• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    2016-03-22 09:18:17
    中國煉油與石油化工 2016年4期

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    Shen Xizhou; Yan Fang; Li Meiqing; Xiao Yun

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    The Grand Canonical Monte Carlo (GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues (quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force feld. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline >2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the infuence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.

    FAU zeolite; adsorption; molecular simulation; quinoline nitrides; silica alumina ratio

    1 Introduction

    At present, most domestic and foreign refneries process the FCC feedstock, in which the coker gas oil (CGO) is blended according to a certain proportion to produce light oil. Molecular sieves are widely used as the adsorbent and the catalyst in the refning and chemical processes[1-8]. The FAU-type zeolite is an important catalyst, and the silicon/ aluminum ratio is an important factor affecting the properties of molecular sieves[9-10].

    The catalytic cracking reaction is generally a gas-solid catalytic reaction in which the surface adsorption is an important step. The nitrogen compounds in CGO are preferentially adsorbed on acid sites of the cracking catalyst, which can result in the decrease of catalyst activity or even inactivation and can seriously affect the light oil yield from catalytic cracking process[11-15].

    Molecular simulation is a simple and effective way to study the nature of adsorption competition. Although some studies regarding the molecular simulation of the adsorption mechanism of basic nitrogen compounds (pyridine, amine, etc.) on the catalyst surface have been reported[16-23], there are few reports about the molecular simulation of the adsorption of quinoline homologues that are also important basic nitrogen compounds in CGO on the FAU zeolite[24-26]. Therefore, it is important to study the mechanism of catalyst poisoning caused by basic nitrogen compounds contained in CGO to carry out the molecular simulation of quinoline homologues adsorption on the surface of molecular sieves.

    2 Computational Model and Simulation Method

    2.1 Model construction

    The Y zeolite has a framework type of FAU with Fd-3 m space group and cell parameters comprisinga=b=c=2.434 5 nm andα=β=γ=90°, and a pore diameter of about 0.74 nm which is composed of 12 tetrahedra of TO4groups. The 2×2×2 unit cells of Y zeolite were used to construct the simulation boxes. The periodic boundary conditions were applied to simulate an infinite system.

    2.2 Simulation method

    The Grand Canonical Ensemble is the one of μVT, which is composed of an infnite open system by the constantVandT, namely the constants of volume, temperature and chemical potential. The adsorption process is an open system for the fuid in the adsorbent hole. The adsorption process carried out in the molecular sieve is one in which the exchange of materials and energy between the fluid in adsorbent hole and the bulk fluid while the chemical potential is kept equal. Hence, the adsorption behavior of quinoline in the zeolite Y was studied by the Grand Canonical Monte Carlo (GCMC) method.

    The Henry constant is presented below:

    in whichNis the simulation step size.

    The adsorption heat can be achieved by van’t Hoff’s formula:

    2.3 Parameters of force fi eld

    Here, the quinoline and faujasite were selected as the research materials. The Henry constant under different force felds was calculated when the temperature was increased from 623 K to 773 K[27]and 1.1×106steps were performed. The Henry constant is presented below in Figure 1. According to Formula (2), the values of isosteric heat of quinoline in FAU zeolite could be obtained under different force-felds as shown in Figure 1, with the results presented in Table 1.

    It can be seen that the difference in the isosteric heat is significant under different force fields as depicted in Table 1. The value of isosteric heat is 97.5 kJ/mol, which agrees well with the literature value[27]measured under the Universal force-field. Hence, the Universal force-feld was selected for investigating the adsorption properties of quinoline homologues on the FAU zeolite.

    Table 1 The values of isosteric heat of quinoline obtained under different force-fields

    Figure 1 Henry constant of quinoline under different force- fi elds

    3 Results and Discussion

    3.1 Henry constant and isosteric heat

    The relationship between the Henry constant and the temperature of adsorption of quinoline homologues in the FAU zeolite is shown in Figure 2.

    The isosteric heat of quinoline homologues on the FAU zeolite can be obtained under Universal force feld by using the ftting data in Figure 2 and Formula (2), with the results shown in Table 2.

    Table 2 The isosteric heat of quinoline homologues on FAU zeolite

    It can be seen that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol) as depicted in Table 1, which is in agreement with the order of the adsorbate basicity.

