• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag-NaTaO3-RGO復(fù)合物的合成及其改進的光催化制氫性能

    2018-02-01 06:56:26何慧娟鐘梓俊譚紹早黃浪歡
    無機化學(xué)學(xué)報 2018年2期
    關(guān)鍵詞:張斌制氫光催化

    何慧娟 張 斌 鐘梓俊 譚紹早 黃浪歡

    (暨南大學(xué)化學(xué)系,廣州 510632)

    0 Introduction

    In recent decades,energy deficiency and environment pollution has been becoming severe issues and challenges for humanity.Because of its environmental benignity,recyclability,hydrogen energy has been considered as one of the most promising replacement energy resources and photocatalytic water splitting over photocatalysts to generate hydrogen has attracted intensive interest[1-5].Therefore,the research of new highly active photocatalysts that could make full use of solar energy by transforming it to hydrogen energy has become a research focus in photocatalysis field.Due to their excellent photocatalytic properties,Alkali tantalite has attracted considerable attention in photocatalytic applications[6-9].In particular,Perovskite NaTaO3exhibited fairly high activity for splitting of pure waterbecause ofitsappropriate bandgap.However,the efficiency of NaTaO3was far from satisfaction due to its inherent high recombination rate of photogenerated electron-hole pairs.So far,various strategies to improve the photocatalytic activity of NaTaO3have been developed,including deposition of noble metal[10-11], doping with metal ion[12-14],and coupling with semiconductor materials[15-16],etc.Among these strategies,coupling NaTaO3with other materials to form a composite photocatalyst has been proved to be an effective way for improving the photoconversion efficiency[17].

    Graphene,a single layer of graphite,shows many intriguing electronic and optoelectronic properties and has been regarded as ideal 2D supports for making various functional composite materials[18-20].In particular,graphene is widely recognized to serve as an electron collector and transporter to efficiently hinder electron-hole recombination and lengthen the lifetime of the photo-generated charge carriers from semiconductor[21-23].Coupling graphene with photocatalyst for enhancing their photocatalytic performance has been paid extensive attention.For instance,Zhu et al.[24]recently demonstrated that ZnS nanoparticles exhibited a high photocatalytic H2-production activity by combining with graphene.Hou et al.[25]reported thatnitrogen-doped graphene could improve the photoelectrochemical and photocatalytic activity of graphitic carbon nitride (g-C3N4)nanosheet.On the other hand,coupling with novel metal nanoparticles Ag also has been proven as a promising method to improve the photocatalytic activity of semiconductor[26].For example,Yu et al.[27]reported that Ag-TiO2nanocomposites exhibit excellent performance in photocatalytic degradation of dyes under the UV illumination since silver particles could act as electron traps aiding electron-hole separation.According to their report,when the concentration of AgNO3increased to 0.03 mol·L-1,the photocatalytic activity of Ag-TiO2composite significantly increased and was 6.3 times higher than that of TiO2thin films.

    However,to the best of our knowledge,so far there is no report on coupling NaTaO3with Ag and RGO atthesametime.Herein,wereportthe preparation and characterization of Ag-NaTaO3-RGO composite through a three-step method for the first time.Such architecture provides improved separation rate of photo-generated electron-hole pairs.As a result,the composite is anticipated to exhibit enhanced photocatalytic activity under UV irradiation.

    1 Experimental

    1.1 Preparation of Ag-NaTaO3-RGO composite

    All chemicals were analytical grade and were used without further purification.Deionized water (DI)was used in all experiments.Graphene oxide was prepared from natural graphite powders through the modified Hummers′method[28].NaTaO3were synthesized by the hydrothermal method based on our previous work with modifications[29].Typically,Ta2O5(0.442 0 g),CH3COONa·3H2O (0.544 0 g),NaOH(0.120 0 g)and DI water (30 mL)were added into a beaker (100 mL)and stirred for 2 h then transferred to a 50 mL Teflon-lined stainless steel autoclave.Finally,the autoclave was maintained at 180 ℃ for 24 h and then allowed to cool to room temperature naturally.After filtering,washing,and drying,the NaTaO3samples were obtained.

    A typical synthesis of Ag-NaTaO3-RGO composite was described as follows:GO (0.015 0 g)and DI water(30 mL)were added into a beaker (100 mL)and sonicated for 30 min,a homogenous GO solution was obtained.Then,2.000 0 g polyvinylpyrrolidone (PVP)was added into the GO water solution and heated in 60℃water bath with vigorous stirring till the PVP being completely dissolved.After that 0.500 0 g NaTaO3was added to the above aqueous solution and stirred for 2 h.Then,the suspension was heated in 60℃water bath for 24 h while maintaining vigorous stirring after added calculated amount of AgNO3(3 mL).The obtained Ag-NaTaO3-RGO composites were then washed by distilled water to get rid of residual PVP.Finally,the Ag-NaTaO3-RGO composites were freeze-dried at-50℃for 24 h.A series of Ag-NaTaO3-RGO photocatalysts were prepared by changing the concentration of AgNO3(0.1,0.2,0.4,0.6 mol·L-1,respectively)and marked as e.g.0.2Ag-NaTaO3-RGO.

