黃耀斌
(江西省宜春市袁州區(qū)新坊鎮(zhèn)中心小學 江西宜春 336000)
總所周知,數(shù)學的“美”是具有鮮明旗幟的獨特之美,對于小學生來說,這種美無疑是令他們感到震撼的,因此,作為一名小學數(shù)學老師,就應該指指引著小學們盡可能多的去了解到數(shù)學之“美”,讓這些數(shù)學之美激發(fā)出小學生們對數(shù)學的強烈興趣,進而將他們對數(shù)學的學習能力進行進一步的提高,以達到全面提高小學生們核心素質(zhì)的最終目的。[1]
隨著國家新課程改革進程的緩慢推進,小學生的素質(zhì)教育也早已提上日程,而小學數(shù)學作為小學生的數(shù)學啟蒙教學,更是應該推陳出新,將小學數(shù)學能力的培養(yǎng)和對小學數(shù)學美的認識聯(lián)系起來,讓這兩者之間產(chǎn)生出互相促進、互相補充的關(guān)系,即對小學生來說如果能夠?qū)?shù)學之美有一個清晰且充分的認識,不僅能夠幫助小學生們將數(shù)學的學習能力進一步提高,還可以反向加深對深層次的數(shù)學之美的理解。[2]
在老師指引著同學們了解邏輯之美的時候,不僅可以讓同學們的邏輯分析能力的得到增強還可以提高同學們在解決日常問題中的邏輯性,培養(yǎng)同學們在日常中新的思維方式,讓同學們受到教育和啟發(fā),令同學們既可以增加對數(shù)學之美的理解能力,又可以加強對數(shù)學學習的學習興趣??偹苤瑪?shù)學學習的效率通常是由某個同學在在單位時間里面學習數(shù)量和質(zhì)量來決定的。而對數(shù)學的數(shù)學邏輯進行理解是提高數(shù)學學習的效率的重要途徑,只有引導小學生們理解了數(shù)學的邏輯之美,他們才會學會應該怎樣來對數(shù)學的知識體系進行系統(tǒng)的構(gòu)建。通過筆者的實踐證明,小學生們一旦對數(shù)學的邏輯之美的有了較為深入理解后,對于小學數(shù)學學習效果的提高絕對是飛躍式的。
總所周知的是,無論是小學、初中、高中、大學甚至博士、研究生的數(shù)學教材在對數(shù)學概念和公式的描述中在十分追求準確性的同時更是要求用最簡潔性的語言來進行描述,當大家翻開數(shù)學課本時,就會看見不管是公式邏輯方式還是公式里的符號等看到的人都會不禁在心中感嘆道:“數(shù)學真是一門簡潔的藝術(shù)呀!”
而讓老師指引著同學們了解簡潔之美的時候,不僅可以不斷的讓同學們的分析。概括能力的得到顯著增強,還可以提高同學們在解決日常問題中的簡潔性,培養(yǎng)同學們在日常中新的思維方式,讓同學們受到教育和啟發(fā),令同學們既可以增加對數(shù)學之簡潔美的理解能力,又可以加強對數(shù)學學習的學習興趣。
1.公式定理的表達方式盡量簡化,比如說:在除法里,被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。并且0除以任何不是0的數(shù)都得0。
2.將文字表述得更加簡練:將含義最豐富的內(nèi)容用最簡單的語句表述出來,這便是數(shù)學簡潔之美的最重要特征。而在現(xiàn)行的小學生數(shù)學教材里面,雖然是為了照顧小學生的理解能力,沒有把公式、定理之類的文字表述得很抽象。但盡管不是很抽象,但其文字所表達的定義概念仍然是相當簡單的。比如說:對分數(shù)乘法的的定義: “分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。 ”又比如說乘法分配律:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變?!钡鹊仍S多的公式定理都是文字不多但表述出的內(nèi)容卻是相當?shù)呢S富的。
3.在數(shù)學中,用符號和字母來表示公式也是數(shù)學簡潔之美的另一個方面表現(xiàn)的方面,運用通俗易懂的字母和符號來表達出數(shù)學的各種數(shù)量,能夠表現(xiàn)出簡約、一覽無遺的效果。例如:三角形的面積=底×高÷2 公式 :S= a×h÷2等都是數(shù)學簡潔美的最杰出的示范。
作為一名小學數(shù)學老師,筆者在實際的小學數(shù)學課堂中進行幾何圖形和幾何圖像的公式推導時,時常要把各種的幾何圖形拼湊得面貌全非。而筆者在拼湊過程中所采用的奇妙辦法與最終結(jié)果所產(chǎn)出的奇異結(jié)果,都可以讓同學們感受到數(shù)學中的奇異之美。而讓同學們較為充分的了解到數(shù)學的奇異之美,這樣不僅可以讓同學們不斷增強自己的創(chuàng)新能力,而且數(shù)學的奇異之美還特別容易將同學們的學習熱情激發(fā)出來,而數(shù)學奇異之美的外表下,還時常包含著獨特且而新奇的創(chuàng)造性內(nèi)容和思維,可以幫助同學們不斷增加自己創(chuàng)新思維的能力。
而說到數(shù)學的奇異之美就不得不說到著名的學派,畢達哥拉斯學派,這個學派的創(chuàng)始人畢達哥拉斯是古希臘的著名數(shù)學家,他在距今2500年前發(fā)現(xiàn)了數(shù)學中的許多奇異之美,其中最著名就是他的“完全數(shù)”理論,他認為“6”這個數(shù)字是一個十分完美的數(shù)字,“6”和它的因數(shù)有種非常奇異的聯(lián)系:6的因數(shù)一共有四個:1,2,3,6,而在除去“6”本身數(shù)字外,另外的3數(shù)字便都是它的真因數(shù),而把這三個數(shù)字都想加,居然會正好和“6”這個自然數(shù)相等!于是,畢達哥拉斯定義:一個數(shù)所有真約數(shù)的和正好等于這個數(shù),通常把這個數(shù)叫做完美數(shù)。這就是數(shù)學的奇異之美!
總而言之,數(shù)學之美無處不在,只要愿意去發(fā)現(xiàn),愿意帶著同學們?nèi)チ私?、探索,就一定可以更加深入的挖掘到?shù)學的各種美。