• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Waves on Localized and Periodic Backgrounds with Time-Space Modulation?

    2018-01-24 06:23:01MeiKunLiu劉美坤ZhanYingYang楊戰(zhàn)營andWenLiYang楊文力SchoolofPhysicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年5期

    Mei-Kun Liu(劉美坤),Zhan-Ying Yang(楊戰(zhàn)營),,? and Wen-Li Yang(楊文力)School of Physics,Northwest University,Xi’an 710069,China

    2Shannxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710069,China

    3Institute of Modern Physics,Northwest University,Xi’an 710069,China

    1 Introduction

    Nonlinear waves on a plane-wave background become a subject of intense research in nonlinear physics,ranging from nonlinear optics,Bose–Einstein Condensates(BECs),magnetics,plasmas,super fluid,et al.[1?9]These localized waves evolving on a nonvanishing background exactly describe the dynamical growth of perturbations on a plane-wave related to the nonlinear modulation instability.This includes Akhmediev breathers,[10]Kuznetsov–Ma breathers,[11]and the Peregrine(rational)rogue waves,[12]which are now considered the simplest models to describe the growth and decay of isolated steep wave events,i.e.,rogue waves,in nonlinear dispersive systems.[13?14]Especially,significant progress has been made on the experimental verification of these unique nonlinear structures in fiber optics,[15?17]in water tank,[18]and in plasma systems.[19]On the other hand,the utility of these waves based on their special properties in generating high-quality pulse trains,[20]high-power pulses,[21]breatherlike solitons,[22]nonlinear Talbot effects,[23]and the Peregrine comb[24]has been revealed.

    However,in practice,the simple solution on an ideal plane-wave background may be not as adequately representative of reality as commonly thought.Indeed,a plane wave is an in finite-width background that corresponds to extreme high background powers.Therefore,from the application and technical points of view,the study on nonlinear waves on a finitewidth background is of practical importance.Recently,the excitation of Peregrine rogue waves on Gaussian and Sech-shaped backgrounds has been investigated.[25?26]It has been shown that the characteristics of Peregrine rogue waves are maintained.However,the breathers,which are more general waves,have not been studied on a finitewidth background so far.On the other hand,a plane wave,upon which these solutions are built,is simply a limiting cases of the periodic waves.From a statistical perspective,these periodic oscillations appear far more common in the ocean than any idealised background with constant amplitude.In fact,in the experiment of water tank,the rogue waves are excited on a regular wave train.[27]It is also not uncommon for an optical periodic wave to appear in a fiber as a regular train of solitonic pulses.[28]Indeed,recent experiments in optical fiber demonstrated the propagation of periodic waves in a stable manner.[29]

    In this paper,we study the general nonlinear waves generation on finitewidth(localized)and periodic backgrounds.We present a general family of analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained.In particular,we demonstrate the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential.

    2 Model and Analytical Solutions

    We study nonlinear waves on localized and periodic backgrounds by a generalized nonlinear Schr?dinger equation(NLSE)with time-space modulation variable coeff-cients,which is given by

    whereψ(x,t)is a complex function,xrepresents the distribution direction andtrepresents the evolution direction.f(x,t)is the dispersion coeffcient andg(x,t)is the nonlinearity management parameter.V(x,t)denotes the external potential andγ(x,t)is the gain(or loss)term.In fact,model(1)is a generalized nonautonomous NLSE given in Ref.[30].The integrability of the nonautonomous NLSE have been studied in Ref.[31].The properties of solutions of two kinds of non-isospectral nonautonomous NLSE have been discussed in Ref.[32].The dynamics of standard solitons(i.e.,bright and dark structures)have been studied in Ref.[33].In particular,dynamics of rogue waves and breathers in Eq.(1)have been studied recently in Refs.[34–38].If these variable coeffcients are functions only related tot,we can present rogue wave and breathers in BECs,which are similar to the results in Refs.[35–36].Moreover,with some higher-order effects added in Eq.(1),the rogue wave management in a fiber is studied.[37]If these variable coeffcients are functions only related tox,the rogue wave management has been studied in Ref.[38].On the other hand,one should note that optical rogue waves in the generalized higher-order NLSE with time-space modulation have been studied in Ref.[39].Moreover,the standard solitons in Eq.(1)with quintic nonlinearity have been demonstrated in Ref.[40].In the following,we will present the exact general solution,which describes rogue waves and breathers on different backgrounds.