    1.2 Characterizations

    X-ray powder diffraction (XRD)patterns were taken on a X-ray diffractometer(MSAL-XRDⅡ)using a Cu Kα radiation (λ=0.154 056 nm)at a scan rate of 8°·min-1(40 kV,20 mA,2θ=10°~80°).Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy (HRTEM)images were obtained using a PHILIPS TECNAI-10 microscope.Field emission scanning electron microscopy(FESEM)investigations were taken on a Zeiss Ultra 55 field scanning electron microscope atan accelerating voltage of 15 kV,the fracture surface of sample was coated with a thin layer of gold before analysis.The UV-Vis diffuse reflection spectra (DRS) were determined byaShimadzu UV-2501PC UV-Vis spectrophotometer,equipped with an integration sphere attachment for their diffuse reflectance in the range of 200~800 nm.BaSO4was used as the standard in all measurements.Photoluminescence (PL)emission spectra were recorded using a Hitachi F-4500.The excitation wavelength was 250 nm.

    1.3 Evaluation of photocatalytic activity

    The photocatalytic performance of the obtained samples were evaluated by photocatalytic water splitting hydrogen-evolution under UV irradiation and carried out in a photocatalytic reaction system(CELHX300,Beijing Chinese Education Au-Light Co.,Ltd.).For photocatalytic hydrogen production,0.1 g catalyst was well dispersed into deionized water(20 mL)placed in the photocatalytic reaction system,then 80 mL Na2S (0.1 mol·L-1)and Na2SO3(0.04 mol·L-1)aqueous solution was added into the suspension as sacrificial agent.After purge the whole system with N2for 30 min,the suspension was illuminated under a 280 W Hg-lamp (λ>250 nm)continuously and kept stirring.The obtained gas was quantitative analyzed by online analysis with a gas chromatograph (GC9800,Shanghai Kechuang Technology Co.,Ltd.).

    2 Results and discussion

    2.1 XRD analysis

    The XRD patterns of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content were shown in Fig.1.As shown,the X-ray diffraction patterns of NaTaO3-RGO coincide well with that of pure NaTaO3.The peaks at 2θ of 22.85°,32.55°,40.23°,46.67°,52.58°and 58.40°are well assigned to the (020),(200),(022),(202),(222)and (123)crystal planes of cubic NaTaO3,respectively.Noticeably,the peaks for RGO are not observed in the diffraction patterns of NaTaO3-RGO and Ag-NaTaO3-RGO composites,which may be due to the low amount and relatively low diffraction intensity of RGO.However,the presence of RGO could be discerned by SEM and TEM,as discussed later.Moreover,the XRD patterns of Ag-NaTaO3-RGO with different Ag content are similar and no signal about silver can be detected.This may be due to the fact that the Ag nanoparticles were dispersedly loaded on the surface of the NaTaO3and RGO.

    Fig.1 XRD patterns of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content

    2.2 XPS analysis

    To further probe the chemical structure of the asprepared samples,the XPS measurementswere conducted.In Fig.2a,the XPS survey spectrum of 0.2Ag-NaTaO3-RGO display the presence of C,N,O,Na,Ag and Ta elements.As shown in Fig.2b,the C1s spectrum of 0.2Ag-NaTaO3-RGO could be deconvoluted into two peaks.The peak at 284.78 and 288.29 eV could be attributed to the C-C and oxygen functional groups C-OH.This indicates that most of GO has been reduced to RGO.Two peaks in Fig.2c centered at 367.6 and 373.8 eV could be attributed to Ag3d5/2and Ag3d3/2,respectively.And the Ta4f peak for 0.2Ag-NaTaO3-RGO was shown in Fig.2d,with the value of about 26.1 eV,confirming that Ta exists mainly in the Ta5+chemical state on the sample surface.

