李 峰,薛長勇
(解放軍總醫(yī)院營養(yǎng)科,北京 100853)
阿爾茨海默病(AD)是一種以記憶和認知損害為特點的神經(jīng)退行性疾病[1],其病理表現(xiàn)主要包括β淀粉樣蛋白斑塊(AP)和神經(jīng)纖維纏結(jié)(NFT)等[2]。隨著世界人口老齡化增加,AD的發(fā)病率逐年增大,2015年WHO的數(shù)據(jù)顯示,全球每年新增癡呆患者人數(shù)接近770萬[3]。我國現(xiàn)有AD患者約300萬~400萬,大樣本流行病學(xué)調(diào)查我國55歲AD患病率為2.57%、65歲以上為4.6%。不同脂肪酸對于腦神經(jīng)組織和認知功能的影響歷來是研究的熱點,而老齡化本身就會引起脂肪重新分布,產(chǎn)生脂毒性,導(dǎo)致慢性代謝疾病,并且長期攝入飽和脂肪酸或反式不飽和脂肪酸又是誘發(fā)AD的危險因素[4],而中鏈脂肪酸(MCFA)、ω-3多不飽和脂肪酸(ω-3PUFAs)和單不飽和脂肪酸則是AD的保護因素,尤其是MCFA和ω-3PUFAs如α-亞麻酸(ALA)對于維持大腦神經(jīng)元的作用,積累了大量詳實可靠的研究證據(jù),現(xiàn)綜述如下。
MCFA主要是指由6~12個碳原子構(gòu)成的脂肪酸,主要來源于母乳、牛奶及其制品、棕櫚仁油和椰子油等,最常見的是辛酸和癸酸。MCFA在食物中主要以中鏈甘油三酯(MCT)的形式存在。
研究顯示,MCFA具有快速被氧化、減少體脂肪積累、改善糖代謝和脂代謝的作用。目前,MCT已經(jīng)作為營養(yǎng)支持的重要組成之一,主要應(yīng)用于癲癇癥、胰腺功能不全、脂質(zhì)吸收障礙、淋巴運輸系統(tǒng)障礙及長鏈脂肪酸氧化缺陷的患者。
1.3.1 生酮效應(yīng)和替代性能源作用 MCFA能經(jīng)門靜脈直接進入肝臟,氧化代謝后一般會產(chǎn)生3種酮體:β-羥丁酸、乙酰乙酸和丙酮,即具有生酮效應(yīng)。和其他經(jīng)典生酮飲食(ketogenic diet,KD)、低血糖指數(shù)和改良Atkins 飲食一樣,富含MCT或MCFA的飲食也能用于難治性癲癇的治療[5]。雖然大多數(shù)研究只是報道了酮體對大腦具有短期保護作用,但是維持中度酮血癥(2~5mM)持續(xù)1~3年治療兒童難治性癲癇的實踐,則佐證了輕至中度酮血癥不僅對大腦有益,而且長期看可耐受性和有效性亦能保證[6]。近年來,生酮飲食可改善AD的作用引起普遍關(guān)注,有研究指出,生酮飲食可以減少AD模型小鼠Aβ40、Aβ42的含量[7],進而指出可能機制是因為AD患者神經(jīng)元獲取、轉(zhuǎn)運葡萄糖的能力下降,特別是在疾病早期,而酮體被證明是一種優(yōu)秀的替代性能源[8-9]。由于2篇重要臨床研究的發(fā)表[10-11],一種MCT產(chǎn)品AC-1202更是被FDA 批準作為一種處方類醫(yī)療食品,用于輕至中度的AD代謝衰退過程的臨床營養(yǎng)治療中[12]。Rebello等[13]通過觀察6個輕度認知功能障礙(MCI)AD患者也進一步證實,連續(xù)24w每天攝入56 g MCT,與安慰劑組相比,可顯著提高患者酮體水平并改善記憶力。