    3.2 Adsorption isotherm

    Figure 2 Henry constants of quinoline homologues on FAU zeolite at 673.15—873.15 K

    While the Universal force feld was selected, the adsorption isotherms for the quinoline homologues can be calculated respectively at 773.15 K and under 0.01—100 MPa, with the one-component adsorption isotherm shown in Figure 3. It is shown in Figure 3 that the adsorption capacity of quinoline homologues decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The adsorption capacity of quinoline homologues increased with an increasing pressure. The adsorption capacity has no signifcant increase when the pressure is above 40 MPa.

    Figure 3 Adsorption isotherms of quinoline homologues on FAU zeolite at 773.15 K

    3.3 Adsorption isotherm fi tting

    3.3.1 Langmuir isothermal equation

    The Langmuir model is given by Formula (3)

    whereqis the absolute amount adsorbed in the unit;qmis the maximum adsorption capacity andbis the Langmuir equilibrium constant, which represents the affinity between the adsorbent and the adsorbate;pis the effective pressure, i.e. the fugacity. The data in Figure 3 is fitted according to Formula (3), with the results shown in Table 3.

    Table 3 The fit Langmuir coefficients for quinoline homologues on FAU zeolite

    It is indicated that the Langmuir model fts the data well at 773K as evidenced by the data listed in Table 3. The saturated capacity for adsorption of quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecular size, the larger the saturated adsorption capacity. Thus, we can conclude that the saturated adsorption capacity correlates well with the molecular size.

    3.4 Competitive adsorption of three quinoline homologues on the FAU zeolite

    3.4.1 Adsorption isotherms

    Adsorption isotherms of three quinoline homologues, the molar ratio of which is 1:1:1, on the FAU zeolite can be obtained at 773.15 K under Universal force feld when the pressure of the system varies from 0.01 kPa to 420 kPa, with the results shown in Figure 4.

    It can be seen that the competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecule size is, the greater the adsorption capacity would be. The pore diameter of the FAU zeolite is about 0.74 nm, and the diameter of hexagonal prism, β cage and supercage is 0.26 nm, 0.66 nm and 1.2 nm, respectively, while the molecular diameter of quinoline, 2-methyl quinoline and 2,4-dimethyl quinoline is about 0.73 nm, 0.78 nm and 0.83 nm, respectively.

    Quinoline has a molecular size of 0.73 nm that is commensurate with the size of the channel of FAU zeolite. So quinoline can be adsorbed on acid sites in the channels of FAU zeolite easily. In contrast, 2-methyl quinoline and 2,4-dimethyl quinoline have a bigger size than the diam-eter of the channels of FAU zeolite. Then 2,4-dimethyl quinoline would enter the channels of FAU zeolite with diffculty because of the steric hindrance effect. At present, the molecular size of quinoline homologues plays a dominant role in their competitive adsorption capacity.

    Figure 4 Adsorption isotherms of quinoline nitrides on FAU zeolite

    3.4.2 Adsorption sites

    It can be seen that the competitive adsorption of quinoline homologues occupied the main channel of the twelvemembered-ring pores primarily when the quinoline homologues were adsorbed in FAU zeolite simultaneously as shown in Figure 5. Then 2,4-dimethyl quinoline could only occupy the main channels of the twelve-memberedring pores because of their relatively larger diameter. Therefore 2,4-dimethyl quinoline molecules could be adsorbed in the biggest supercages of FAU zeolite, whereas quinoline and 2-methyl quinoline could occupy the smaller four-membered-ring channels and six-membered-ring channels in a random distribution.

    Figure 5 Adsorption sites of quinoline homologues on FAU zeolite

    4 Silica/Alumina Ratio

    The formula for FAU zeolite is as follows:

    in whichnis the value of silica/alumina ratio.

    The silica/alumina ratio is an important factor which affects the properties of molecular sieves. The adsorption heat and capacity for adsorption of quinoline homologues on FAU zeolites with a silica/alumina ratio of 1:1 can be obtained when the temperature increases from 573 K to 873 K under a pressure ranging from 0 to100 MPa after the simulation of 4×105steps.

    4.1 Influence of silica/alumina ratio on adsorption heat

    The adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratio at 573.15 K to 873.15 K is calculated, with the results shown in Table 4.

    Table 4 Adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratios

    It can be concluded from Table 4 that the smaller the silica/alumina ratio, the greater the isosteric heat formed on the molecular sieves with the same crystal cell. The reason might be that silicon atoms have much less activity than that of aluminum atoms, and the aluminum atoms can form stronger protonic acid in zeolites.