    Fig.2 XPS spectra of 0.2Ag-NaTaO3-RGO:(a)Survey,(b)C1s,(c)Ag3d,and (d)Ta4f

    2.3 Microtopography analysis

    Fig.3a is the SEM image of 0.2Ag-NaTaO3-RGO.As shown,the layered structure of the stacked RGO sheets can be clearly seen.The NaTaO3particles and the Ag nanoparticles are well distributed on RGO nanosheets.The average size of NaTaO3and Ag nanoparticles are about 50~100 nm and 10 nm,respectively.Obviously,the average size of NaTaO3is much bigger than that of Ag,which is consistent with the result of TEM.Fig.3b and Fig.3c showed the TEM imagesofNaTaO3-RGO and 0.2Ag-NaTaO3-RGO composite.As shown in Fig.3b,the light-gray thin RGO sheets are observed,and NaTaO3particles are uniformly distributed on the graphene nanosheets.Fig.3c furtherrevealsthata large numberofAg nanoparticles spread uniformly and densely on the surface of graphene,which is consistent with the observation from SEM image.The HRTEM image in Fig.3d reveals the well-defined lattice fringes of NaTaO3and Ag nanoparticle with the spacings of 0.388 and 0.234 nm,corresponding to the (100)and(111)planes of NaTaO3and Ag,respectively.

    Fig.3 (a)SEM image of 0.2Ag-NaTaO3-RGO,(b)TEM image of NaTaO3-RGO,(c)TEM image of 0.2Ag-NaTaO3-RGO,(d)HRTEM image of 0.2Ag-NaTaO3-RGO

    2.4 Spectra analyses

    Fig.4 exhibitsthe UV-Visdiffuse reflection spectra of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content.The absorption edge of NaTaO3is at around 300 nm and which indicates thatNaTaO3hardly has photoresponse property under visible light,which is due to the intrinsic large band gap.Compared with pure NaTaO3,a red-shift of the absorption edge is observed for the NaTaO3-RGO composite,which may be attributed to the bonding effect between GO and NaTaO3.Moreover RGO loading enhances its light absorption over the entire range of wavelength,this is a typical behavior of graphene as previously reported[30].Obviously,with the increase of Ag content,the absorption intensity of Ag-NaTaO3-RGO composites over visible light region increases.Such enhanced absorption in the visible light region may be attributed to the surface plasmon resonance (SPR)effect of Ag nanoparticles[11,31].However,the influence of Ag nanoparticles on the band gap of NaTaO3is almost negligible.So the increase of the visible light absorbance is not the main factor for the improvement of the photocatalytic activity.

    Fig.4 UV-Vis DRS spectra of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGOwith different Ag content

    PL is an effective strategy to characterize the separation and recombination rates of charge carriers of a photocatalyst.As shown in Fig.5,the PL spectra of NaTaO3exhibit a strong emission peaks centered at around 400 nm,while Ag-NaTaO3and NaTaO3-RGO exhibit a weak fluorescence emission spectrum peak,implying that the photogenerated electrons and holes have better separation in Ag-NaTaO3and NaTaO3-RGO composites.This result reveals that Ag and RGO play an important role in suppressing the recombination of the photogenerated carriers,which efficiently prevented the recombination of electrons and holes.In the case of 0.2Ag-NaTaO3-RGO,the photoluminescence intensity of peak at 400 nm further reduced.The results further indicat that the effect of Ag nanoparticles is quite similar to that of RGO,namely Ag can obviously enhance the separation of electrons and holes[10].

    Fig.5 PL results of the NaTaO3,Ag-NaTaO3,NaTaO3-RGO and 0.2Ag-NaTaO3-RGO composites

    2.5 Photocatalytic activity analysis

    The photocatalytic activities of the samples were evaluated by photocatalytic water splitting hydrogenevolution in a Na2S/Na2SO3aqueous solution under UV irradiation.As shown in Fig.6,the hydrogen production rate of NaTaO3is about 70 μmol·h-1.The obvious increased of hydrogen production rate over Ag-NaTaO3and NaTaO3-RGO (around 200.4 and 267.4 μmol·h-1)was observed.Obviously,all the Ag-NaTaO3-RGO composites have much higher hydrogen production rate under the identical conditions.Among all the Ag-NaTaO3-RGO samples,the as-prepared 0.2Ag-NaTaO3-RGO exhibits the highest H2production rate (395 μmol·h-1)which is around 5.64,1.97 and 1.48 times higher than that of pure NaTaO3,Ag-NaTaO3and NaTaO3-RGO.We expect that the following factors may be responsible for the much greater photocatalytic activities of 0.2Ag-NaTaO3-RGO composites:(i)the efficient separation of electron-hole pairs originated from the excellent electron transfer property of graphene. (ii)the further improvement of electron-hole separation rate due to Ag nanoparticle acted as electron traps. (iii)the enhancement of light absorption over the entire range of wavelengths with the introduction of graphene[32-33].In conclusion,graphene and Ag nanoparticles play very important roles for the improvement of photocatalytic activity of Ag-NaTaO3-RGO composite.