1.3.2 促進內(nèi)源性去甲腎上腺素(norepinephrine,NE)的生成 國內(nèi)學(xué)者指出,MCT可以顯著升高體內(nèi)NE水平,促進脂肪分解[14]。還有研究發(fā)現(xiàn),大腦藍斑神經(jīng)元缺失引起NE缺失,會增加AD動物模型的淀粉樣蛋白(Aβ)斑沉積,NE能系統(tǒng)失調(diào)、NE的下降與認知功能損害有關(guān)[15]。而予以5xF-AD模型小鼠左旋多巴L-DOPS(一種NE藥物前體),予以3xTg-AD模型小鼠阿樸嗎啡(一種多巴胺能激動劑)均能顯著改善其認知功能[16]。Heneka等[17]認為,NE通過調(diào)節(jié)小膠質(zhì)細胞功能而發(fā)揮了抑制神經(jīng)炎癥的作用。而Yang等[18]則認為,NE可以通過激活β腎上腺素受體和人THP-1巨噬細胞cAMP/PKA途徑,有區(qū)別地調(diào)節(jié)先天炎癥反應(yīng)。還有學(xué)者認為,NE是通過激活原肌球蛋白相關(guān)激酶B(TrkB)來保護大腦免受Aβ的毒性作用[19]。因此,NE的神經(jīng)保護效應(yīng)在調(diào)節(jié)認知方面發(fā)揮了關(guān)鍵作用[20],以NE為目標進行AD的治療有很廣闊的應(yīng)用前景[21],而MCT作為一種可升高體內(nèi)內(nèi)源性NE的天然油脂,具有很重要的應(yīng)用價值。
1.3.3 抗氧化等作用 MCT肝內(nèi)代謝能產(chǎn)生酮體,而作為酮體之一的[-羥丁酸還扮演了一種弱 HDACi(組蛋白脫乙酰化酶抑制劑]的角色,可能發(fā)揮了保護老化大腦免受氧化應(yīng)激損傷的作用[8]。而且還有研究證實[22],富含MCT的椰子油可以提高小鼠的大腦抗氧化應(yīng)激能力,降低大腦5-羥色胺水平。國外有學(xué)者指出,代謝改變、炎癥和胰島素抵抗是糖尿病和AD的共同病理特征[23]。而胰島素抵抗等改變會影響海馬的可塑性,從而降低學(xué)習(xí)記憶能力[4]。有學(xué)者則指出,MCFA可以改善SD大鼠的胰島素抵抗[24],但也有學(xué)者持相反觀點[25],這一機制尚需進一步研究證實。
ALA是人體必需的不飽和脂肪酸之一,主要來源是植物,特別是紫蘇籽和亞麻籽等最為豐富,其他居民常用植物油中則以大豆油和菜籽油含量較高。這對于海洋資源較為匱乏、無法獲取充足DHA的內(nèi)陸地區(qū)而言,植物來源的ALA具有極重要的增加ω-3PUFAs攝入的意義。
ALA是所有ω-3PUFAs的前體物質(zhì),可在人體內(nèi)合成二十碳五烯酸(EPA),再經(jīng)過(氧化作用轉(zhuǎn)換成二十二碳六烯酸(DHA)[26]。而EPA則是體內(nèi)三烯前列腺素的前體物質(zhì),DHA則是大腦、視網(wǎng)膜等神經(jīng)系統(tǒng)磷脂的主要成分,它們對人體生長發(fā)育和正常代謝起重要作用。ALA在人體內(nèi)可增加大部分組織中DHA和EPA水平,從而發(fā)揮與DHA和EPA相似的生理功能。但是ALA在人體內(nèi)轉(zhuǎn)化為EPA和DHA是一條受限制的代謝途徑,它轉(zhuǎn)化為EPA約為7.2%,轉(zhuǎn)化為DHA的只有0.12%左右[27]。但加拿大多倫多大學(xué)研究大鼠的大腦對DHA的需要量與ALA合成DHA的量之間的關(guān)系中發(fā)現(xiàn),ALA合成DHA 的速率是大腦吸收DHA速率的3倍,這提示了雖然從ALA合成的DHA的量有限,但可能尚能滿足大腦需求[28]。
早在20世紀,就有研究指出AD患者膽固醇酯類含有的ω-3PUFAs顯著減少,特別是ALA下降更明顯。后來有學(xué)者比較了AD患者、無癥狀A(yù)D患者和健康成人3組人群發(fā)現(xiàn),AD患者大腦中ALA水平明顯下降,且AD患者<無癥狀A(yù)D患者<對照組[29]。更有研究證實,紅細胞膜上的ALA與韓國老人患有輕度老年癡呆的風(fēng)險有關(guān),補充ALA可以降低癡呆發(fā)生的風(fēng)險[30]。還有研究用氣相色譜法測定了935名意大利老人的血漿脂肪酸含量,發(fā)現(xiàn)癡呆與ω-3 PUFA濃度降低有關(guān),特別是ALA濃度下降更為顯著[31]。最近日本的一項研究也得出了一致結(jié)論[32]。因此,ALA水平是預(yù)測老年人認知受損的良好指標[32-33],在AD的防治過程中具有重要應(yīng)用價值。