    4.2 Influence of silica/alumina ratio on adsorption capacity

    The capacity for adsorption of quinoline homologues on the FAU zeolite with different silica/alumina ratios at 573.15 K under a pressure ranging from 0 to 100 MPa ispresented in Figure 6—8.

    Figure 6 Adsorption isotherms of quinoline on FAU zeolite with different silica/alumina ratio

    Figure 7 Adsorption isotherms of isoquinoline on FAU zeolite with different silica/alumina ratios

    Figure 8 Adsorption isotherms of 2-methyl quinoline on FAU zeolite with different/silica alumina ratios

    It can be concluded that the influence of silica/alumina ratio on the adsorption heat and the capacity for adsorption of quinoline homologues in FAU zeolite are consistent with the results presented in Figures 6—8. During the initial adsorption stage, the bigger the silica/alumina ratio was, the smaller the adsorption capacity would be. The difference between them gradually tapers off with the increase in the pressure. At a pressure of 100 MPa, the adsorption capacity is basically identical. It has been shown that aluminum atoms can form stronger protonic acid under smaller pressure. However, the quinoline homologues have stronger alkalinity than other compounds. Thus, the smaller the silica/alumina ratio was, the greater the isosteric capacity would be. The saturated adsorption is basically identical with the case of operation under increased pressure.

    5 Conclusions

    (1) Universal force-feld was more favorable for calculating the isosteric heat of quinoline in the FAU zeolite the Si/Al ratio of which was 1.1 than that calculated by the Compass and Dreiding force-feld methods. The value of isosteric heat of quinoline was 97.5 kJ/mol which was in accordance with the literature value obtained under the Universal force-feld.

    (2) It was shown that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline > 2-methyl quinoline > quinoline, which complied with the order of quinoline homologues in terms of their adsorbate basicity

    (3) The Langmuir model can be utilized to ft the adsorption isotherms of quinoline homologues on FAU zeolite under the Universal force feld.

    (4) The competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The saturated adsorption capacity is related to the molecular size of quinoline homologues. The smaller the molecule size was, the greater the adsorption capacity would be.

    (5) The quinoline homologues occupied the main channels of twelve-membered-ring pore system primarily. Quinoline and 2-methyl quinoline occupied the fourmembered-ring channels and six-membered-ring channels in a small quantity and at random distribution, while 2,4-dimethyl quinoline only occupied the main twelvemembered-ring channels.

    (6) The adsorption heat and adsorption capacity of quinoline homologues on the FAU zeolite increased with thedecrease of silica/alumina ratio.

    Reference

    [1] Sang Y, Jiao Q Z, Li H S, et al. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuel: nano-ZSM-5 zeolites as the source[J]. Journal of Nanoparticle Research, 2014, 16(12): 2755-2765

    [2] Hong X, Tang K. Modification and nitrogen adsorption properties of zeolite NaY [J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 214-220 (in Chinese)

    [3] De Baerdemaeker T, Yilmaz B, Muller U, et al. Catalytic applications of OSDA-free Beta zeolite[J]. Journal of Catalysis, 2013, 308: 73-81

    [4] Xu X Y, Sun Y, Shen J, et al. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves [J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1035-1040 (in Chinese)

    [5] Bastiani R, Lam Y L, Henriques C A, et al. Application of ferrite zeolite in high-olefn catalytic cracking[J]. Fuel, 2013, 107: 680-687

    [6] Lai J L, Song L J, Sun Z L. A frequency-response study on sorption of thiophene and benzene on NiY zeolite [J]. China Petroleum Processing and Petrochemical Technology, 2011, 13(2): 24-28

    [7] Tang L, Shen J. USY zeolite adsorption properties of basic nitrogen in CGO and its application in dentrification [J]. Specialty Petrochemicals, 2014, 31(4): 18-21(in Chinese)

    [8] Liu Yibin, Li Yuzhen, Ding Xue. Adsorption Simulation of Basic Nitrogen Compounds in ZSM-5 and USY Zeolites by Grand Canonical Monte Carlo Method [A]. Advanced Materials Research, 2015, 1096:189-193

    [9] Jiang H, Sun W, Wang P. Molecular simulation of adsorption properties of propane on NanZSM-5 zeolites with different Si/Al ratios [J]. Yunnan Chemical Industry, 2011, 38(6): 1-5 (in Chinese)