    Fig.6 Photocatalytic H2production curve over various samples

    Fig.7 Illustration for effects of RGO and Ag particles on the photocatalytic activity of Ag-NaTaO3-RGO composite under UVvisible light irradiation

    From all experimental results mentioned above,a possible reaction mechanism was tentatively illustrated in Fig.7.Under ultraviolet illumination,the VB electrons of NaTaO3are excited to the CB,creating holes in the VB.The holes react with H2O to form O2,and the photogenerated electrons in the CB of NaTaO3transferr to graphene sheets since the redox potential of graphene/graphene-is lower than that of the CB of NaTaO3.During the process,graphene can greatly enhance separation rate of electron-hole pairs due to its excellent electron transfer property,and Ag nanoparticle can further improve the electron-hole separation rate because it can act as electron traps.As a result,the Ag-NaTaO3-RGO composites enhance photocatalytic H2production activity as the recombination of photo-generated electron-hole pairs can be suppressed effectively due to the introduction of graphene and Ag nanoparticles.

    3 Conclusions

    In summary,we have rationally designed a ternary composite photocatalysts consisting of Ag,RGO and NaTaO3.InthisuniqueternaryAg-NaTaO3-RGO composite,RGO promotes the electron transfer from the CB of NaTaO3to graphene and simultaneously enhances the light absorption over the entire range of wavelengths.At the same time,Ag nanoparticles act as electron traps which can further improve the separation of electron-hole pairs.As a result,Ag-NaTaO3-RGO enhancesphotocatalytic activity for water splitting hydrogen-evolution.This endeavor paves the way to build reliable triple-composites photocatalysts for photocatalysis applications.

    [1]Wang X,Maeda K,Thomas A,et al.Nat.Mater.,2009,8(1):76-80

    [2]Ou H H,Lin L H,Zheng Y,et al.Adv.Mater.,2017,29(22):1700008

    [3]Yu J G,Qi L F,Jaroniec M.J.Phys.Chem.C,2010,114(30):13118-13125

    [4]Liu J,Liu Y,Liu N Y,et al.Science,2015,347(6225):970-974

    [5]Godin R,Wang Y,Zwijnenburg M A,et al.J.Am.Chem.Soc.,2017,139(14):5216-5224

    [6]Kato H,Kudo A.J.Phys.Chem.B,2001,105(19):4285-4292

    [7]Li X,Zang J L.J.Phys.Chem.C,2009,113(45):19411-19418

    [8]G?mpel D,Tahir M N,Panth?fer M,et al.J.Mater.Chem.A,2014,2(21):8033-8040

    [9]ZHANG Wei(章薇),TAN Guo-Qiang(談國強),XIA Ao(夏傲),et al.J.Chin.Ceram Soc.(硅酸鹽學(xué)報),2011,39(11):1724-1728

    [10]Xu D,Chen M,Song S,et al.CrystEngComm.,2014,16(7):1384-1388

    [11]Xu D B,Yang S B,Jin Y,et al.Langmuir,2015,31(35):9694-9699

    [12]Kato H,Asakura K,Kudo A.J.Am.Chem.Soc.,2003,125(10):3082-3089

    [13]Kudo A,Niishiro R,Iwase A,et al.Chem.Phys.,2007,339(1/2/3):104-110

    [14]CUI Hua-Nan(崔華楠),SHI Jian-Ying(石建英),LIU Hong(劉鴻).Chin.J.Catal.(催化學(xué)報),2015,36(7):969-974

    [15]Deng Y Y,Chen Y J,Chen B G,et al.J.Alloys Compd.,2013,559:116-122

    [16]Reddy K H,Martha S,Parida K M.RSC Adv.,2012,2(25):9423-9436

    [17]Meyer T,Priebe J B,da Silva R O,et al.Chem.Mater.,2014,26(16):4705-4711

    [18]Geim A K.Science,2009,324(5934):1530-1534

    [19]Bai X J,Sun C P,Liu D,et al.Appl.Catal.,B,2017,204:11-20

    [20]Stankovich S,Dikin D A,Dommett G H,et al.Nature,2006,442(7100):282-286

    [21]Li B X,Liu T X,Wang Y F,et al.J.Colloid Interface Sci.,2012,377(1):114-121

    [22]Li Q,Guo B D,Yu J G,et al.J.Am.Chem.Soc.,2011,133(28):10878-10884

    [23]LI Juan(李娟),ZHAO An-Ting(趙安婷),SHAO Jiao-Jing(邵姣婧),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2017,33(7):1231-1235

    [24]Zhu B L,Lin B Z,Zhou Y,et al.J.Mater.Chem.A,2014,2(11):3819-3827

    [25]Hou Y,Wen Z H,Cui S M,et al.Adv.Mater.,2013,25(43):6291-6297

    [26]LI Xiao-Fen(李曉芬),CHEN Meng-Ying(陳夢瑩),LIANG Shi-Jing(梁詩景),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2016,32(11):1987-1994

