• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’

    2018-02-05 07:11:00ZHONGXiLIUXueluLOUBinghaiZHOUChangyongWANGXuefeng
    Journal of Integrative Agriculture 2018年2期

    ZHONG Xi, LIU Xue-lu, LOU Bing-hai, ZHOU Chang-yong, WANG Xue-feng

    1 National Citrus Engineering Research Center, Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, P.R.China

    2 Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, P.R.China

    1. Introduction

    ‘CandidatusLiberibacter asiaticus’ (Las), a phloem-resided α-protebacterium, is the putative causal agent of citrus Huanglongbing (HLB, yellow shoot disease) that is one of the most serious diseases in citrus production (Bové 2006). The bacterium is transmitted from infected to healthy plants through grafting or by citrus psyllid (Diaphorina citri).No effective cure is currently available for HLB-infected citrus plants. Therefore, the use of pathogen-free nursery stocks, control of insect vector and removal of infected trees are major control measures in HLB management.This is of particular importance if HLB infection status of asymptomatic trees in field could be accurately diagnosed for the implementation of control strategies.

    Because Las is unable to be cultured so far, current detection is typically PCR-based using primers developed from genomic DNA sequences, mostly the 16S rRNA gene.Primer set OI1/OI2c for conventional PCR and primer-probe set HLBas/HLBp/HLBr for TaqMan real-time quantitative PCR(qPCR) are widely used for the standardized detection of Las(Jagoueixet al. 1994; Liet al. 2006). Recently, multi-copy genes have been chosen as targets for the improvement of qPCR sensitivity (Morganet al. 2012; Zhenget al. 2016).However, absolute quantification of unculturable Las by qPCR is challenging due to erratic distribution and low titer,especially for early detection of Las infection.

    Droplet digital PCR (ddPCR) is a new technology that allows sensitive detection and absolute quantification of low concentration DNA without the need for a standard curve.Each sample tested was partitioned in tens of thousands of individual droplets in a water-oil emulsion and then the number of positive droplets was read by cumulativefluorescence signal during PCR amplification. The total number of target DNA molecules in a sample can be calculated from the fraction of positive droplets and Poisson statistics (Hindsonet al. 2011). Since ddPCR has been shown to yield more precise detection results than qPCR,the robust and powerful method has been increasingly used in medical researches (Tayloret al. 2015), clinical applications (Tsuiet al. 2011; Watanabeet al. 2015), food safety inspection (Pinheiroet al. 2011; Florenet al. 2015)and gene-editing frequencies study (Mocket al. 2016).Recently, it also has been used to detectXanthomonas citrisubsp.citri, an economically important disease of citrus(Zhaoet al. 2016).

    In this study, we established ddPCR approach to detect and quantify Las in both symptomatic and asymptomatic samples. The detection sensitivity of ddPCR was compared to qPCR targeting the gene encoding 16S rRNA.

    2. Materials and methods

    2.1. Sample collection and DNA extraction

    HLB symptomatic and asymptomatic field citrus samples were collected from Guangxi and Hunan of China. All collected samples in China were shipped by mail to Citrus Research Institute (CRI) of Southwest University in Chongqing, China. Four HLB-positive citrus samples and four negative citrus samples were collected from the greenhouse in CRI. The midribs of citrus leaves were excised and DNA was extracted using the cetyltrimethylammonium bromide (CTAB) methods as previously described (Wanget al. 2012).

    2.2. Preparation of cloned plasmid standard

    A DNA segment encoding 16S rRNA gene of Las was amplified with Las genomic DNA as the template. The PCR amplicon was purified and ligated into the pEASY-T1 cloning vector (TransGen Biotech, China). Plasmid DNA was extracted from transformed competent cells and used to generate a standard curve for tenfold serial dilutions consisting of nine concentration gradients, which were used to test the sensitivities and linearity range of qPCR and ddPCR assays.

    2.3. Quantitative PCR

    The primers and probe targeted the 16S rRNA gene of Las were used in the subsequent qPCR and ddPCR assays (Liet al. 2006). The qPCR assay was performed on an iCyler IQTMSystem (Bio-Rad, Hercules, CA, USA). The cycling conditions included incubation for 30 s at 95°C followed by 40 cycles of 95°C for 5 s and 58°C for 30 s. Ctvalues were analyzed using BioRad iCycler iQ version 3.0 Software with auto-calculated baseline settings and a manually set threshold at 0.1. Standard curve was constructed through serial dilutions of plasmids for quantification and checked for qPCR efficiencies.