    [10] Sethia G, PillaiR S, Dangi G P, et al. Sorption of methane, nitrogen, oxygen, and argon in ZSM-5 with different SiO2/ Al2O3ratios: Grand Canonical Monte Carlo simulation and volumetric measurements [J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2353-2362

    [11] Chen X B, Sun J P, Shen B Y, et al. Effect of basic nitrogen compounds of USY and ZSM-5-type catalytic cracking catalysts and catalytic properties[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2012, 36(5): 164-168, 174(in Chinese)

    [12] Li Z K, Wang G, Liu Y D, et al. Study on reaction performance and competitive adsorption effect during coker gas oil catalytic cracking[J]. Fuel Process Technol, 2013, 115: 1-10

    [13] Li Z K, Wang G, Shi Q, et al. Retardation effect of basic nitrogen compounds on hydrocarbons catalytic cracking in coker gas oil and their structural identifcation[J]. Ind Eng Chem Res, 2011, 50(7): 4123-4132

    [14] Shen B X, Chen X B, Sun J P, et al. FCC catalyst poisoning mechanism of nitrogen-containing compounds and their countermeasures[J]. Petrochemical Technology, 2013, 44(4): 457-462

    [15] Wang G, Liu Y D, Wang X Q, et al. Studies on the catalytic cracking performance of coker gas oil[J]. Energy Fuels, 2009, 23(4): 1942–1949

    [16] Wang B, Zhang Y, Zuo M, et al. Kinetics of pyridine desorption from acid sites on HY zeolite and characterization of its acid strength[J]. Petrochemical Technology, 2014, 43(3): 264-268.(in Chinese)

    [17] Liu Y J, Sun X Y, Long Y Z, et al. H-STI zeolite adsorption molecular simulation of ammonia molecules[J]. Journal of Jilin Institute of Chemical Technology, 2010, 27 (1): 12-14(in Chinese)

    [18] Shen X Z, Li M Q, Zhou H, et al. Molecular simulation of adsorption of amine on FAU zeolite nitride[J]. Computers and Applied Chemistry, 2011, 28(1): 1-4(in Chinese)

    [19] Zhang J F, Burke N, Yang Y X. Molecular simulation of propane adsorption in FAU zeolites[J]. Journal of Physical Chemistry C, 2012, 116(17): 9666-9674

    [20] Ding X, Liu Y B, Yang C H, et al. Molecular simulation and thermodynamic analysis of FCC dry gas adsorption in ZSM-5 zeolite[J]. Petroleum Processing and Petrochemicals, 2015, 46(9): 58-64 (in Chinese)

    [21] Ding X, Liu Y B, Yang C H, et al. Molecular simulations of FCC dry gas components adsorption in zeolite Y[J]. China Petroleum Processing and Petrochemical Technology, 2016, 18 (1): 99-107

    [22] Zhang J F, Burke N, Zhang S C, et al. Thermodynamic analysis of molecular simulations CO2and CH4adsorption in FAU zeolites[J]. Chemical Engineering Science, 2014, 113: 54-61

    [23] Sun X Y, Li J W, Li Y X, et al. Adsorption of benzeneand propylene in zeolite ZSM-5: Grand Canonical Monte Carlo simulations[J]. Chem Res Chin Univ, 2009, 25(3): 377-382

    [24] Wang Y F, Bu C J, Chi Z M, et al. Adsorption of quinoline on zeolite Al-MCM-41[J]. Journal of Chemical Industry and Engineering (China), 2015, 9: 3597-3604 (in Chinese)

    [25] Santarossa G, Iannuzzi M, Vargas A, et al. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: A DFT study [J].Chem Phys Chem, 2008, 9(3): 401-413

    [26] Yu D Y, Xu H, Que G H, et al. Study on conversion of basic nitrogen compound quinoline in FCC [J]. Journal of Fuel Chemistry and Technology, 2004, 32(1): 43-47(in Chinese)

    [27] Tkhoang K S, Romanovskiy B V, Topchieva K V, et al. Adsorptive capacity and catalytic activity of zeolites. II. Heats of adsorption of several hydrocarbons and nitrogencontaining compounds on type-Y zeolite[J]. Journal of Catalysis,1968, 10(2): 209-211

    Received date: 2016-09-18; Accepted date: 2016-10-24.