    We assume that the form of a solution of Eq.(1)as follows

    whereρ(x,t),?(x,t),X(x,t),T(t)are real variable functions.ρ(x,t)and?(x,t)are amplitude and phase of the nonlinear localized waves,respectively.Φ(X,T)is the solution of the NLSE

    where the contained parameters satisfy the constraint condition

    The subscripts denote the partial derivative respect toxort.From the partial differential equations and the con-straint conditions,we can obtain the amplitudeρ(x,t)=√the phasethe dispersion coeffcientf(x,t)=(1/2)aα?2F?2,the gain(or loss)term

    hereais a function that depends ontandT0is a real constant.Furthermore,the expression of the potential is given

    with

    Using similarity transformation,we can obtain the exact solution of Eq.(1),

    Aandωrepresent the amplitude and frequency of the background,respectively.b1anda1are arbitrary constant parameters.

    The breather is a localized solution with temporally and/or spatially periodic structures having constant background exhibiting internal oscillations and bound states of nonlinear wave packets.[41]The unified solution(7)describes abundant different types nonlinear localized waves with different parameters,including Kuznetsov–Ma(KM)breather,Akhmediev breather(AB)and rogue wave.

    In the case ofν=0,andσ=0,the general breather becomes to KM breather,which is periodic in the evolution direction and localized in the distribution direction.The form of the KM breather can be given by

    The rogue wave can be obtained by taking the limitsandσ=0.In this case,Eq.(7)reduces to the following form

    3 Nonlinear Waves on Localized Backgrounds

    Most of the theoretical studies focus on the rogue waveand breatherssolutionson plane-wavebackgrounds.[2?5,42?46]In practice,the ideal plane-wave background are non-existent.Therefore,from the application and technical points of view,the study on nonlinear waves on localized background is of practical importance.We have nonlinear term manipulation to achieve the purpose of controlling the nonlinear wave.The nonlinearity coeffcient can be controlled by suitably managing the parametersα(t),F(?),anda(t),we are explaining it by considering the following two kinds of situations in below.

    3.1 The Evolution-Direction Localized Background

    For the evolution direction localized background,we choose the nonlinearity coeffcient as

    wherec0is an arbitrarily constant.In this case,the dispersion,gain,and potential should be chosen asf=const.γ= ?at/2a?αtx/α,V(x,t)=whereα(t)=c0sech(c0t),a(t)=α2.

    In Fig.1,we plot the rogue wave and breathers on the evolution direction localized background,here the potential is the space-quadratic potential in Fig.1(e).Whent→0,the amplitude of background gradually increases in the evolution direction.As show in Fig.1(a),rogue wave becomes more and more localized in the evolution direction.At this time,the AB and the general breather have stretching occurs in distribution direction,which show in Figs.1(b)and 1(c).Unlike the AB and the general breather,the KM breather is localized in bothtandx,the periodically of the KM breather in the evolution direction completely destroyed(see the wave in Fig.1(d)).Interestingly,as increasing thec0,the background get more localized in the evolution direction and the amplitude of the nonlinear waves are increased.

    Fig.1 (Color online)Density plot of RW and breathers|ψ|on the evolution direction localized background.(a)Rogue wave with c0=1,A=1/2,ω=0.(b)The Kuznetsov–Ma breather with c0=3/2,b1=2,A=1,ω=0. (c)The Akhmediev breather with c0=1,A=3/2,b1=1/2,ω=0.(d)The general breather with c0=1,b1=3/2,A=1/2,ω=0,a1=1/2.(e)The potential with c0=1.Other parameter is T0=0.

    3.2 The Distribution-Direction Localized Background

    For the distribution direction localized background,we choose the nonlinear coeffcient

    where?=αx,and

    withμ∈ (?1,1),ω0∈R.Remarkably,depending on the different choices ofμ,there are two cases to consider as follows:

    (i)Whenμ=0,the nonlinearity coeffcient

    In this case,the dispersion,gain,and potential should be selected as

    Fig.2 (Color online)Density plot of rogue wave and breathers|ψ|on distribution direction localized background.(a)Evolution of rogue wave solution.(b)The Kuznetsov–Ma breather with b1=3/2.(c)The Akhmediev breather with b1=1/2.(d)The general breather with b1=3/2,a1=1/2.(e)Plot of the potential given with b=6.Others are A=1,ω=0,b=6,T0=0.

