• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      柯西不等式在初等數(shù)學(xué)物理中的若干應(yīng)用

      2018-02-19 08:10:46徐浩然
      新課程·中學(xué) 2018年10期

      徐浩然

      摘 要:構(gòu)思出了柯西不等式新穎的證明方法,并且將它應(yīng)用到物理光學(xué)問題與極值問題中。從而進(jìn)一步探討它的兩種推廣形式及應(yīng)用。展示了柯西不等式與它的推廣的使用技巧與方法,體現(xiàn)了柯西不等式在數(shù)學(xué)領(lǐng)域中的廣泛應(yīng)用價值。

      關(guān)鍵詞:柯西不等式;極值問題;物理光學(xué)問題

      法國著名數(shù)學(xué)家柯西,1789年8月21日出生于巴黎。他對數(shù)論、數(shù)學(xué)分析、抽象代數(shù)和微分方程等多個數(shù)學(xué)領(lǐng)域進(jìn)行了深入的研究,并取得了許多重要成果。著名的柯西不等式就是其中之一。此不等式在初等數(shù)學(xué)的解題中應(yīng)用上具有耳目一新、靈活巧妙的作用。有些參考書上采用了構(gòu)造函數(shù)、利用判別式的方法來證明。而本文在此給出了三種更為簡捷的證明法:引入了二次型法和數(shù)學(xué)歸納法,來證明柯西不等式。

      兴隆县| 西安市| 巴林右旗| 凉城县| 南阳市| 江华| 崇文区| 延吉市| 华亭县| 剑河县| 色达县| 高台县| 登封市| 治多县| 察雅县| 宿松县| 南康市| 衡山县| 清苑县| 图木舒克市| 鞍山市| 泰和县| 黔江区| 含山县| 罗山县| 闻喜县| 河津市| 宁南县| 九龙坡区| 赤壁市| 三河市| 盐源县| 呈贡县| 梁山县| 札达县| 巴东县| 溆浦县| 福州市| 山西省| 竹溪县| 龙陵县|