    Prof. Shen Xizhou, Telephone:+86-13886050956; E-mail: xzhoush@163.com

    国产精品一区二区三区四区免费观看 | 琪琪午夜伦伦电影理论片6080| 免费av观看视频| 国产精品美女特级片免费视频播放器| 国模一区二区三区四区视频| 1024手机看黄色片| 国产在视频线在精品| 国产成人av教育| 国产精品亚洲av一区麻豆| 欧美成人a在线观看| 亚洲性夜色夜夜综合| 久久久久久久久久黄片| 黄片小视频在线播放| 精品国产三级普通话版| 亚洲三级黄色毛片| 亚洲av成人精品一区久久| 日韩大尺度精品在线看网址| 欧美国产日韩亚洲一区| 欧美一区二区亚洲| 性色av乱码一区二区三区2| 亚洲最大成人av| 欧美日韩乱码在线| 99国产精品一区二区蜜桃av| 男女视频在线观看网站免费| 亚洲av.av天堂| 不卡一级毛片| 最好的美女福利视频网| 精品一区二区免费观看| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 毛片女人毛片| xxxwww97欧美| 国产综合懂色| 成人欧美大片| 老司机深夜福利视频在线观看| 精品久久久久久久人妻蜜臀av| 国产午夜精品论理片| 99久久精品一区二区三区| 女人被狂操c到高潮| 69av精品久久久久久| 香蕉av资源在线| 国产一区二区三区视频了| 日韩成人在线观看一区二区三区| 亚洲国产精品sss在线观看| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 国产精品,欧美在线| 美女被艹到高潮喷水动态| 国产三级黄色录像| 一本综合久久免费| 女人十人毛片免费观看3o分钟| 久久国产精品影院| 日韩亚洲欧美综合| 此物有八面人人有两片| 久久精品国产99精品国产亚洲性色| 少妇人妻一区二区三区视频| 99久国产av精品| 黄色女人牲交| 午夜精品一区二区三区免费看| 国产成人福利小说| 9191精品国产免费久久| 我要搜黄色片| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美精品免费久久 | www日本黄色视频网| 国内久久婷婷六月综合欲色啪| 久久久久久久久久黄片| 中文字幕高清在线视频| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 欧美乱妇无乱码| 日韩欧美国产一区二区入口| 男人狂女人下面高潮的视频| 亚洲片人在线观看| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 男人狂女人下面高潮的视频| 91麻豆精品激情在线观看国产| 怎么达到女性高潮| 舔av片在线| av天堂中文字幕网| 欧美xxxx性猛交bbbb| 国产淫片久久久久久久久 | 国产免费一级a男人的天堂| 国内精品久久久久久久电影| eeuss影院久久| 国产色婷婷99| 嫩草影院新地址| 亚洲一区二区三区色噜噜| 非洲黑人性xxxx精品又粗又长| 久久精品久久久久久噜噜老黄 | 久久精品国产亚洲av涩爱 | 一区福利在线观看| 亚洲在线观看片| 免费观看人在逋| 精品一区二区三区视频在线观看免费| 国产麻豆成人av免费视频| 久久精品国产自在天天线| 人妻丰满熟妇av一区二区三区| 亚洲av一区综合| 动漫黄色视频在线观看| 欧美3d第一页| 精品午夜福利在线看| 国产精品乱码一区二三区的特点| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 乱码一卡2卡4卡精品| 深爱激情五月婷婷| 成人特级黄色片久久久久久久| aaaaa片日本免费| 国产精品一及| 色5月婷婷丁香| 欧美色视频一区免费| 国产不卡一卡二| 波多野结衣巨乳人妻| 国产日本99.免费观看| 午夜久久久久精精品| 免费看日本二区| 亚洲人成电影免费在线| 国产成人影院久久av| 51午夜福利影视在线观看| 成年人黄色毛片网站| 五月玫瑰六月丁香| 看十八女毛片水多多多| 99久国产av精品| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 最后的刺客免费高清国语| 久久精品久久久久久噜噜老黄 | ponron亚洲| 国产亚洲精品综合一区在线观看| 亚洲电影在线观看av| 身体一侧抽搐| 精品一区二区三区视频在线观看免费| 亚洲国产精品合色在线| 国产成+人综合+亚洲专区| 国产av麻豆久久久久久久| 国产精品亚洲美女久久久| 老司机午夜十八禁免费视频| 国产亚洲欧美在线一区二区| 麻豆久久精品国产亚洲av| 国产综合懂色| 男插女下体视频免费在线播放| 国产蜜桃级精品一区二区三区| 日韩精品中文字幕看吧| 成年女人毛片免费观看观看9| 九九热线精品视视频播放| 国内少妇人妻偷人精品xxx网站| 最近最新中文字幕大全电影3| 