2.3.1 ALA具有較好的生酮作用 酮體作為葡萄糖的替代性能源,能在AD時大腦利用葡萄糖障礙情況下,為大腦神經(jīng)組織提供所需能量,防止神經(jīng)元持續(xù)受損,有利于改善認知和記憶等功能。雖然生酮作用不及MCT,但是富含ALA的高脂飼料明顯比基于飽和脂肪的高脂飼料更能引起大鼠酮血癥[34]。有研究針對年輕人和老人各10名口服補充ALA后,發(fā)現(xiàn)其餐后乙酰乙酸和β-羥丁酸水平均明顯升高,只是年輕人組更為顯著[35]。因此,ALA作為一種溫和的生酮脂肪酸,可能作為替代性能源來改善大腦衰老時認知和記憶功能受損狀況。
2.3.2 ALA具有降低膽固醇攝取和Aβ42細胞毒性的作用 許多研究表明,膽固醇在AD進展過程中發(fā)揮重要作用。有學(xué)者指出這源于膽固醇主要影響了A(前體(APP)的加工過程,從而促進Aβ生成[36]。動物實驗研究發(fā)現(xiàn),給轉(zhuǎn)基因小鼠喂有富含膽固醇的飼料就會增加神經(jīng)斑塊的數(shù)量[37]。并進一步證明了膽固醇確實可以升高β-分泌酶和γ-分泌酶的活性,因此增加了Aβ的生成[38]。而利用辛伐他汀等藥物降膽固醇治療后,則會促進APP經(jīng)α分泌酶作用向非Aβ形式轉(zhuǎn)化,降低Aβ的毒性作用[39]。也有研究則證實了ALA同樣具有降低血清膽固醇的作用[40]。Lee等[41]研究指出,ALA確實具有抑制膽固醇攝取和Aβ42細胞毒性的作用,因此同樣具有潛在治療AD的能力。
2.3.3 調(diào)節(jié)腦皮質(zhì)和海馬脂肪酸含量 國外有研究指出,ALA缺乏能夠改變細胞膜的結(jié)構(gòu)和功能,從而導(dǎo)致大腦功能障礙[42]。國內(nèi)學(xué)者則通過給SD大鼠不同配方飼料持續(xù)12個月喂養(yǎng)干預(yù),發(fā)現(xiàn)長期ALA干預(yù)能明顯改善自然衰老大鼠的空間學(xué)習(xí)記憶能力,并有效減少衰老大鼠腦海馬組織學(xué)異常改變,還能調(diào)節(jié)腦皮質(zhì)和海馬脂肪酸含量,且高劑量ALA組效果更明顯,并認為可能是由于膳食中ALA提高了腦組織中ω-3PUFAs的含量,降低了血液膽固醇水平,使神經(jīng)細胞膜的流動性增強的原因[43]。
2.3.4 神經(jīng)保護作用 活體動物實驗研究發(fā)現(xiàn),ALA具有明顯的神經(jīng)保護作用[44]。也有學(xué)者[45]讓男性和女性各15名口服500mg亞麻籽油1w后,發(fā)現(xiàn)口服ALA組可顯著提高其腦源性神經(jīng)營養(yǎng)因子(BDNF)水平,而且女性會更高,而BDNF具有促進神經(jīng)發(fā)生和神經(jīng)元存活的能力,也說明ALA發(fā)揮了神經(jīng)保護作用。
2.3.5 抗炎作用 在許多神經(jīng)退變性疾病包括AD發(fā)生時,星形膠質(zhì)細胞和小膠質(zhì)細胞中促炎因子的激活十分普遍,因此神經(jīng)炎癥也成為了AD的一個治療靶點[46]。ω-3PUFAs具有顯著的抗炎作用,普遍應(yīng)用于慢性炎癥性疾病[47]。大腦干重的6%就是ω-3PUFA,體內(nèi)ω-6PUFAs/ω-3PUFAs的失衡導(dǎo)致神經(jīng)炎癥可以改變認知和行為等,而其中ω-3PUFAs正是通過抗炎作用發(fā)揮保護大腦功能[48]。而且很多研究證實,ALA同樣具有抗炎作用,可以降低C反應(yīng)蛋白等炎性指標,成為防治AD的重要手段[49-50]。