    Figures 2(a),2(b),2(c),and 2(d)demonstrate the intensity profiles of rogue wave,KM breather,AB and the general breather on the distribution direction localized background,respectively.The potential is like a potential barrier,which shows in Fig.2(e).Figure 2(a)shows the evolution of the rogue wave,which is localized in both two spatial directions on distribution direction localized background.It has been demonstrated that the characteristics of rogue wave(a high amplitude and double localization)are maintained on distribution direction localized background.Figure 2(b)shows that KM breather is periodic intand localized inxon distribution direction localized background.It should note that the characteristics of the KM breather on the distribution direction localized background is similar to the one on the plan wave background.Figures 2(c)and 2(d)show the amplitude of AB and general breather decrease with the amplitude of background decreasing,which fully disappears atx→±∞.

    (ii)Ifμ/=0,the nonlinearity coeffcient

    The external potential is a complex function of trigonometric function and exponential function.The dispersion management and the gain(or loss)term parameterand

    Fig.3 (Color online)Density plot of RW and breathers|ψ|.(a)Rogue wave with μ =1/2,ω0=3/2,b=4,A=1,ω =0.(b)The Kuznetsov–Ma breather withμ =1/2,ω0=1,b=6,A=1,b1=3/2,ω =0.(c)The Akhmediev breather withμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω=0.(d)The general breather solution forμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω =0,a1=1/2.(e)Plot of the potential with b=6,μ=0.5,ω0=1.Other parameter is T0=0.

    In the case of Fig.3(e),this potential periodically varies in time and localized in space with attractive and expulsive characteristics.[47]As depicted in Fig.3(a),the rogue wave is localized in both time and space,which is located at(x,t)=(0,0).Figure 3(b)shows that the KM breather has many peaks of varying magnitudes in the evolution direction.In particularly,the contours of each envelope is changed.As show in Figs.3(c)and 3(d),the AB and the general breather are spatially periodic and localized in time.It is clear that the peaks of AB and the general breather have a big stretching in space,which is different with the KM breather.It should be note that the general breather can be seen as an AB with a velocity.Furthermore,whenx→0,the peaks of AB and the general breather increase gradually with the amplitude of background increasing.

    4 Nonlinear Waves on Periodic Backgrounds

    As we mentioned above,periodic oscillations appear far more common in the nonlinear physical system from a statistical perspective.In this section,we will systematically study the general nonlinear waves on single-and double-periodic backgrounds(i.e.,the optical lattice background).The latter is an important platform for the trapping and manipulation of BECs.[48?49]

    4.1 The Single-Periodic Background(g=1)

    We consider that the case of the nonlinearity coeffcient is constant.We chooseα=1,F=1 and

    witha0∈ (?1,1)andω1∈R.In this case,the dispersion,gain(or loss)term and potential should be elected asf=a/2,γ= ?at/2a,andV=0.Ifa0=0,the coeffcients of Eq.(1)are all constants.Equation(1)then reduces to the standard NLS equation,which leads to the standard rogue waves and breathers solutions to Eq.(3).Equation(1)in the above two cases is important both in nonlinear optics and BECs.[36]

    In Fig.4,we plot the rogue wave and breathers on single periodic background in the case ofg=1.As can be seen from Fig.4(a),the structure of rogue wave has two valleys placed on both sides of the peak on single periodic background.In Fig.4(b),because of the ratio between the amplitude of the background and the amplitude of nonlinear waves are constant,the KM breather has many peaks of varying magnitudes in the evolution direction.In Fig.4(c),the AB on the single periodic background is similar to the one on the plan wave background.Figure 4(d)illustrates the behavior of the general breather on the single periodic background.In this situation,the structure of the general breather is basically ruined.

    4.2 The Single-Periodic Background(g/=1)

    Fig.5 (Color online)Density plot of solutions|ψ|.(a)Rogue wave with A=0.7,ω =0.(b)The Kuznetsov–Ma breather with b1=2,A=1,ω =0.(c)The Akhmediev breather b1=0.7,A=1,ω =0.(d)The general breather with A=1,b1=1/2,?=0,μ=1/2.(e)The potential withμ=1/2,ω0=1.Others areμ=1/2,ω0=1,T0=0.