91久久精品国产一区二区成人| 精品久久久久久,| 成人永久免费在线观看视频| 两人在一起打扑克的视频| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 精品人妻熟女av久视频| 久久精品影院6| 亚洲精品在线美女| 老女人水多毛片| 男插女下体视频免费在线播放| 久久久久久久久大av| 一个人看的www免费观看视频| 成年女人毛片免费观看观看9| 深爱激情五月婷婷| 最好的美女福利视频网| 好看av亚洲va欧美ⅴa在| 久久久久性生活片| 欧美性猛交黑人性爽| 国产乱人视频| 少妇的逼水好多| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 国产v大片淫在线免费观看| а√天堂www在线а√下载| 97人妻精品一区二区三区麻豆| 韩国av一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 亚洲狠狠婷婷综合久久图片| 欧美又色又爽又黄视频| 国产精品不卡视频一区二区 | 一个人看的www免费观看视频| 欧美国产日韩亚洲一区| 日韩欧美精品免费久久 | 最新在线观看一区二区三区| 国产精品女同一区二区软件 | 免费搜索国产男女视频| 国产伦精品一区二区三区视频9| 白带黄色成豆腐渣| 一本精品99久久精品77| a在线观看视频网站| 亚洲av成人av| 久久欧美精品欧美久久欧美| 欧美乱色亚洲激情| 精品99又大又爽又粗少妇毛片 | 天堂动漫精品| 好男人电影高清在线观看| 小蜜桃在线观看免费完整版高清| 国产视频内射| 欧美激情在线99| www.色视频.com| 九九在线视频观看精品| 国产aⅴ精品一区二区三区波| 嫁个100分男人电影在线观看| 88av欧美| 嫩草影视91久久| 免费看光身美女| 午夜久久久久精精品| 别揉我奶头~嗯~啊~动态视频| 亚洲最大成人av| 中文字幕人成人乱码亚洲影| av天堂中文字幕网| 99热精品在线国产| 色视频www国产| 天天躁日日操中文字幕| 国产成年人精品一区二区| 97碰自拍视频| 成人高潮视频无遮挡免费网站| 欧洲精品卡2卡3卡4卡5卡区| 久久久色成人| 听说在线观看完整版免费高清| 一区福利在线观看| 不卡一级毛片| 91在线观看av| 日本三级黄在线观看| 成人性生交大片免费视频hd| 亚洲欧美日韩高清在线视频| 亚洲成av人片在线播放无| 国产精品99久久久久久久久| 欧美精品啪啪一区二区三区| 国产视频一区二区在线看| 我的老师免费观看完整版| 亚州av有码| 免费搜索国产男女视频| 免费看日本二区| 真人一进一出gif抽搐免费| а√天堂www在线а√下载| 国产一级毛片七仙女欲春2| 午夜免费男女啪啪视频观看 | 黄色日韩在线| 麻豆一二三区av精品| 色av中文字幕| 日韩亚洲欧美综合| а√天堂www在线а√下载| 长腿黑丝高跟| a级毛片a级免费在线| 熟女人妻精品中文字幕| 精品日产1卡2卡| 精品国内亚洲2022精品成人| 欧美日韩国产亚洲二区| 一个人看的www免费观看视频| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 国产一区二区在线av高清观看| 国产私拍福利视频在线观看| 一级a爱片免费观看的视频| 午夜福利高清视频| 欧美最新免费一区二区三区 | 婷婷精品国产亚洲av| 亚洲一区二区三区不卡视频| 久久人妻av系列| 老司机福利观看| 午夜激情福利司机影院| 久久天躁狠狠躁夜夜2o2o| 18禁在线播放成人免费| 久久久久久久久久黄片| 国产不卡一卡二| 国产精品影院久久| av在线蜜桃| 一级黄色大片毛片| 国产精品亚洲美女久久久| 看免费av毛片| 久久久久精品国产欧美久久久| 99热这里只有是精品在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 人妻丰满熟妇av一区二区三区| 欧美另类亚洲清纯唯美| 午夜激情福利司机影院| 久久久色成人| 午夜免费激情av| 天天躁日日操中文字幕| 少妇裸体淫交视频免费看高清| 国产一区二区在线av高清观看| 我的女老师完整版在线观看| 一级a爱片免费观看的视频| 日韩欧美国产一区二区入口| 欧美日韩黄片免| 小说图片视频综合网站| 少妇高潮的动态图| 国产伦一二天堂av在线观看| 亚洲av中文字字幕乱码综合| 亚洲av成人精品一区久久| 日本在线视频免费播放| 日本黄色片子视频| 99在线视频只有这里精品首页| 欧美黑人欧美精品刺激| 日韩欧美一区二区三区在线观看| 亚洲精品成人久久久久久| 国产野战对白在线观看| 亚洲精品亚洲一区二区| 国产高清视频在线播放一区| 动漫黄色视频在线观看| 在线观看免费视频日本深夜| 99久久九九国产精品国产免费| 久久精品国产亚洲av涩爱 | 美女高潮的动态| 日本撒尿小便嘘嘘汇集6| 三级毛片av免费| 