綜上所述,MCFA作為一類快速氧化、生成酮體的脂肪酸,用于輔助治療AD具有獨特的潛能和優(yōu)勢。植物來源的ALA可以提供人體所必需的ω-3PUFAs,對于AD的防治同樣具有十分重要的意義和應(yīng)用價值,但是一些研究尚存在一定爭議,而且由于AD的復(fù)雜性,MCFA和ALA防治AD的作用機制還需進一步研究?!?/p>
[1]Boublay N,Schott AM,Krolak-Salmon P.Neuroimaging correlates of neuropsyehiatric symptoms in Alzheimers disease:a review of 20 years of research[J].Eur J Neurol,2016,23(10):1500-1509.
[2]Chouraki V,Seshadri S.Genetics of Alzheimer s disease[J].Adv Genet,2014(87):245-294.
[3]World Health Organization.Dementia—Fact Sheet No.362:2015.http://www.who.int/mediacentre/factsheets/fs362/en/
[4]Petrov D,Pedrós I,Artiach G,et al.High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents[J].Biochimica et Biophysica Acta,2015,1852 (9):1687-1699.
[5]Carmela Giordano,Maddalena Marchiò,ElenaTimofeeva,et al.Neuroactive peptides as putative mediators of antiepileptic ketogenic diets[J].Front Neurol,2014,5(63):1-14.
[6]Musa-Veloso K,Likhodii SS,Rarama E,et al.Breath acetone and seizure control in children with epilepsy on a ketogenic diet[J]. Nutrition,2006,22(1):1-8.
[7]Ingrid Van der Auwera,Stefaan Wera,F(xiàn)red Van Leuven,et al.A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease[J].Nutrition & Metabolism,2005,2:28
[8]Fan Ding,et al.Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and alzheimer’s mouse brain:implication for bioenergetic intervention[J].Plos one,2013,8(11):e79977.
[9]Enie Lei,Kristina Vacy,Wah Chin Boon.Fatty acids and their therapeutic potential in neurological disorders[J].Neurochemistry International,2016(95):75-84
[10]Costantini LC,Barr LJ,Vogel JL,et al.Hypometabolism as a therapeutic target in Alzheimer’s disease[J]. BMC Neuroscience,2008,9(Suppl 2):S16.