    2.4. Droplet digital PCR

    The QX200TMDroplet Digital PCR System (Bio-Rad,Hercules, CA, USA) was used in the study. The total ddPCR reaction volume was 20 μL, containing 10 μL 2× ddPCRTMsupermix for probe (no dUTP) (Bio-Rad, Pleasanton, CA,USA), 1 μmol L–1of each primer, 500 nmol L–1of probe, and 2 μL template DNA. Approximately 20 000 droplets were generated using a Droplet Generator (DG) with an 8-channel DG8 cartridge and cartridge holder with 70 μL of DG oil per well and 20 μL of reaction mixture. Following this step, 40 μL droplets mixtures were transferred into a 96-well plate. The PCR plate was heat-sealed using a PX1TMPCR Plate Sealer(Bio-Rad) and placed in the C1000 Thermal Cycler (Bio-Rad)under the following thermal conditions (temperature ramp rate 2°C s–1): 95°C for 10 min, followed by 40 cycles of 94°C for 30 s and 54°C for 1 min. Droplets were counted on the QX200 droplet reader (Bio-Rad).

    2.5. Data analysis

    Linear regression analyses of standard curve from qPCR was performed and recalculated with Microsoft Excel Software (Microsoft, USA). Slope value of standard curve was used to determine PCR efficiencies. For ddPCR,positive droplets were discriminated from negative droplets by applying a fluorescence amplitude threshold with the QuantaSoftTMversion 1.7.4 (Bio-Rad). Correlation analysis between ddPCR and qPCR was performed with SPSS Software version 21.0 (SPSS Inc., Chicago, USA).Pearson’s correlations and linear regression were also used to evaluate the relationship between measurements of ddPCR and qPCR assays.

    3. Results and discussion

    Adequate discrimination between positive and negative signals is of great importance to set appropriate thresholds.Annealing temperature conditions play important roles in determining fluorescence intensity and the distance between positive and negative signals. To assess the optimal annealing temperature of the ddPCR assay, the eight temperature gradients ranged from 64 to 52°C were set on the thermal cycler. An optimized annealing temperature of 54°C was determined based on the largest discrimination in fluorescence intensity between positive and negative droplets.

    To compare the linearity, dynamic range and sensitivity of qPCR and ddPCR assays, calibration curves for the qPCR assay and the regression curves for the ddPCR assay were constructed using tenfold serial dilutions of positive plasmid(3.07×108–3.07×101copies μL–1). Both qPCR and ddPCR assays exhibited good linearity of amplification with high determination coefficient (R2=0.999 and 0.996, respectively)(Fig. 1-A and B). Furthermore, a very strong and significant positive correlation between the two methods (r=0.99;P<0.001) was observed (Fig. 1-C). The dynamic range tested in positive plasmid in qPCR was from 108to 102.Compared to qPCR, ddPCR had the narrower linearity range from 105to 101copies since the droplets were positively saturated at target concentrations ≥106copies μL–1, making the Poisson algorithm invalid (Fig. 2-A). However, ddPCR showed a lower detection limit, suggesting the ddPCR is more sensitive than qPCR (Fig. 2).

    The weak real-time PCR signals derived from lowconcentration samples, as represented by high Ctvalues,may be questionable for declaring a positive reaction.To better compare the detection sensitivity between the two assays, samples with Ct>35 tested by qPCR were regarded as Las-negative samples in this study. Total of 40 citrus samples extracted previously, with the Ctvalue ranging from 28 to 38 by qPCR, were chosen for testing the detection capacity of ddPCR for high Ctvalues samples and determining whether ddPCR can be used in the detection of field samples. Besides the relatively low Ctvalue (<35)samples, six of 13 samples (46.15%) with high Ctvalue(>35) were also positive by ddPCR (data not shown). It should be noted that asymptomatic citrus samples with low Las concentration could be detected by ddPCR, suggesting that ddPCR is a more robust method for the detection of samples with low concentration of Las, especially for samples in early infection and asymptomatic phase. The application of a microsimulation model of asymptomatic disease spread using psyllid introduction scenarious indicated that the surveillance and control should be used from the initial detection of invasion and throughout the asymptomatic period (Leeet al. 2015). The ddPCR-based technology will play an important role in the detection of Las from asymptomatic citrus samples. It is believed that if more primer pairs targeting multi-copy genes were used in ddPCR (Morganet al. 2012; Zhenget al. 2016), the detection sensitivity might be improved accordingly.