18禁黄网站禁片午夜丰满| 麻豆成人午夜福利视频| 亚洲av免费高清在线观看| 十八禁人妻一区二区| 性色avwww在线观看| 亚洲国产精品成人综合色| 国产黄色小视频在线观看| 在线观看美女被高潮喷水网站 | 一区二区三区四区激情视频 | 精品人妻视频免费看| 日本五十路高清| 国产精品久久久久久亚洲av鲁大| 中文字幕av成人在线电影| 久久热精品热| 波多野结衣高清无吗| 国产三级中文精品| 亚洲精品亚洲一区二区| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| a在线观看视频网站| 美女cb高潮喷水在线观看| 男插女下体视频免费在线播放| 午夜福利视频1000在线观看| 美女cb高潮喷水在线观看| 欧美乱妇无乱码| 麻豆成人午夜福利视频| 日韩有码中文字幕| 午夜激情欧美在线| 国产视频内射| 久久草成人影院| 校园春色视频在线观看| 老司机福利观看| 日本在线视频免费播放| 国产大屁股一区二区在线视频| 精品人妻一区二区三区麻豆 | 国产高清三级在线| 亚洲在线观看片| 午夜视频国产福利| 欧美高清成人免费视频www| 亚洲,欧美,日韩| 搡老熟女国产l中国老女人| 老司机深夜福利视频在线观看| 伊人久久精品亚洲午夜| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 欧美乱妇无乱码| 丁香六月欧美| 日韩欧美 国产精品| 精品乱码久久久久久99久播| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 高清日韩中文字幕在线| 午夜福利免费观看在线| а√天堂www在线а√下载| 久久久久九九精品影院| 狂野欧美白嫩少妇大欣赏| 如何舔出高潮| 人妻久久中文字幕网| 一本精品99久久精品77| 窝窝影院91人妻| 亚洲欧美日韩东京热| 国产精品亚洲一级av第二区| 成人av一区二区三区在线看| 亚洲乱码一区二区免费版| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 免费人成在线观看视频色| 午夜免费成人在线视频| 欧美一区二区亚洲| 性欧美人与动物交配| 内射极品少妇av片p| 国产真实伦视频高清在线观看 | 亚洲国产欧美人成| 性色avwww在线观看| 桃色一区二区三区在线观看| 久久精品国产亚洲av天美| 国产激情偷乱视频一区二区| 国产毛片a区久久久久| 日本黄大片高清| 最好的美女福利视频网| 免费电影在线观看免费观看| 久久久精品欧美日韩精品| 成人无遮挡网站| 老司机午夜十八禁免费视频| 日本三级黄在线观看| 免费av观看视频| 熟女电影av网| 亚洲美女黄片视频| 88av欧美| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 午夜福利成人在线免费观看| 99热精品在线国产| 伦理电影大哥的女人| 亚洲专区中文字幕在线| 久久久成人免费电影| 舔av片在线| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 人妻丰满熟妇av一区二区三区| 少妇熟女aⅴ在线视频| 精品人妻偷拍中文字幕| 国产免费av片在线观看野外av| 国产三级黄色录像| 欧美成人一区二区免费高清观看| 久久久久性生活片| 淫妇啪啪啪对白视频| 黄色一级大片看看| 亚洲精品在线观看二区| 亚州av有码| 毛片一级片免费看久久久久 | 午夜福利18| 国产高清视频在线观看网站| 天天躁日日操中文字幕| 两人在一起打扑克的视频| 亚洲在线观看片| 亚洲经典国产精华液单 | 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 日日摸夜夜添夜夜添小说| 国产精品亚洲一级av第二区| 久久国产乱子免费精品| 国产亚洲欧美在线一区二区| 嫁个100分男人电影在线观看| 欧美成人免费av一区二区三区| 成人欧美大片| 国产午夜福利久久久久久| 国产单亲对白刺激| 麻豆一二三区av精品| 午夜福利在线观看免费完整高清在 | 午夜福利在线在线| 国产欧美日韩精品亚洲av| 欧美激情在线99| 最新在线观看一区二区三区| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 日日干狠狠操夜夜爽| 特级一级黄色大片| 国产色婷婷99| 国产黄片美女视频| 欧美bdsm另类| av视频在线观看入口| 欧美丝袜亚洲另类 | x7x7x7水蜜桃| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 免费av毛片视频| 午夜福利在线观看吧| 亚洲美女搞黄在线观看 | 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 