(四川省米易中學(xué)校 四川米易 617200)
很多人都錯誤地將邏輯思維簡單地理解成一種數(shù)學(xué)的解題思路,但這只是邏輯思維的一方面應(yīng)用。其實質(zhì)是指一個人正確且合理的思考的能力,是能準(zhǔn)確的向別人表達出自己思維過程的一種能力。對于高中數(shù)學(xué)來說,難度是比較高的,但是也有規(guī)律可以遵循,所以邏輯思維是學(xué)好高中數(shù)學(xué)一個必不可少的因素。對于其他的學(xué)科和處理日常中生活中遇到的問題邏輯思維也是十分的重要的。針對于課堂上很多的知識點,教師在上課的時候覺得講解的很輕松,而且學(xué)生也能當(dāng)堂掌握,但是遇到相應(yīng)的題目卻不會,這就是典型的邏輯思維缺乏的表現(xiàn)。
邏輯思維培養(yǎng)的過程可以說是一個人的整體的能力培養(yǎng)的過程,所以教師應(yīng)該注意的訓(xùn)練的難度應(yīng)該是由淺入深的。教師可以讓學(xué)生學(xué)習(xí)使用思維導(dǎo)圖。思維導(dǎo)圖可以理解成將自己的思維形象化的一種圖形工具,也是一種非常抽象的思維方法。當(dāng)學(xué)生拿到題目的時候,腦子里面可能會產(chǎn)生無數(shù)個與該題目相關(guān)的解答的方法,但是卻不知道哪個該寫在試卷上,所以學(xué)生可以在有想法的時候,將自己所有的想法都寫在紙上,然后把相同的一類放在一起,由一個中心點出發(fā),散發(fā)自己的思維,最后選出最全面的解題的方法。
例如,在高中數(shù)學(xué)課本《平面向量的基本定理及坐標(biāo)表示》中,講述的主要就是有方向的平面的向量在每個象限的不同的表示。向量的表示這一知識點是很容易理解的,但是涉及到的題目是千變?nèi)f化的,可能讓學(xué)生無從下手。所以教師這個時候就可以在學(xué)生拿到題目之后,將腦海中所有的這道題可能涉及到的向量的知識點列在自己的紙上,比如在學(xué)生看到之后,應(yīng)該立馬就在紙上寫上該向量的模為了防止學(xué)生依舊是按照自己的思路做題,所以教師應(yīng)該檢查學(xué)生是否按照教師的要求進行訓(xùn)練,若是學(xué)生的思維發(fā)散的方向是不對的,教師也不應(yīng)該批評該學(xué)生,而是往正確的方向?qū)υ搶W(xué)生進行引導(dǎo)。
在生活中,我們會遇到很多有爭議的問題,當(dāng)我們有了自己的觀點的時候,就是在形成自己的邏輯思維,因為在做出決定之前應(yīng)該是對問題進行了大量的分析,然后在腦海中推算才能得到自己的結(jié)論。而辯論賽中提出的問題更有爭論性,所以也是一個很好的思維能力的培養(yǎng)方法,但是更好的建議是,若你作為一個旁觀者的時候,認(rèn)為正方是正確的時候,那么最好的選擇是站在反方的陣營里面。因為通過對自己之前的想法進行漏洞的尋找來進行辯駁,知道之前自己的想法存在哪些問題,是否有論點可以支撐。長此以往,對于問題的思考就能越全面,得到的結(jié)論也會越多。
例如,在高中數(shù)學(xué)課本《兩角和與差的正弦、余弦和正切公式》中,書中對于正弦、余弦和正切的公式都做出了明確的規(guī)定,記為sinA、cosA和tanB。教師先提出問題,關(guān)于書中給出的公式的運用是否是最正確便捷的,然后讓班里的有能力的學(xué)生自愿的參加,但是教師應(yīng)該明確的說明的話,若是認(rèn)為書中的觀點是對的學(xué)生應(yīng)該站到反方的隊伍中去。在學(xué)生辯論的時候,教師應(yīng)該記錄下學(xué)生提出的一些比較典型的觀點,學(xué)生在辯論的過程中也應(yīng)該記錄下自己心中存在的疑惑和自己欣賞的對方的想法。讓學(xué)生發(fā)現(xiàn)自己思維上的有哪些不足,和那些可以借鑒的地方,來提高自己的邏輯思維。
在高中的數(shù)學(xué)中,一個問題的解法往往是多樣的,有的時候解題的思路完全是不同的。但是很多的學(xué)生在做題的時候都帶有目的性,僅僅是想要解出問題的正確答案,這種想法就會限制了學(xué)生的思維,讓學(xué)養(yǎng)成單一的想法。所以教師對于學(xué)生的要求就不僅僅是得到的問題的答案,而是要求學(xué)生進行一道題盡可能多的得出題目的解法。讓學(xué)生首先理清自己的思路,想找到一種解法,然后進行思考,得到其他的解法。在得到兩種或者是兩種以上的解法的時候,對比得出每一種解法的優(yōu)點和缺點。等到學(xué)生已經(jīng)適應(yīng)了這種解題的方法的時候,就能快速的找到最優(yōu)解,節(jié)省自己的解題時間。
例如,在高中數(shù)學(xué)課本《空間幾何體的表面積與體積》中,講述的主要是求面積和體積的問題,因為每個學(xué)生在自己的腦海中對于空間幾何圖形的展開是不同的,所以解法可能會有很多。教師可以鼓勵學(xué)生從不同的角度對空間圖形進行想象,運用不同的融合或者分割的手段來進行面積和體積的求解。當(dāng)學(xué)生感覺自己再也沒有想法的時候,教師就可以讓該學(xué)生發(fā)表自己的想法,然后由班里的其他的學(xué)生進行補充,最后由教師將所有的解題方法列在黑板上,讓學(xué)生選出一個適合自己的最優(yōu)解,但是也要對其他的解法也進行深度的剖析,讓學(xué)生知道每個解題方法的優(yōu)點和弊端。
邏輯思維培養(yǎng)的過程,就是一個人進行獨立思考的學(xué)習(xí)過程。人的大腦都是越用越靈活的,長期不思考就會僵化。高中的階段是學(xué)生思維習(xí)慣養(yǎng)成的一個重要階段,所以邏輯思維的訓(xùn)練可以作為一種手段,提高的不僅僅是自己的數(shù)學(xué)成績,對各科的成績都是有好處的,更是對于自己的智商的提高。人的大腦中每天都會得到很多的信息,都是要經(jīng)過大腦的處理。邏輯思維的作用就是在這些信息輸入到腦海中的時候條理化的輸出,避免了思緒的混亂。當(dāng)學(xué)生真正的擁有了邏輯思維的時候,就能參透數(shù)學(xué)的解題方法,提高自己的數(shù)學(xué)水平。