    For the singly-periodic background,we choose the nonlinearity coeffcient as

    whereFandaas constant,andαis the trigonometric form mentioned in Eq.(13). The dispersion and gain(or loss)term should be chosen asf=1/2α2andγ= ?αtx/α.The potential is form of time trigonometric function.

    In Fig.5,we plot the dynamics of rogue wave and breathers wave on single periodic background in the case ofg/=1.Figure 5(e)shows that the potential changes from attractive to expulsive behavior periodically.[47]As depicted in Fig.5(a),the structure of rogue wave is different from Fig.4(a).The peak of the rogue wave has a big stretching in evolution direction but the valley has not changed.As show in Fig.3(b),the KM breather is identical to the caseg=1.The AB seem like a periodic rogue wave in distribution direction in Fig.5(c).Figure 5(d)shows that the structure of the general breather is basically ruined.

    4.3 The Double-Periodic Background

    For the double-periodic background,we choose the nonlinearity coeffcient as

    whereF=1/(v+v0cosω2?),α=1 anda(t)to be the function of the trigonometric form as noted in Eq.(16)withv0∈ (?v,v),ω2∈R.vis real constant.With this,we can find the dispersionf=a/2F2and gain(or loss)termγ= ?at/2a.The lattice potential is the trigonometric function of time.However,there are few studies on the transportation of rogue wave and breathers in the lattice potential.Base on this research,we will show how rogue wave and breathers propagate on the doubleperiodic background.

    In Figs.6(a)–6(d)show the dynamics of the rogue wave and breathers on double periodic background.In Fig.6(a),the single structure of rogue wave is similar to Fig.4(a),but the rogue wave in Fig.6(a)is periodic in distribution direction.Interestingly,the characteristics of KM breather in one period in Fig.6(b)is similar to the KM breather in Fig.4.The KM breather periodically appeared both in the evolution direction and the distribution direction.The peak of AB is not equal in a lattice in Fig.6(c).As shown in Fig.6(d),The general breather can be seen as a tilted AB in a lattice.

    Fig.6 (Color online)Evolution of the rogue wave and breathers|ψ|on optical lattice background.(a)Rogue wave with v=3,a0=A=1/2,ω =0,T0= ?4.(b)The Kuznetsov–Ma breather with v=3,a0=1/2,A=1,b1=3/2,ω =0,T0= ?4.(c)The Akhmediev breather with v=1,a0=b1=1/2,A=1,ω=0,T0=0.(d)The general breather solution T0=?14,v=1,a0=a1=1/2,A=0.8,b1=0.3,ω=0.(e)The potential with v=1,a0=0.8.Others are v0= ω1= ω2=1/2.

    5 Conclusions

    We have obtained one family of analytical nonlinear localized wave solution for the generalized NLSE with timespace modulation via the method of a combination of the Darboux transformation and similarity transformation.By choosing special forms of the nonlinearityg(x,t),a simple procedure has been established to obtain localized wave solutions on different backgrounds.The solutions exist under certain conditions and impose constraints on the coeffcients depicting dispersion,nonlinearity,gain(or loss),and external potential.We have demonstrated rogue wave and breathers on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations.In particular,the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential were revealed.These results could be of great interest in realizing rogue waves and breathers on different backgrounds in physical systems such as nonlinear optics and Bose–Einstein condensates.

    [1]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 88(2013)013207.

    [2]B.L.Guo,L.Ling,and Q.P.Liu,Phys.Rev.E 85(2012)026607.

    [3]L.C.Zhao,G.G,Xin,and Z.Y.Yang,Phys.Rev.E 90(2014)022918.

    [4]L.C.Zhao,C.Liu,and Z.Y.Yang,Commun.Nonlinear Sci.20(2015)9.

    [5]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Ann.Phys.362(2015)130.

    [6]S.Loomba,R.Gupta,K.K.De,et al.,Opt.Fiber Technol.21(2015)20.

    [7]N.Akhmediev,J.M.Soto-Crespob,N.Devinea,and N.P.Hoffmann,Phys.D 294(2015)37.

    [8]G.Mu,Z.Qin,et al.,SIAM J.Appl.Math.75(2015)1.

    [9]Z.Y.Yan,Commun.Theor.Phys.54(2010)947.

    [10]N.N.Akhmediev and V.I.Korneev,Theor.Math.Phys.69(1986)1089.

    [11]E.Kuznetsov,A.Akademiia,Nauk SSSR Doklady.236(1977)575;Y.C.Ma,Studies in Applied Mathematics 60(1979)43.