    Fig. 1 Linear regression of droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR) assays using serial tenfold dilutions of plasmid DNA (B), and correlation between log10 means of copies using ddPCR vs. qPCR (C). Data are means±SD (A and B).

    Fig. 2 Sensitivity comparison of ‘Candidatus Liberibacter asiaticus’ (Las) detection between droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR, B) assays. Eight ddPCR reactions with serially diluted targets are divided by the vertical dotted yellow line. The unbroken pink line is the threshold, above which are positive droplets (blue) containing the target DNA and below which are negative droplets (gray) without any target DNA. Each target concentration in ddPCR is corresponding to the Ct value(from 15.52 to NA (not applicable) in qPCR by the red arrow. RFU, relative fluorescence units.

    Recently, field-capable assays, loop mediated isothermal amplification (LAMP) and serologically based immune tissue print, have been developed for Las detection (Riganoet al. 2014; Dinget al. 2016, 2017). These methods offer the advantages of simplicity, low cost and high throughput in comparison with PCR-based assays currently used.However, uneven distribution and low titer of Las in citrus plants are still big challenges for these assays. The high sensitivity ddPCR assay could be an effective complement for the detection of early HLB infection or low titer samples.

    4. Conclusion

    This is the first report to demonstrate the ddPCR technology for the quantification of Las. The detection sensitivity of ddPCR was compared to qPCR targeting the 16S rRNA gene. Our result showed that ddPCR was superior to qPCR for detecting and quantifying Las at low concentrations.Reducing risk of false negatives is critically important if PCR diagnosis of Las infection is used in certification programs.This methodology showed great potential for early HLB infection diagnosis.

    Acknowledgements

    This study was funded by the National Natural Sciences Foundation of China (31671992, 31301635), the Chongqing Science and Technology Commission Project, China(cstc2016shms-ztzx80003) and the Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops,China (SYS2015K004).

    Bové J M. 2006. Huanglongbing: A destructive, newly-emerging,century-old disease of citrus.Journal of Plant Pathology,88, 7–37.

    Ding F, Duan Y P, Yuan Q, Shao J, Hartung J S. 2016.Serological detection of “CandidatusLiberibacter asiaticus”in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens.Scientific Reports,6, 29272.

    Ding F, Paul C, Brlansky R, Hartung J S. 2017. Immune tissue print and immune capture-PCR for diagnosis and detection ofCandidatusLiberibacter asiaticus.Scientific Reports, 7,46467.

    Floren C, Wiedemann I, Brenig B, Schütz E, Beck J. 2015.Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).Food Chemistry, 173, 1054–1058.

    Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.Analytical Chemistry, 83, 8604–8610.

    Jagoueix S, Bove J M, Garnier M. 1994. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of theProteobacteria.International Journal of Systematic and Evolutionary Microbiology, 44, 379–386.

    Lee J A, Halbert S E, Dawson W O, Robertson C J, Keesling J E,Singer B H. 2015. Asymptomatic spread of Huanglongbing and implications for disease control.Proceedings of the National Academy of Sciences of the United States ofAmerica, 112, 7605–7610.

    Li W, Hartung J S, Levy L. 2006. Quantitative real-time PCR for detection and identification ofCandidatusLiberibacter species associated with citrus huanglongbing.Journal of Microbiological Methods, 66, 104–115.

    Mock U, Hauber I, Fehse B. 2016. Digital PCR to assess geneediting frequencies (GEF-dPCR) mediated by designer nucleases.Nature Protocols, 11, 598–615.

    Morgan J K, Zhou L, Li W, Shatters R G, Keremane M, Duan Y P. 2012. Improved real-time PCR detection of ‘CandidatusLiberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes.Molecular and Cellular Probes, 26, 90–98.

    Pinheiro L B, Coleman V A, Hindson C M, Herrmann J, Hindson B J, Bhat S, Emslie K R. 2011. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification.Analytical Chemistry, 84, 1003–1011.

    Rigano L A, Malamud F, Orce I G, Filippone M P, Marano M R,Morais do Amaral A, Castagnaro A P, Vojnov A A. 2014.Rapid and sensitive detection ofCandidatusLiberibacter asiaticus by loop mediated isothermal amplication combined with a lateral flow dipstick.BMC Microbiology, 14, 86.