[11]Henderson ST,Vogel JL,Barr LJ,et al.Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease:a randomized,double-blind,placebo-controlled,multicenter trial[J].Nutrition & Metabolism,2009(6):31.
[12]Raj C.Shah.Medical foods for Alzheimer’s disease[J]. Drugs Aging 2011,28 (6):421-428.
[13]Rebello C.J.,Keller J.N.,Liu A.G.,et al.Pilot feasibility and safety study examining the effect of medium chain triglyceride supplementation in subjects with mild cognitive impairment:a randomized controlled trial[J]. BBA Clin.,2015,16(3):123-125.
[14]Ying-hua LIU,et al.Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J Mice[J]. Biosci.Biotechnol.Biochem.,2012,76(6):1213-1218.
[15]MaryGannon,et al.Noradrenergic dysfunction in Alzheimer’s disease[J]. Front.Neurosci.,2015,17(9):1-12.
[16]Ludwig Trillo,Devsmita Das,Wayne Hsieh,et al.Ascending monoaminergic systems alterations in Alzheimer’s disease.Translating basic science into clinical care[J]. Neuroscience and Biobehavioral,2013,37 (8):1363-1379.
[17]Michael T.Heneka,F(xiàn)abian Nadrigny,Tommy Regen,et al.Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine[J].PNAS,2010,107(13):6058-6063.
[18]Ji Hye Yang,et al.Norepinephrine differentially modulates the innate inflammatory response provoked by amyloid-β peptide via action at β-adrenoceptors and activation of cAMP/PKA pathway in human THP-1 macrophages[J]. Experimental Neurology,2012,236 (2):199-206.
[19]Xia Liua,Keqiang Ye,David Weinshenker.Norepinephrine protects against Aβ toxicity via TrkB[J]. J Alzheimers Dis,2015,44(1):251-260.
[20]Ian H.Robertson.A noradrenergic theory of cognitive reserve:implications for Alzheimer’s disease[J]. Neurobiology of Aging,2013,34 (1):298-308.
[21]Jennifer A.Ross,Paul McGonigle,Elisabeth J,et al.Locus coeruleus,norepinephrine and Aβ peptides in Alzheimer’s disease[J]. Neurobiology of Stress,2015,2:73-84.
[22]Yeap S.K.,et al.Antistress and antioxidant effects of virgin coconut oil[J].Exp Ther Med,2015,9(1):39-42.
[23]De Felice F.G.,Lourenco M.V.,F(xiàn)erreira S.T..How does brain insulin resistance develop in Alzheimer’s disease[J]. Alzheimers Dement,2014,10(1 Suppl):S26-32.
[24]Sun H.,et al.The effect of LXRα,ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance[J].Diabetes Research and Clinical Practice,2013,102(3):183-192.
[25]Marcal A.C.,Camporez J.P.,Lima-Salgado T.M.,et al.Changes in food intake,metabolic parameters and insulin resistance are induced by an isoenergetic,medium-chain fatty acid diet and are associated with modifications in insulin signalling in isolated rat pancreatic islets[J]. Br J Nutr,2013,109(12):2154-2165.
[26]Kim K,Nam Y A,Kim H S,et al.Alpha-Linolenic acid:nutraceutical,pharmacological and toxicological evaluation[J].Food and Chemical Toxicology,2014(70):163-178.
[27]Gibson R A,Neumann M A,Lien E L,et al.Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids[J].Prostaglandins Leukot Essent Fatty Acids,2013,88(1):139-146.
[28]Domenichiello A F,et al.Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[J].Journal of Lipid Research,2014,55(1):62-74.
[29]Stuart G.Snowden,et al.Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance:a nontargeted metabolomic study[J]. PLoS Med.,2017,14(3):e1002266.