    [12]D.H.Peregrine,Appl.Math.25(1983)16.

    [13]S.A.Chin,O.A.Ashour,S.N.Nikoli,et al.,Nonlinear Sci.1611(2016)02753.

    [14]L.C.Zhao and L.Ling,J.Opt.Soc.Am.B 33(2016)850.

    [15]D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,Nature 450(2007)1054.

    [16]B.Kibler,J.Fatome,C.Finot,G.Millot,F.Dias,G.Genty,N.Akhmediev,and J.M.Dudley,Nat.Phys.6(2010)790.

    [17]J.M.Dudley,G.Genty,and B.J.Eggleton,Opt.Exp.16(2008)3644.

    [18]A.Chabchoub,N.P.Hoffmann,and N.Akhmediev,Phys.Rev.Lett.106(2011)204502.

    [19]H.Bailung,S.K.Sharma,and Y.Nakamura,Phys.Rev.Lett.107(2011)255005.

    [20]J.Fatome,B.Kibler,and C.Finot,Opt.Lett.38(2013)1663.

    [21]Y.V.Bludov,V.V.Konotop,and N.Akhmediev,Opt.Lett.34(2009)3015.

    [22]G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)391;G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)902;G.Yang,Y.Wang,Z.Qin,et al.,Phys.Rev.E 90(2014)062909.

    [23]Y.Zhang,M.R.Belic,H.Zheng,et al.,Phys.Rev.E 89(2014)03290;Y.Zhang,M.R.Belic,M.S.Petrovic,et al.,Phys.Rev.E 91(2015)032916.

    [24]C.G.L.Tiofack,S.Coulibaly,M.Taki,et al.,Phys.Rev.A 92(2015)043837.

    [25]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Opt.Lett.39(2014)1057.

    [26]L.Duan,Z.Y.Yang,C.Liu,et al.,Chin.Phys.Lett.33(2016)010501.

    [27]A.Chabchoub,N.Hoffmann,M.Onorato,et al.,Phys.Rev.X 2(2012)011015.

    [28]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Eur.Phys.J.Spec.Top.223(2014)43.

    [29]J.L.Shultz,G.J.Salamo,Phys.Rev.Lett.78(1997)855.

    [30]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.98(2007)074102.

    [31]J.S.He and Y.S.Li,Stud.Appl.Math.126(2011)1.

    [32]J.S.He,M.Ji,and Y.S.Li,Chin.Phys.Lett.24(2007)2157.

    [33]Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.E 83(2011)066602;J.Opt.Soc.Am.B 28(2011)236;Opt.Commun.283(2010)3768;L.C.Zhao,Z.Y.Yang,et al.,Phys.Lett.A 375(2011)1839;Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.A 81(2010)043826;C.Liu,Z.Y.Yang,W.L.Yang,and R.H.Yue,Commun.Theor.Phys.59(2013)311;C.Liu,Z.Y.Yang,M.Zhang,et al.,Commun.Theor.Phys.59(2013)703.

    [34]Y.Y.Wang,J.S.He,and Y.S.Li,Commun.Theor.Phys.56(2011)995;S.W.Xu,J.S.He,and L.H.Wang,Europhys.Lett.97(2012)30007;Y.S.Tao,J.S.He,and K.Porsezian,Chin.Phys.B 22(2013)074210.

    [35]J.S.He,E.G.Charalampidis,P.G.Kevrekidis,and D.J.Frantzeskakis,Phys.Lett.A 378(2014)577.

    [36]K.Manikandan,P.Muruganandam,M.Senthilvelan,and M.Lakshmanan,Phys.Rev.E 90(2014)062905.

    [37]J.S.HE,Y.S.Tao,K.Porsezian,and A.S.Focas,J.Nonlinear Math.Phys.20(2013)407.

    [38]W.P.Zhong,L.Chen,M.Beli,et al.,Phys.Rev.E 90(2014)043201.

    [39]Z.Yan and C.Dai,J.Opt.15(2013)064012.

    [40]J.R.He and H.M.Li,Phys.Rev.E 83(2011)066607.

    [41]D.Mandelik,H.S.Eisenberg,Y.Silberberg,R.Morandotti,and J.S.Aitchison,Phys.Rev.Lett.90(2003)253902.

    [42]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 94(2016)042221.

    [43]C.Q.Dai and W.H.Huang,Appl.Math.Lett.32(2014)35.

