品.| 久久久精品大字幕| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看 | bbb黄色大片| 欧美又色又爽又黄视频| 精品久久蜜臀av无| 在线永久观看黄色视频| 国产99久久九九免费精品| 国产三级黄色录像| 窝窝影院91人妻| 九色成人免费人妻av| 国产99久久九九免费精品| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 操出白浆在线播放| 亚洲欧美日韩东京热| 国产真人三级小视频在线观看| 老司机午夜十八禁免费视频| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 国产精品1区2区在线观看.| 1024视频免费在线观看| 麻豆成人av在线观看| 国产成人影院久久av| 精品不卡国产一区二区三区| 日本一二三区视频观看| av福利片在线观看| 亚洲av熟女| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 国产精品久久视频播放| 国产午夜精品论理片| 精品久久久久久久毛片微露脸| 午夜日韩欧美国产| 亚洲无线在线观看| 人人妻人人看人人澡| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 国产精品日韩av在线免费观看| 一级毛片精品| 国产三级黄色录像| 麻豆一二三区av精品| www.999成人在线观看| 欧美久久黑人一区二区| 久久精品国产清高在天天线| 免费看日本二区| 18禁黄网站禁片免费观看直播| 91麻豆av在线| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 少妇的丰满在线观看| 国产男靠女视频免费网站| 国产亚洲欧美98| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美98| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 午夜福利在线在线| 人成视频在线观看免费观看| 日韩av在线大香蕉| 9191精品国产免费久久| 麻豆国产97在线/欧美 | 欧美乱码精品一区二区三区| 久久香蕉国产精品| 国产1区2区3区精品| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 丁香欧美五月| 久久这里只有精品19| 日韩国内少妇激情av| 亚洲人成77777在线视频| netflix在线观看网站| a级毛片a级免费在线| 老司机深夜福利视频在线观看| 日日干狠狠操夜夜爽| 免费在线观看视频国产中文字幕亚洲| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 91麻豆精品激情在线观看国产| 级片在线观看| 久久久久久久久久黄片| 欧美一级a爱片免费观看看 | 色尼玛亚洲综合影院| 亚洲美女视频黄频| 伦理电影免费视频| 精品国产美女av久久久久小说| 国产精品美女特级片免费视频播放器 | 色尼玛亚洲综合影院| 亚洲国产精品999在线| 国产av一区二区精品久久| 狂野欧美白嫩少妇大欣赏| 好男人电影高清在线观看| 一本一本综合久久| 亚洲中文字幕日韩| 女生性感内裤真人,穿戴方法视频| 国产人伦9x9x在线观看| 国产高清激情床上av| 91麻豆av在线| 一区福利在线观看| 国产久久久一区二区三区| 国产私拍福利视频在线观看| 精品第一国产精品| 可以免费在线观看a视频的电影网站| 男插女下体视频免费在线播放| 一区二区三区激情视频| 人人妻,人人澡人人爽秒播| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 99re在线观看精品视频| 久久精品国产亚洲av高清一级| 亚洲av成人精品一区久久| 免费在线观看完整版高清| 丁香六月欧美| 18禁国产床啪视频网站| 亚洲欧美精品综合久久99| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 黄色成人免费大全| videosex国产| 免费一级毛片在线播放高清视频| 国产精品av视频在线免费观看| www.www免费av| 久久国产精品影院| 午夜免费激情av| 一边摸一边做爽爽视频免费| 舔av片在线| 欧美日本视频| 九色成人免费人妻av| 国产精品电影一区二区三区| 亚洲18禁久久av| 男男h啪啪无遮挡| 日本免费a在线| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 免费无遮挡裸体视频| 在线观看免费日韩欧美大片| 久久久久免费精品人妻一区二区| 黄色视频不卡| 国产亚洲精品综合一区在线观看 | 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 可以在线观看的亚洲视频| 亚洲最大成人中文| 免费看十八禁软件| 一边摸一边做爽爽视频免费| 国产精品久久视频播放| 老司机靠b影院| 国产亚洲av嫩草精品影院| 人妻夜夜爽99麻豆av| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 又大又爽又粗| 午夜视频精品福利| 国产日本99.免费观看| 18禁黄网站禁片免费观看直播| 欧美另类亚洲清纯唯美| 亚洲欧美日韩无卡精品| 国产片内射在线| 少妇人妻一区二区三区视频| √禁漫天堂资源中文www| 天堂动漫精品| 99国产精品99久久久久| 欧美一区二区国产精品久久精品 | av中文乱码字幕在线| 18禁美女被吸乳视频| 国产高清videossex| 久久精品aⅴ一区二区三区四区| 男女那种视频在线观看| 国产黄a三级三级三级人| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| 日本a在线网址| 国产精品1区2区在线观看.| 亚洲黑人精品在线| 国产午夜福利久久久久久| 国内精品久久久久久久电影| 日本 av在线| 黄色a级毛片大全视频| 长腿黑丝高跟| 亚洲在线自拍视频|