    Taylor S C, Carbonneau J, Shelton D N, Boivin G. 2015.Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations.Journal of Virological Methods, 224, 58–66.

    Tsui N B, Kadir R A, Chan K A, Chi C, Mellars G, Tuddenham E G, Leung T Y, Lau T K, Chiu R W, Lo Y D. 2011. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA.Blood, 117, 3684–3691.

    Wang X, Zhou C, Deng X, Su H, Chen J. 2012. Molecular characterization of a mosaic locus in the genome of‘CandidatusLiberibacter asiaticus’.BMC Microbiology,12, 18.

    Watanabe M, Kawaguchi T, Isa S I, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T. 2015. Ultrasensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR.Clinical Cancer Research, 21, 3552–3560.

    Zhao Y, Xia Q, Yin Y, Wang Z. 2016. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection ofXanthomonascitriSubsp.citri.PLoS ONE,11, e0159004.

    Zheng Z, Xu M, Bao M, Wu F, Chen J, Deng X. 2016.Unusual five copies and dual forms of nrdB in “CandidatusLiberibacter asiaticus”: Biological implications and PCR detection application.Scientific Reports, 6, doi: 10.1038/srep39020

    亚洲国产精品国产精品| 久久热在线av| 一二三四中文在线观看免费高清| 热re99久久精品国产66热6| 精品亚洲成国产av| 99国产精品免费福利视频| 日韩一本色道免费dvd| 亚洲av男天堂| 啦啦啦在线免费观看视频4| 在线 av 中文字幕| 日韩精品免费视频一区二区三区| 久久女婷五月综合色啪小说| 午夜老司机福利片| 国产成人免费无遮挡视频| 免费黄色在线免费观看| 日韩视频在线欧美| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| xxxhd国产人妻xxx| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 日韩一本色道免费dvd| 久久久国产一区二区| 中文字幕精品免费在线观看视频| 日本91视频免费播放| 19禁男女啪啪无遮挡网站| 亚洲美女黄色视频免费看| 国产片内射在线| av电影中文网址| 男人舔女人的私密视频| 老司机影院毛片| 日本一区二区免费在线视频| 丁香六月欧美| 伊人久久大香线蕉亚洲五| 十八禁网站网址无遮挡| 一区在线观看完整版| 精品第一国产精品| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 在线观看免费日韩欧美大片| 日韩成人av中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 天天躁夜夜躁狠狠躁躁| 久久久欧美国产精品| 欧美黄色片欧美黄色片| 国产成人精品久久久久久| 麻豆av在线久日| 哪个播放器可以免费观看大片| 亚洲伊人久久精品综合| 色综合欧美亚洲国产小说| av一本久久久久| 咕卡用的链子| 国产精品久久久久久精品古装| 亚洲成人国产一区在线观看 | 女人久久www免费人成看片| 日本色播在线视频| 91精品国产国语对白视频| 飞空精品影院首页| 国产高清不卡午夜福利| 日日撸夜夜添| 女性被躁到高潮视频| 男人添女人高潮全过程视频| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 三上悠亚av全集在线观看| 看免费成人av毛片| 免费在线观看黄色视频的| 日日摸夜夜添夜夜爱| 在线亚洲精品国产二区图片欧美| 精品国产露脸久久av麻豆| 免费不卡黄色视频| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 制服丝袜香蕉在线| 久久久久人妻精品一区果冻| 久久久久久人人人人人| 午夜福利在线免费观看网站| 国产精品人妻久久久影院| 国产精品久久久久成人av| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 日韩中文字幕视频在线看片| 少妇 在线观看| 久久亚洲国产成人精品v| 欧美精品一区二区免费开放| 色播在线永久视频| 国产在线一区二区三区精| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲欧美成人精品一区二区| 