    [44]L.Wang,M.Li,F.H.Qi,et al.,Eur.Phys.J.D 69(2015)1;L.Wang,X.Li,F.H.Qi,et al.,Ann.Phys.359(2015)97.

    [45]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 91(2015)022904;C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.A 89(2014)055803.

    [46]R.Guo,H.H.Zhao,and Y.Wang,Nonlinear Dyn.83(2016)2475;R.Guo,Y.F.Liu,H.Q.Hao,et al.,Nonlinear Dynamics 80(2015)1221.

    [47]W.B.Cardoso,A.T.Avelar,and D.Bazeia,Phys.Lett.A 374(2010)2640.

    [48]I.Bloch,Nat.Phys.1(2005)23.

    [49]A.D.Cronin,J.Schmiedmayer,and D.E.Pritchard,Rev.Mod.Phys.81(2009)1051.

    国产永久视频网站| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 韩国av在线不卡| 国产精品嫩草影院av在线观看| 一级毛片我不卡| 校园人妻丝袜中文字幕| 久久久久人妻精品一区果冻| 日韩不卡一区二区三区视频在线| 亚洲美女黄色视频免费看| 婷婷色麻豆天堂久久| 亚洲精品久久久久久婷婷小说| 国产黄色免费在线视频| 高清黄色对白视频在线免费看 | 久久久久久伊人网av| 成人国产麻豆网| 国产伦精品一区二区三区视频9| 国产精品成人在线| 亚洲真实伦在线观看| av在线观看视频网站免费| 男人舔奶头视频| 久久久亚洲精品成人影院| 国产免费一级a男人的天堂| 中文字幕人妻丝袜制服| 全区人妻精品视频| 国产成人精品久久久久久| 亚洲国产精品一区二区三区在线| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区黑人 | 大话2 男鬼变身卡| 三级国产精品欧美在线观看| 亚洲欧美一区二区三区黑人 | 国产 一区精品| 国产真实伦视频高清在线观看| 欧美精品一区二区免费开放| 国产极品粉嫩免费观看在线 | 欧美人与善性xxx| 秋霞伦理黄片| av视频免费观看在线观看| 色5月婷婷丁香| 亚洲中文av在线| 国产成人精品福利久久| 国产在线免费精品| 欧美日本中文国产一区发布| 成年人免费黄色播放视频 | 免费观看av网站的网址| 欧美高清成人免费视频www| 日韩精品免费视频一区二区三区 | 国产成人aa在线观看| 91在线精品国自产拍蜜月| 亚洲色图综合在线观看| 观看美女的网站| 天美传媒精品一区二区| 国产高清有码在线观看视频| 久久韩国三级中文字幕| 嫩草影院入口| 国产精品久久久久久av不卡| 久久青草综合色| 免费大片18禁| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| 免费大片18禁| 亚洲情色 制服丝袜| 久久 成人 亚洲| 丰满少妇做爰视频| 亚洲成人手机| 最后的刺客免费高清国语| 亚洲国产最新在线播放| 亚洲精品国产av成人精品| 一本一本综合久久| 久久久久精品性色| 久久精品国产亚洲网站| 欧美成人精品欧美一级黄| av线在线观看网站| 国产乱人偷精品视频| 男人添女人高潮全过程视频| 成人午夜精彩视频在线观看| 色5月婷婷丁香| 国产高清不卡午夜福利| 欧美区成人在线视频| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 天堂中文最新版在线下载| 我的老师免费观看完整版| 日韩欧美 国产精品| 久久99蜜桃精品久久| 又大又黄又爽视频免费| 日韩制服骚丝袜av| 中国三级夫妇交换| 在线观看三级黄色| 多毛熟女@视频| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站| av.在线天堂| 两个人的视频大全免费| 成人黄色视频免费在线看| 少妇人妻 视频| 国产一区亚洲一区在线观看| 日韩强制内射视频| 亚洲婷婷狠狠爱综合网| 久久久久精品性色| 久久 成人 亚洲| 视频中文字幕在线观看| 国产精品人妻久久久影院| 欧美国产精品一级二级三级 | 亚洲不卡免费看| 亚洲第一av免费看| 欧美老熟妇乱子伦牲交| 久久久久久久久久久免费av| 成年美女黄网站色视频大全免费 | 在线观看免费日韩欧美大片 | 最近最新中文字幕免费大全7| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕久久专区| 免费看光身美女| 最近中文字幕2019免费版| 纵有疾风起免费观看全集完整版| 国产精品成人在线| 午夜激情久久久久久久| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久av不卡| 老司机亚洲免费影院| 欧美3d第一页| 丝袜喷水一区| 熟女av电影| 你懂的网址亚洲精品在线观看| 亚洲真实伦在线观看| 色婷婷av一区二区三区视频| 