    [27]Yu J G,Xiong J F,Cheng B,et al.Appl.Catal.,B,2005,60(3/4):211-221

    [28]William S,Hummers J R,Offeman R E.J.Am.Chem.Soc.,1958,80(6):1339-1339

    [29]HUANG Lang-Huan (黃 浪歡),CHAN Qi-Zhong (產(chǎn) 啟 中),ZHANG Bing (張斌),et al.Chin.J.Catal.(催化學(xué)報),2011,32(11):1822-1830

    [30]Xiang Q J,Yu J G,Jaroniec M.J.Am.Chem.Soc.,2012,134(15):6575-6578

    [31]Xu D B,Liu K L,Shi W D,et al.Ceram.Int.,2015,41(3):4444-4451

    [32]Xiang Q J,Yu J G,Jaroniec M.Chem.Soc.Rev.,2012,41(2):782-796

    [33]Hermann J M,Tahiri H,Ait-Ichou Y,et al.Appl.Catal.,B,1997,13(3/4):219-228

    猜你喜歡
    張斌制氫光催化
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    一路有你都是歌
    《花之戀》
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    制氫工藝技術(shù)比較
    可見光光催化降解在有機污染防治中的應(yīng)用
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    Nd/ZnO制備及其光催化性能研究
    色播亚洲综合网| 欧美少妇被猛烈插入视频| 日韩电影二区| 色视频www国产| 亚洲综合色惰| 亚洲国产精品999| 国产欧美日韩一区二区三区在线 | 欧美3d第一页| 国产黄片视频在线免费观看| 高清日韩中文字幕在线| 免费观看av网站的网址| 夫妻性生交免费视频一级片| 精品亚洲乱码少妇综合久久| 18禁在线播放成人免费| 在线观看免费高清a一片| 五月玫瑰六月丁香| 精品国产一区二区三区久久久樱花 | 丰满少妇做爰视频| 亚洲精品成人久久久久久| 国产精品秋霞免费鲁丝片| 街头女战士在线观看网站| 国产精品成人在线| 久久热精品热| av在线老鸭窝| 啦啦啦啦在线视频资源| 精品少妇久久久久久888优播| 蜜臀久久99精品久久宅男| 久久亚洲国产成人精品v| 久久久久久久国产电影| 日韩强制内射视频| 精品国产乱码久久久久久小说| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| 国产成人精品婷婷| 午夜福利在线在线| 在线a可以看的网站| 美女视频免费永久观看网站| 大片免费播放器 马上看| 听说在线观看完整版免费高清| 在线看a的网站| 一级毛片aaaaaa免费看小| 国产乱人偷精品视频| 在线观看免费高清a一片| 97人妻精品一区二区三区麻豆| 日产精品乱码卡一卡2卡三| av在线亚洲专区| 少妇 在线观看| 日本欧美国产在线视频| 午夜激情久久久久久久| 在线看a的网站| 中文字幕av成人在线电影| 国产免费又黄又爽又色| 国产老妇伦熟女老妇高清| 一本一本综合久久| 精华霜和精华液先用哪个| 日日摸夜夜添夜夜添av毛片| 99热这里只有是精品50| 精品人妻熟女av久视频| 久久人人爽人人爽人人片va| 97超视频在线观看视频| 交换朋友夫妻互换小说| 日韩视频在线欧美| 嘟嘟电影网在线观看| 在线 av 中文字幕| 高清av免费在线| 国产极品天堂在线| 身体一侧抽搐| 成人综合一区亚洲| 最近手机中文字幕大全| 亚洲综合精品二区| 中国三级夫妇交换| 91久久精品电影网| 日本黄大片高清| 亚洲三级黄色毛片| 久久人人爽人人片av| 老司机影院成人| 亚洲国产欧美在线一区| 精品人妻偷拍中文字幕| 交换朋友夫妻互换小说| 99久久精品一区二区三区| 一级黄片播放器| 亚洲成人久久爱视频| 欧美少妇被猛烈插入视频| 国产精品成人在线| 亚洲激情五月婷婷啪啪| 成人午夜精彩视频在线观看| 一本一本综合久久| 大香蕉97超碰在线| 亚洲内射少妇av| 国产极品天堂在线| 午夜福利在线在线| 麻豆成人av视频| 亚洲国产精品国产精品| 午夜视频国产福利| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 少妇人妻久久综合中文| 菩萨蛮人人尽说江南好唐韦庄| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | 熟妇人妻不卡中文字幕| 亚洲欧美一区二区三区国产| 男女国产视频网站| 五月玫瑰六月丁香| 久久精品国产自在天天线| 亚洲经典国产精华液单| 欧美老熟妇乱子伦牲交| 免费黄频网站在线观看国产| 日韩亚洲欧美综合| 丰满少妇做爰视频| av在线天堂中文字幕| 国产真实伦视频高清在线观看| 亚洲av欧美aⅴ国产| 国产成人精品福利久久| 乱码一卡2卡4卡精品| 中文在线观看免费www的网站| 婷婷色av中文字幕| 国产在线一区二区三区精| 在线精品无人区一区二区三 | 