宋義軒+馮肖亮
摘 要:文章針對(duì)一類觀測(cè)方程為非線性,狀態(tài)方程為線性的非線性系統(tǒng)開展濾波方法研究。首先,采用觀測(cè)分解方法把原系統(tǒng)拆分為線性系統(tǒng)部分和非線性系統(tǒng)部分;然后,分別利用卡爾曼濾波和擴(kuò)展卡爾曼濾波對(duì)新系統(tǒng)進(jìn)行處理,最后采用分布式融合方法進(jìn)行估計(jì)融合。通過數(shù)值仿真將其與直接使用擴(kuò)展卡爾曼濾波的處理結(jié)果進(jìn)行對(duì)比,使用觀測(cè)分解的新方法有更好的估計(jì)精度。
關(guān)鍵詞:非線性觀測(cè);觀測(cè)分解;分布式融合
中圖分類號(hào):O212 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2018)05-0091-02
Abstract: In this paper, the filtering method for a class of nonlinear systems with nonlinear observation equations and linear state equations is studied. Firstly, the original system is divided into linear system and nonlinear system by the method of observational decomposition. Then, Kalman filtering and extended Kalman filtering are used to process the new system, and the distributed fusion method is used to estimate the fusion. Compared with the results of direct use of extended Kalman filtering, the new method of observation decomposition has better estimation accuracy.
Keywords: nonlinear observation; observation decomposition; distributed fusion
1 概述
隨著人們對(duì)卡爾曼濾波理論的深入研究,使其在許多領(lǐng)域中得到了廣泛應(yīng)用[1]。但卡爾曼濾波是線性系統(tǒng)中最優(yōu)估計(jì)理論,而在實(shí)際應(yīng)用的時(shí)候系統(tǒng)大多數(shù)為非線性系統(tǒng),為了使用卡位曼濾波理論,首先要對(duì)非線性系統(tǒng)進(jìn)行線性化處理,然后再采用卡爾曼濾波,這種處理非線性系統(tǒng)的方法被稱為擴(kuò)展卡爾曼濾波(EKF)[2]-[4]。但是針對(duì)當(dāng)一類只有觀測(cè)方程為非線性,狀態(tài)方程為線性的系統(tǒng)時(shí),一般還是直接對(duì)觀測(cè)方程進(jìn)行處理,忽略了觀測(cè)方程中線性部分對(duì)在觀測(cè)方程進(jìn)行線性化處理時(shí)的影響,本文在考慮該影響的基礎(chǔ)上,提出一種基于觀測(cè)分解的一類非線性濾波方法。
參考文獻(xiàn):
[1]Friedland B.Treatment of bias in recursive filtering[J]. IEEE Transactions on Automatic Control, 1969,14(4):359-367.
[2]S.J.Juliet, J.K.Uhlmann. A New Approach for filtering Nonlinear Systems[J].In The Proceedings of the American Control Conference,
Seattle,Washing ton, 1995,1628 -1632.
[3]張宏欣,周穗華,馮士民.漸進(jìn)擴(kuò)展卡爾曼濾波器[J].電子學(xué)報(bào),2017,45(01):213-219.
[4]王龍,章政,王立.改進(jìn)擴(kuò)展卡爾曼濾波的四旋翼姿態(tài)估計(jì)算法[J].計(jì)算機(jī)應(yīng)用,2017,37(04):1122-1128.endprint