久久青草综合色| 校园人妻丝袜中文字幕| 男男h啪啪无遮挡| 狂野欧美激情性bbbbbb| 精品人妻一区二区三区麻豆| h视频一区二区三区| 久久久久久久久久久免费av| 蜜臀久久99精品久久宅男| 我的女老师完整版在线观看| 一区二区三区四区激情视频| 少妇 在线观看| 亚洲国产毛片av蜜桃av| 十八禁网站网址无遮挡 | 精品少妇内射三级| 国产美女午夜福利| 三上悠亚av全集在线观看 | 精品午夜福利在线看| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲网站| 日本91视频免费播放| 日韩成人伦理影院| 在线看a的网站| 草草在线视频免费看| 一级a做视频免费观看| 一二三四中文在线观看免费高清| 欧美xxxx性猛交bbbb| 亚洲av在线观看美女高潮| 国产毛片在线视频| 欧美xxⅹ黑人| 精品国产乱码久久久久久小说| 久久午夜综合久久蜜桃| 亚洲四区av| 如何舔出高潮| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 99热国产这里只有精品6| 97在线视频观看| 日日摸夜夜添夜夜爱| 少妇熟女欧美另类| 午夜影院在线不卡| 三级经典国产精品| 久久热精品热| 日日撸夜夜添| 亚洲成人手机| 欧美日韩亚洲高清精品| 18+在线观看网站| 永久网站在线| 亚洲精品日韩av片在线观看| 有码 亚洲区| 美女内射精品一级片tv| 国产精品一区www在线观看| 精品一区二区三卡| .国产精品久久| 久久国产乱子免费精品| 日韩av免费高清视频| 人妻人人澡人人爽人人| 晚上一个人看的免费电影| 色5月婷婷丁香| 国产免费福利视频在线观看| 国产精品偷伦视频观看了| 99久久精品热视频| 成人漫画全彩无遮挡| 日韩亚洲欧美综合| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| 人体艺术视频欧美日本| 久久精品国产鲁丝片午夜精品| 国产精品99久久99久久久不卡 | 成人国产av品久久久| 国产一区二区在线观看日韩| 看非洲黑人一级黄片| 欧美另类一区| 一级毛片我不卡| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看 | 中文字幕制服av| 色5月婷婷丁香| 亚洲精品乱码久久久久久按摩| 久久久久视频综合| 热re99久久国产66热| 美女视频免费永久观看网站| 久热这里只有精品99| 欧美三级亚洲精品| 99久久精品热视频| 热re99久久国产66热| 老熟女久久久| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 久久毛片免费看一区二区三区| 久久热精品热| 99久久中文字幕三级久久日本| 亚洲,一卡二卡三卡| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 国产av码专区亚洲av| 日韩不卡一区二区三区视频在线| 黄色怎么调成土黄色| 国产精品国产三级国产专区5o| 国产在线男女| 亚洲精品aⅴ在线观看| 国产成人精品婷婷| 午夜91福利影院| 久久精品国产a三级三级三级| 99视频精品全部免费 在线| 欧美日韩精品成人综合77777| 综合色丁香网| 妹子高潮喷水视频| 亚洲无线观看免费| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91 | 97在线人人人人妻| 精品酒店卫生间| 久久精品国产自在天天线| 日韩av免费高清视频| 校园人妻丝袜中文字幕| 老司机亚洲免费影院| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 久久热精品热| 高清av免费在线| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 日韩一本色道免费dvd| a级毛片免费高清观看在线播放| 亚洲国产精品成人久久小说| 亚洲av成人精品一区久久| 夫妻性生交免费视频一级片| 国产一区二区在线观看日韩| 久久精品久久精品一区二区三区| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 午夜免费观看性视频| 伊人亚洲综合成人网| 色哟哟·www| 精品久久久久久电影网| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 人人妻人人看人人澡| 日产精品乱码卡一卡2卡三| 国产视频首页在线观看| 久久精品国产亚洲网站| 伊人久久精品亚洲午夜| 十分钟在线观看高清视频www | 国产日韩欧美在线精品| 欧美日韩一区二区视频在线观看视频在线| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频 | 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 国产熟女午夜一区二区三区 | 好男人视频免费观看在线| 午夜影院在线不卡| 我的老师免费观看完整版| 天美传媒精品一区二区| 久久久久久人妻| 亚洲欧美精品自产自拍| 有码 亚洲区| 日韩一区二区三区影片| 国产在线视频一区二区| 一区在线观看完整版| 青青草视频在线视频观看| 91精品国产九色| 国产高清不卡午夜福利| 