日韩熟女老妇一区二区性免费视频| 精品国产乱码久久久久久男人| 久久精品亚洲av国产电影网| 精品一区二区免费观看| 伦理电影免费视频| av国产久精品久网站免费入址| 国产精品久久久久久精品古装| 一区二区日韩欧美中文字幕| 日本色播在线视频| 亚洲自偷自拍图片 自拍| 午夜影院在线不卡| 大香蕉久久成人网| av卡一久久| 国产精品熟女久久久久浪| 最黄视频免费看| 超色免费av| 久久久亚洲精品成人影院| 免费观看a级毛片全部| 国产伦理片在线播放av一区| 秋霞在线观看毛片| 久久精品久久久久久久性| 成人国产av品久久久| 国产老妇伦熟女老妇高清| 美女国产高潮福利片在线看| 亚洲欧美清纯卡通| 高清欧美精品videossex| 韩国av在线不卡| 精品亚洲成国产av| 国产一区二区三区综合在线观看| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 国产男人的电影天堂91| 国产成人欧美| 免费观看av网站的网址| 国产成人啪精品午夜网站| 久久人人爽人人片av| 老汉色av国产亚洲站长工具| 可以免费在线观看a视频的电影网站 | 国产片特级美女逼逼视频| 一区二区日韩欧美中文字幕| 亚洲美女黄色视频免费看| 卡戴珊不雅视频在线播放| 国产在线一区二区三区精| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 超碰97精品在线观看| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 欧美日韩av久久| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 欧美日韩一区二区视频在线观看视频在线| 免费观看a级毛片全部| 各种免费的搞黄视频| 啦啦啦视频在线资源免费观看| 色综合欧美亚洲国产小说| 亚洲欧洲国产日韩| 国产精品国产三级专区第一集| 最近中文字幕2019免费版| 尾随美女入室| 久久久久久久大尺度免费视频| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜爱| 亚洲一区中文字幕在线| 久久久久久人妻| 亚洲久久久国产精品| 青草久久国产| 视频区图区小说| xxxhd国产人妻xxx| 久久精品久久久久久久性| 免费看不卡的av| 一级,二级,三级黄色视频| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网 | 午夜福利,免费看| 亚洲国产av新网站| 黄网站色视频无遮挡免费观看| 国产精品.久久久| 久久久久国产一级毛片高清牌| a级毛片黄视频| 亚洲,欧美精品.| 亚洲av成人精品一二三区| 热99国产精品久久久久久7| 1024香蕉在线观看| 最黄视频免费看| 日本欧美国产在线视频| 岛国毛片在线播放| 国产亚洲最大av| 国产欧美日韩一区二区三区在线| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 天天影视国产精品| 日本午夜av视频| 一本久久精品| 亚洲国产精品999| 性少妇av在线| 亚洲欧美一区二区三区久久| 黄色 视频免费看| 国产精品久久久人人做人人爽| 欧美人与善性xxx| 深夜精品福利| 宅男免费午夜| 精品人妻在线不人妻| 国产乱人偷精品视频| 婷婷色av中文字幕| 下体分泌物呈黄色| 一级a爱视频在线免费观看| 欧美 日韩 精品 国产| 久久狼人影院| 亚洲欧美一区二区三区黑人| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 嫩草影视91久久| 久久久久久久久久久免费av| 视频区图区小说| 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 777米奇影视久久| 成人漫画全彩无遮挡| 老司机影院成人| 欧美在线黄色| 精品少妇黑人巨大在线播放| 精品人妻一区二区三区麻豆| 国产男女超爽视频在线观看| 捣出白浆h1v1| 国产黄色免费在线视频| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 美女午夜性视频免费| 国产成人精品无人区| 高清av免费在线| 国产 精品1| 精品视频人人做人人爽| 欧美精品一区二区大全| 日日撸夜夜添| 亚洲精品成人av观看孕妇| 国产成人精品在线电影| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 亚洲av日韩精品久久久久久密 | 99精品久久久久人妻精品| 99热网站在线观看| 国产精品亚洲av一区麻豆 | 女人被躁到高潮嗷嗷叫费观| 亚洲成人一二三区av| 纯流量卡能插随身wifi吗| 免费黄色在线免费观看| 午夜91福利影院| 飞空精品影院首页| 一区福利在线观看| 亚洲精品美女久久av网站| 午夜av观看不卡| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 精品酒店卫生间| 少妇人妻久久综合中文| 美国免费a级毛片| 国产成人系列免费观看| 久久99一区二区三区| 男女边吃奶边做爰视频| www.