[30]Malgeunsinae Kim,Jung Hyun Nam,Dong Hoon Oh,et al.Erythrocyte α-linolenic acid is associated with the risk for mild dementia[J]. Nutrition Research,2010,30 (11):756-761.
[31]Cherubini A,Andres-Lacueva C,Martin A,et al.Low plasma N-3 fatty acids and dementia in older persons:the InCHIANTI study[J]. J Gerontol A Biol Sci Med Sci.,2007,62(10):1120-1126.
[32]Yamagishi K,Ikeda A,Chei CL,et al.Serum alpha-linolenic and other omega-3 fatty acids,and risk of disabling dementia:community-based nested case-control study[J]. Clin Nutr,2017,36(3):793-797.
[33]Chih-Chiang Chiu,Sophia Frangou,Ching-Jui Chang,et al.Associations between n-3 PUFA concentrations and cognitive function after recovery from late-life depression[J]. Am J Clin Nutr,2012(95):420-427.
[34]Likhodii SS,Musa K,Mendonca A,et al.Dietary fat,ketosis,and seizure resistance in rats on the ketogenic diet[J]. Epilepsia,2000,41(11):1400-1410.
[35]Marie Hennebelle,et al.Preliminary evaluation of a differential effect of an a-linolenate-rich supplement on ketogenesis and plasma n-3 fatty acids in young and older adults[J].Nutrition,2016,32(11-12):1211-1216.
[36]Wolozin B.A fluid connection:cholesterol and Abeta[J].Proc Natl Acad Sci,2001,98(10):5371-5373.
[37]Hooijmans CR,Rutters F,Dederen PJ,et al.Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA)diet or cholesterol enriched Typical Western Diet (TWD)[J]. Neurobiol Dis.,2007,28(1):16-29.
[38]Ehehalt R,et al.Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts[J]. J Cell Biol.,2003,160(1):113-123.
[39]Fassbender K,Simons M,Bergmann C,et al.Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo[J]. Proc Natl Acad Sci U S A,2001,98(10):5856-5861.
[40]Ribas SA,Grando RL,Zago L,et al.Overview of Flaxseed Patent Applications for the Reduction of Cholesterol Levels[J]. Recent Pat Food Nutr Agric,2016,8(2):116-123.
[41]Min Jung Lee,Seung Hwan Park,Ju Hua Han,et al.The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia[J].Mol Cells,2011,31(4):337-342.
[42]Bourre JM.Roles of unsaturated fatty acids (especially omega-3 fatty acids)in the brain at various ages and during ageing [J]. J Nutr Health Aging,2004,8(3):163-174.
[43]Gao H,Yan P,Zhang S,et al.Chronic alpha-linolenic acid treatment alleviates age-associated neuropathology:Roles of PERK/eIF2α signaling pathway[J]. Brain Behav Immun,2016,57:314-325.
[44]Lauritzen I,Blondeau N,Heurteaux C,et al.Polyunsaturated fatty acids are potent neuroprotectors[J]. EMBO J,2000(19):1784-1793.
[45]Mahmoudreza Hadjighassem,Behnam Kamalidehghan,Nima Shekarriz,et al.Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans[J]. Nutr J.,2015(26):14-20.
[46]Venigalla M,Sonego S,Gyengesi E,et al.Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease[J]. Neurochem Int,2016,95(8):63-74.
[47]Yates CM,Calder PC,Ed Rainger G.Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease[J]. Pharmacol Ther,2014,141(3):272-282.
[48]Layé S.Polyunsaturated fatty acids,neuroinflammation and well being[J]. Prostaglandins Leukot Essent Fatty Acids,2010,82(4-6):295-303.
[49]Crupi R,Marino A,Cuzzocrea S.n-3 fatty acids:role in neurogenesis and neuroplasticity[J]. Curr Med Chem,2013,20(24):2953-2963.
[50]Devassy JG,Leng S,Gabbs M,et al.Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease[J]. Adv Nutr,2016,7(5):905-916.