精品久久久噜噜| 国产高清三级在线| 51国产日韩欧美| 女人被狂操c到高潮| 色播亚洲综合网| 成人国产av品久久久| 在线精品无人区一区二区三 | 免费在线观看成人毛片| 精品一区二区三区视频在线| 99九九线精品视频在线观看视频| 国产精品av视频在线免费观看| 成人国产av品久久久| 国产欧美亚洲国产| 午夜福利网站1000一区二区三区| 另类亚洲欧美激情| 小蜜桃在线观看免费完整版高清| 蜜桃亚洲精品一区二区三区| 日韩免费高清中文字幕av| 国产美女午夜福利| 观看美女的网站| 69人妻影院| 久久人人爽人人爽人人片va| 少妇丰满av| 色吧在线观看| 看非洲黑人一级黄片| 亚洲欧美日韩无卡精品| 肉色欧美久久久久久久蜜桃 | 男男h啪啪无遮挡| 亚洲精品国产成人久久av| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 婷婷色综合www| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| av福利片在线观看| 国内揄拍国产精品人妻在线| 最近中文字幕高清免费大全6| 91在线精品国自产拍蜜月| 一边亲一边摸免费视频| 亚洲av一区综合| 18禁裸乳无遮挡动漫免费视频 | 亚洲成人久久爱视频| 伊人久久国产一区二区| 秋霞在线观看毛片| 精品亚洲乱码少妇综合久久| 在线免费观看不下载黄p国产| 日韩亚洲欧美综合| 男人和女人高潮做爰伦理| 嫩草影院新地址| 国产片特级美女逼逼视频| 欧美激情在线99| 久久久久网色| 亚洲国产精品成人综合色| 国产高清国产精品国产三级 | 在线观看免费高清a一片| 韩国高清视频一区二区三区| 高清欧美精品videossex| 国产精品99久久99久久久不卡 | 超碰97精品在线观看| 成年女人在线观看亚洲视频 | 中文字幕av成人在线电影| 亚洲美女视频黄频| 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 一区二区三区精品91| 精品国产三级普通话版| 午夜日本视频在线| 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久久电影| 亚洲精品成人久久久久久| 日韩一本色道免费dvd| 男人舔奶头视频| 国产午夜福利久久久久久| 免费av不卡在线播放| 两个人的视频大全免费| 亚洲色图av天堂| 汤姆久久久久久久影院中文字幕| 欧美三级亚洲精品| 免费看a级黄色片| 国产成人精品久久久久久| 国产成人精品久久久久久| 免费观看在线日韩| 成人免费观看视频高清| 国产女主播在线喷水免费视频网站| 国产精品.久久久| 黄片无遮挡物在线观看| 久久热精品热| 国产男人的电影天堂91| eeuss影院久久| 久久人人爽av亚洲精品天堂 | 偷拍熟女少妇极品色| xxx大片免费视频| 五月玫瑰六月丁香| 精品久久国产蜜桃| 国产精品秋霞免费鲁丝片| 搡老乐熟女国产| 啦啦啦在线观看免费高清www| 亚洲aⅴ乱码一区二区在线播放| av在线天堂中文字幕| 丰满少妇做爰视频| 六月丁香七月| 美女内射精品一级片tv| 精品久久久精品久久久| 婷婷色综合www| 一级黄片播放器| 色视频www国产| 伊人久久国产一区二区| 亚洲国产精品国产精品| 尾随美女入室| 日日摸夜夜添夜夜添av毛片| 肉色欧美久久久久久久蜜桃 | 久久精品久久精品一区二区三区| 午夜免费鲁丝| 日韩亚洲欧美综合| 老司机影院成人| 乱码一卡2卡4卡精品| 国产亚洲av片在线观看秒播厂| 国产精品.久久久| 女人久久www免费人成看片| 街头女战士在线观看网站| av在线观看视频网站免费| 久久久国产一区二区| 亚洲内射少妇av| 丝袜脚勾引网站| 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 老师上课跳d突然被开到最大视频| 色网站视频免费| 99视频精品全部免费 在线| 99久久精品热视频| 免费不卡的大黄色大毛片视频在线观看| 在线观看国产h片| 在线观看国产h片| 最近手机中文字幕大全| 内地一区二区视频在线| 日本三级黄在线观看| 你懂的网址亚洲精品在线观看| 亚洲国产高清在线一区二区三| 精品久久久久久电影网| 成人国产av品久久久| 免费高清在线观看视频在线观看| 久久精品久久精品一区二区三区| 国产成人a∨麻豆精品| 秋霞在线观看毛片| 欧美丝袜亚洲另类| 午夜精品一区二区三区免费看| 日韩欧美一区视频在线观看 | 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 欧美日韩亚洲高清精品| 在线a可以看的网站| 日本免费在线观看一区| 国产一区有黄有色的免费视频| 国产淫语在线视频| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 午夜福利在线在线| 国产高清国产精品国产三级 | 亚洲四区av| 熟女人妻精品中文字幕| 国产在线男女| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 精品国产乱码久久久久久小说| 精品久久久久久电影网| 一级毛片电影观看| 综合色av麻豆| 男人狂女人下面高潮的视频| 别揉我奶头 嗯啊视频| 肉色欧美久久久久久久蜜桃 | 精品久久久精品久久久| 丝袜喷水一区| 日韩欧美一区视频在线观看 | 禁无遮挡网站| 亚洲精品第二区| 乱码一卡2卡4卡精品| 国产在线男女| 一级毛片黄色毛片免费观看视频| 国产极品天堂在线| 九九久久精品国产亚洲av麻豆| 97在线视频观看| 日本爱情动作片www.