自偷自拍.com| 亚洲精品自拍成人| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 亚洲第一区二区三区不卡| 精品少妇久久久久久888优播| avwww免费| 日本wwww免费看| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 国产1区2区3区精品| 国产一卡二卡三卡精品 | 婷婷成人精品国产| 满18在线观看网站| 嫩草影院入口| 尾随美女入室| 欧美中文综合在线视频| 日日啪夜夜爽| 哪个播放器可以免费观看大片| 亚洲欧美精品综合一区二区三区| 久久国产精品大桥未久av| 天美传媒精品一区二区| 97在线人人人人妻| 亚洲精品aⅴ在线观看| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影小说| 亚洲欧美日韩另类电影网站| 在线观看人妻少妇| 亚洲人成网站在线观看播放| 色94色欧美一区二区| 婷婷色综合大香蕉| 亚洲美女视频黄频| 久久久久精品久久久久真实原创| 欧美精品av麻豆av| 一级毛片我不卡| 日韩制服丝袜自拍偷拍| 日本黄色日本黄色录像| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 欧美日韩国产mv在线观看视频| 欧美97在线视频| 欧美日韩视频精品一区| 一本久久精品| 女性生殖器流出的白浆| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 久久久久国产一级毛片高清牌| 久久精品国产a三级三级三级| 午夜av观看不卡| 久久人人爽人人片av| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 亚洲中文av在线| 亚洲情色 制服丝袜| 国产日韩欧美亚洲二区| 亚洲精品,欧美精品| 午夜91福利影院| 考比视频在线观看| 亚洲欧洲国产日韩| 最近的中文字幕免费完整| 一级毛片黄色毛片免费观看视频| 91精品国产国语对白视频| 国产探花极品一区二区| 免费观看a级毛片全部| 国产亚洲一区二区精品| 亚洲国产欧美一区二区综合| 国产精品久久久久成人av| 欧美日本中文国产一区发布| 亚洲天堂av无毛| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 久久午夜综合久久蜜桃| 欧美黑人精品巨大| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 在线 av 中文字幕| 国产伦人伦偷精品视频| 一本久久精品| 国产高清不卡午夜福利| 99久久综合免费| 高清视频免费观看一区二区| 大码成人一级视频| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 制服丝袜香蕉在线| 1024视频免费在线观看| 在线观看国产h片| 狠狠精品人妻久久久久久综合| 国产在线视频一区二区| 久久久精品免费免费高清| 成人亚洲欧美一区二区av| 国产成人欧美在线观看 | 欧美成人午夜精品| 欧美亚洲日本最大视频资源| 1024香蕉在线观看| 国产免费福利视频在线观看| 国产精品秋霞免费鲁丝片| 啦啦啦在线免费观看视频4| 亚洲精品国产区一区二| 最近中文字幕2019免费版| 免费不卡黄色视频| 少妇人妻精品综合一区二区| 国产精品.久久久| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 在线亚洲精品国产二区图片欧美| 99热全是精品| 大陆偷拍与自拍| www.精华液| 日本91视频免费播放| 国产精品无大码| 老司机在亚洲福利影院| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 99久久综合免费| 精品国产一区二区三区四区第35| 汤姆久久久久久久影院中文字幕| 一本久久精品| 国产探花极品一区二区| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 中文字幕av电影在线播放| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 性高湖久久久久久久久免费观看| 大片免费播放器 马上看| 黑丝袜美女国产一区| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 欧美乱码精品一区二区三区| 亚洲中文av在线| 亚洲国产欧美在线一区| 色婷婷av一区二区三区视频| 国产精品久久久久成人av| 日韩一区二区视频免费看| 大陆偷拍与自拍| 又粗又硬又长又爽又黄的视频| 女性被躁到高潮视频| 蜜桃在线观看..| 人成视频在线观看免费观看| 免费av中文字幕在线| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 最近最新中文字幕免费大全7| 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 最黄视频免费看| 女性被躁到高潮视频| 亚洲成人国产一区在线观看 | 免费不卡黄色视频| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜一区二区 | 成年美女黄网站色视频大全免费| 成年人午夜在线观看视频| 日韩av在线免费看完整版不卡| 天堂俺去俺来也www色官网| 观看av在线不卡| 亚洲图色成人| 爱豆传媒免费全集在线观看| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 人妻一区二区av| 搡老乐熟女国产| 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| 成年人午夜在线观看视频| 亚洲精品自拍成人| 老汉色∧v一级毛片| 精品国产一区二区久久| 国产成人系列免费观看| 免费av中文字幕在线| 高清视频免费观看一区二区| 91精品国产国语对白视频| 欧美日韩亚洲综合一区二区三区_| 