男人狂女人下面高潮的视频| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 国产精品三级大全| 日韩有码中文字幕| 日日夜夜操网爽| 国产精品三级大全| 可以在线观看的亚洲视频| 成人欧美大片| 国产爱豆传媒在线观看| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 日本黄大片高清| 国产av不卡久久| 可以在线观看的亚洲视频| 99久久精品一区二区三区| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 日韩有码中文字幕| 亚洲av中文字字幕乱码综合| 国产三级中文精品| 欧美性感艳星| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 在线观看一区二区三区| 日本 欧美在线| 又爽又黄a免费视频| 国产午夜福利久久久久久| 久久久久久久精品吃奶| 国产探花极品一区二区| 欧美性猛交黑人性爽| 国产aⅴ精品一区二区三区波| 精品久久久久久,| 精品欧美国产一区二区三| 成人国产综合亚洲| 丰满乱子伦码专区| 国产av一区在线观看免费| 午夜影院日韩av| 国产精品久久视频播放| 国内精品久久久久精免费| 精品人妻1区二区| 51午夜福利影视在线观看| 日本在线视频免费播放| 欧美日韩黄片免| 90打野战视频偷拍视频| 国产成人欧美在线观看| 亚洲av二区三区四区| www.999成人在线观看| 99热6这里只有精品| 欧美激情久久久久久爽电影| 成人国产一区最新在线观看| 变态另类丝袜制服| 国产成人aa在线观看| 欧美乱色亚洲激情| 精品久久久久久,| 国产欧美日韩精品亚洲av| 精品无人区乱码1区二区| 精品久久久久久久久久久久久| 精品一区二区三区人妻视频| 男人和女人高潮做爰伦理| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 国产成年人精品一区二区| 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩高清专用| 久久国产精品影院| av视频在线观看入口| 欧美日韩瑟瑟在线播放| 亚州av有码| 国产单亲对白刺激| 亚洲电影在线观看av| 舔av片在线| 中文在线观看免费www的网站| 日韩精品青青久久久久久| 免费搜索国产男女视频| 中文字幕久久专区| 成人三级黄色视频| 桃红色精品国产亚洲av| 日日摸夜夜添夜夜添av毛片 | 悠悠久久av| 亚洲av第一区精品v没综合| 九色国产91popny在线| 男人舔奶头视频| 97热精品久久久久久| 在线国产一区二区在线| 亚洲av电影在线进入| 日韩欧美在线二视频| 亚洲专区中文字幕在线| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线| 日本熟妇午夜| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 国产爱豆传媒在线观看| 欧美黑人巨大hd| 99久久99久久久精品蜜桃| 香蕉av资源在线| 国产69精品久久久久777片| 亚洲国产高清在线一区二区三| 欧美性感艳星| 天堂网av新在线| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 老熟妇乱子伦视频在线观看| 国产一区二区亚洲精品在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 18禁裸乳无遮挡免费网站照片| 欧美+日韩+精品| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 91午夜精品亚洲一区二区三区 | 亚洲内射少妇av| 国产av一区在线观看免费| 村上凉子中文字幕在线| 一本一本综合久久| 亚洲av二区三区四区| 深爱激情五月婷婷| 日日夜夜操网爽| 国产精品,欧美在线| 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 黄色配什么色好看| 国产精品自产拍在线观看55亚洲| 精品一区二区三区av网在线观看| avwww免费| 国产亚洲欧美98| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清| 丁香六月欧美| 天堂动漫精品| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件 | 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 国产精品不卡视频一区二区 | 内地一区二区视频在线| 91av网一区二区| 欧美丝袜亚洲另类 | 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清|