在线观看| 毛片女人毛片| 少妇 在线观看| 久久精品国产鲁丝片午夜精品| 联通29元200g的流量卡| 国产成人一区二区在线| .国产精品久久| 亚洲真实伦在线观看| 九九久久精品国产亚洲av麻豆| 深爱激情五月婷婷| 天美传媒精品一区二区| 亚洲欧美日韩另类电影网站 | 听说在线观看完整版免费高清| 亚洲欧美日韩卡通动漫| 99久久精品国产国产毛片| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 在线观看免费高清a一片| 国产黄色视频一区二区在线观看| 亚洲在线观看片| 1000部很黄的大片| 又粗又硬又长又爽又黄的视频| 精品久久久精品久久久| 新久久久久国产一级毛片| 欧美区成人在线视频| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 少妇的逼水好多| 一区二区三区精品91| 天美传媒精品一区二区| 美女视频免费永久观看网站| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 91精品伊人久久大香线蕉| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 青春草亚洲视频在线观看| 天天躁日日操中文字幕| 最近最新中文字幕大全电影3| 人人妻人人澡人人爽人人夜夜| 免费电影在线观看免费观看| 男插女下体视频免费在线播放| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 色综合色国产| 中国三级夫妇交换| 热99国产精品久久久久久7| 日韩电影二区| 欧美精品一区二区大全| 视频中文字幕在线观看| 欧美 日韩 精品 国产| 最近中文字幕2019免费版| 亚洲内射少妇av| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频 | 性插视频无遮挡在线免费观看| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 日韩电影二区| av播播在线观看一区| 女人十人毛片免费观看3o分钟| 亚洲三级黄色毛片| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 直男gayav资源| 两个人的视频大全免费| 欧美性感艳星| 成人亚洲精品av一区二区| 国产精品一区二区性色av| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 22中文网久久字幕| 日本av手机在线免费观看| 欧美成人精品欧美一级黄| 三级经典国产精品| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 成人亚洲精品一区在线观看 | 肉色欧美久久久久久久蜜桃 | tube8黄色片| 成人毛片60女人毛片免费| 欧美一区二区亚洲| 又爽又黄a免费视频| 亚洲av日韩在线播放| 国产高清国产精品国产三级 | 高清毛片免费看| 国产精品久久久久久久电影| 97在线视频观看| 午夜精品国产一区二区电影 | 在线观看三级黄色| 免费在线观看成人毛片| 伦精品一区二区三区| 久久久成人免费电影| 亚洲精品日本国产第一区| 成人高潮视频无遮挡免费网站| 精品久久久久久久久av| 久热久热在线精品观看| 亚洲成色77777| 日韩三级伦理在线观看| 青春草国产在线视频| 久久女婷五月综合色啪小说 | 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 日本与韩国留学比较| videossex国产| 国产又色又爽无遮挡免| av免费观看日本| 午夜福利视频1000在线观看| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 久久久久网色| 欧美最新免费一区二区三区| 国产高清国产精品国产三级 | av线在线观看网站| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 精品一区二区三卡| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 久久精品国产亚洲av涩爱| 亚洲综合色惰| 51国产日韩欧美| 国产老妇女一区| 久久ye,这里只有精品| 高清在线视频一区二区三区| 国产极品天堂在线| 最后的刺客免费高清国语| 97超碰精品成人国产| www.