又黄又粗又硬又大视频| 一级片免费观看大全| 青春草国产在线视频| av福利片在线| 亚洲成人免费av在线播放| av又黄又爽大尺度在线免费看| 成年动漫av网址| 两个人看的免费小视频| 黄色视频不卡| 婷婷色综合www| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 亚洲av综合色区一区| 国产精品国产三级专区第一集| 午夜91福利影院| 看免费成人av毛片| 成人漫画全彩无遮挡| 精品人妻在线不人妻| 在线观看三级黄色| 精品亚洲成a人片在线观看| 视频区图区小说| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 欧美日韩成人在线一区二区| 狂野欧美激情性bbbbbb| 在线看a的网站| 免费日韩欧美在线观看| 日日啪夜夜爽| 久久人妻熟女aⅴ| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 久久久久精品久久久久真实原创| 国产一级毛片在线| 日本av免费视频播放| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 老司机影院成人| 肉色欧美久久久久久久蜜桃| 卡戴珊不雅视频在线播放| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 久久久国产一区二区| 国产免费又黄又爽又色| 狂野欧美激情性xxxx| 老熟女久久久| 久久久久视频综合| 人妻一区二区av| 亚洲国产最新在线播放| 午夜日本视频在线| av线在线观看网站| 丰满乱子伦码专区| 亚洲av日韩精品久久久久久密 | 18禁国产床啪视频网站| 国产1区2区3区精品| 最近最新中文字幕大全免费视频 | 伊人久久国产一区二区| 久久这里只有精品19| 亚洲国产欧美在线一区| 久久久精品区二区三区| 大话2 男鬼变身卡| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 亚洲人成77777在线视频| 日韩成人av中文字幕在线观看| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | 亚洲欧美成人综合另类久久久| 一级a爱视频在线免费观看| 国产精品av久久久久免费| netflix在线观看网站| 色94色欧美一区二区| av国产久精品久网站免费入址| 国产av精品麻豆| 91精品国产国语对白视频| 国产精品.久久久| 大片免费播放器 马上看| 99国产综合亚洲精品| 国产精品久久久久成人av| 天堂中文最新版在线下载| 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 在线 av 中文字幕| 亚洲国产欧美一区二区综合| 亚洲精品第二区| 亚洲精品,欧美精品| 黄色 视频免费看| 又大又黄又爽视频免费| 飞空精品影院首页| av免费观看日本| 国产精品久久久久久久久免| 最黄视频免费看| 丝瓜视频免费看黄片| 日日撸夜夜添| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 一区福利在线观看| 男女边吃奶边做爰视频| 欧美日本中文国产一区发布| 男人爽女人下面视频在线观看| 男人操女人黄网站| 男女无遮挡免费网站观看| 啦啦啦视频在线资源免费观看| 欧美精品人与动牲交sv欧美| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 韩国高清视频一区二区三区| 可以免费在线观看a视频的电影网站 | 婷婷色综合大香蕉| 精品一品国产午夜福利视频| 热re99久久国产66热| 这个男人来自地球电影免费观看 | 精品一区在线观看国产| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的| 一本—道久久a久久精品蜜桃钙片| 欧美人与善性xxx| 老司机影院成人| 久久精品久久久久久噜噜老黄| 考比视频在线观看| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区免费开放| 亚洲国产看品久久| 热re99久久国产66热| 国产精品国产三级专区第一集| 无遮挡黄片免费观看| 校园人妻丝袜中文字幕| 亚洲一码二码三码区别大吗| 日韩制服丝袜自拍偷拍| 亚洲国产精品一区三区| 欧美日韩一区二区视频在线观看视频在线| 国产 精品1| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 国产精品.久久久| 国产av国产精品国产| 岛国毛片在线播放| 一级毛片我不卡| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 91aial.com中文字幕在线观看| 伊人久久大香线蕉亚洲五| 看非洲黑人一级黄片| 无遮挡黄片免费观看| 高清av免费在线| 日韩一区二区视频免费看| 精品一区二区三区av网在线观看 | 亚洲国产精品成人久久小说| 男女边摸边吃奶| 久久精品久久久久久久性| 69精品国产乱码久久久| 丁香六月天网| 欧美另类一区| 深夜精品福利| 亚洲国产欧美网| 在线看a的网站| 激情视频va一区二区三区| 精品一区二区免费观看| 男女无遮挡免费网站观看| 亚洲av电影在线观看一区二区三区| 免费在线观看完整版高清| 卡戴珊不雅视频在线播放| 精品国产乱码久久久久久男人| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 亚洲欧美激情在线| 美女主播在线视频|