色视频.com| 久久精品夜色国产| 在线a可以看的网站| 深爱激情五月婷婷| 熟妇人妻不卡中文字幕| 日韩av不卡免费在线播放| 欧美成人a在线观看| 99re6热这里在线精品视频| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| 人人妻人人澡人人爽人人夜夜| 我要看日韩黄色一级片| 高清毛片免费看| 亚洲精品日韩在线中文字幕| 国产在视频线精品| 黄色配什么色好看| 国产成人福利小说| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 男插女下体视频免费在线播放| 久久久久久久久久成人| 大片电影免费在线观看免费| 亚洲国产精品国产精品| 2021天堂中文幕一二区在线观| 精品久久久精品久久久| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久大尺度免费视频| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 国产精品国产av在线观看| 亚洲成人精品中文字幕电影| 狂野欧美白嫩少妇大欣赏| 如何舔出高潮| 两个人的视频大全免费| 能在线免费看毛片的网站| 一区二区三区四区激情视频| 中文字幕免费在线视频6| 天堂中文最新版在线下载 | 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 亚洲av电影在线观看一区二区三区 | 女人被狂操c到高潮| 三级国产精品欧美在线观看| 97热精品久久久久久| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 久久精品夜色国产| 精品国产露脸久久av麻豆| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 日韩中字成人| 建设人人有责人人尽责人人享有的 | 丝袜美腿在线中文| 18+在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 中文字幕亚洲精品专区| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 岛国毛片在线播放| 综合色丁香网| 人妻 亚洲 视频| 免费电影在线观看免费观看| 国产一级毛片在线| 边亲边吃奶的免费视频| 一区二区三区四区激情视频| 久久亚洲国产成人精品v| xxx大片免费视频| 蜜桃久久精品国产亚洲av| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 18+在线观看网站| 国产黄a三级三级三级人| 免费少妇av软件| 国产亚洲午夜精品一区二区久久 | 久久精品综合一区二区三区| 18+在线观看网站| 搡老乐熟女国产| 99re6热这里在线精品视频| 亚洲精品久久午夜乱码| 99久久精品一区二区三区| 少妇人妻久久综合中文| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 亚洲国产色片| 日本黄大片高清| 久久国内精品自在自线图片| 色综合色国产| 国产精品女同一区二区软件| 久久久欧美国产精品| 九色成人免费人妻av| 天堂网av新在线| 精品午夜福利在线看| 亚洲不卡免费看| 97人妻精品一区二区三区麻豆| 97精品久久久久久久久久精品| 男女边摸边吃奶| 亚洲精品日本国产第一区| 国产高清不卡午夜福利| av国产精品久久久久影院| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 成人国产麻豆网| 亚洲久久久久久中文字幕| av免费观看日本| 如何舔出高潮| 美女主播在线视频| 热re99久久精品国产66热6| 一个人看的www免费观看视频| 亚洲精品久久午夜乱码| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| av免费观看日本| 日韩 亚洲 欧美在线| 国产精品久久久久久久电影| 亚洲精品久久午夜乱码| 大又大粗又爽又黄少妇毛片口| 一本色道久久久久久精品综合| 蜜桃亚洲精品一区二区三区| 国产永久视频网站| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 舔av片在线| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 国产精品.久久久| 日本av手机在线免费观看| 日韩欧美一区视频在线观看 | 免费观看a级毛片全部| 青春草国产在线视频| 亚洲激情五月婷婷啪啪| 毛片女人毛片| 欧美日韩一区二区视频在线观看视频在线 | 人体艺术视频欧美日本| 久久6这里有精品| 中文资源天堂在线| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 国内精品美女久久久久久| 在线 av 中文字幕| 一级毛片黄色毛片免费观看视频| 一个人观看的视频www高清免费观看| 人妻一区二区av| 麻豆国产97在线/欧美| 成年女人在线观看亚洲视频 | 亚洲人与动物交配视频| 天堂中文最新版在线下载 | 久久久久国产精品人妻一区二区| 1000部很黄的大片| 国产亚洲精品久久久com| 成人亚洲精品一区在线观看 | 波野结衣二区三区在线| 国模一区二区三区四区视频| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 日韩伦理黄色片| 男人狂女人下面高潮的视频| 中文欧美无线码| 免费在线观看成人毛片| 国产极品天堂在线| 简卡轻食公司| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 亚洲,一卡二卡三卡| 欧美激情国产日韩精品一区| 午夜免费鲁丝| 国产一区二区三区综合在线观看 | 91久久精品国产一区二区成人| 91狼人影院| 欧美性感艳星| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 亚洲国产精品999|