日日撸夜夜添| 亚洲国产色片| a级一级毛片免费在线观看| 街头女战士在线观看网站| 国产黄片视频在线免费观看| 蜜桃久久精品国产亚洲av| 99视频精品全部免费 在线| 美女国产视频在线观看| 在现免费观看毛片| 精品视频人人做人人爽| 亚洲精品日韩在线中文字幕| 亚洲,一卡二卡三卡| 久热久热在线精品观看| 黄色配什么色好看| 精品国产一区二区久久| 人妻人人澡人人爽人人| 日韩视频在线欧美| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| 中文字幕免费在线视频6| 色网站视频免费| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 超碰97精品在线观看| 大陆偷拍与自拍| 午夜久久久在线观看| 久久久久久久国产电影| 成年美女黄网站色视频大全免费 | 综合色丁香网| 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 亚洲国产欧美在线一区| 性色av一级| 精品国产一区二区三区久久久樱花| 一级a做视频免费观看| 极品教师在线视频| 亚洲成人av在线免费| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 黄色日韩在线| 五月玫瑰六月丁香| 另类精品久久| 亚洲成色77777| 九色成人免费人妻av| 51国产日韩欧美| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| videossex国产| 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 久久精品国产自在天天线| 日本欧美国产在线视频| 国产成人一区二区在线| 99久久精品热视频| 国产精品久久久久久精品电影小说| 日韩成人伦理影院| 极品人妻少妇av视频| 国产美女午夜福利| 成年人免费黄色播放视频 | 午夜福利视频精品| 日韩电影二区| 国产精品成人在线| 午夜老司机福利剧场| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片 | 高清不卡的av网站| 麻豆精品久久久久久蜜桃| 尾随美女入室| 美女国产视频在线观看| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| 亚洲不卡免费看| 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 大又大粗又爽又黄少妇毛片口| 日本av免费视频播放| 99久久精品国产国产毛片| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 多毛熟女@视频| 日日啪夜夜爽| 男人舔奶头视频| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 99热6这里只有精品| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 伊人久久国产一区二区| 亚洲精品视频女| 亚洲高清免费不卡视频| 色5月婷婷丁香| 男女边摸边吃奶| 久久国产乱子免费精品| 欧美精品一区二区免费开放| 国产一区二区在线观看日韩| 国产黄色免费在线视频| 亚洲成色77777| 美女中出高潮动态图| 亚洲三级黄色毛片| 三级经典国产精品| 亚洲精品色激情综合| 国产欧美日韩一区二区三区在线 | 午夜av观看不卡| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 有码 亚洲区| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 国产免费一区二区三区四区乱码| 国产午夜精品一二区理论片| 色婷婷av一区二区三区视频| 妹子高潮喷水视频| 午夜日本视频在线| 国模一区二区三区四区视频| 亚洲久久久国产精品| 精品久久久久久久久av| 乱码一卡2卡4卡精品| 午夜av观看不卡| 熟女人妻精品中文字幕| 精品酒店卫生间| 欧美另类一区| 99久久人妻综合| 婷婷色麻豆天堂久久| 99久国产av精品国产电影| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 成人美女网站在线观看视频| 26uuu在线亚洲综合色| 人妻少妇偷人精品九色| 色94色欧美一区二区| 搡老乐熟女国产| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 一级黄片播放器| 国产成人精品久久久久久| 免费观看无遮挡的男女| 欧美变态另类bdsm刘玥| www.色视频.com| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩av久久| 国产白丝娇喘喷水9色精品| 久久午夜综合久久蜜桃| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜添av毛片| 国产欧美另类精品又又久久亚洲欧美| 成年av动漫网址| 哪个播放器可以免费观看大片| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区 | 亚洲不卡免费看| 午夜av观看不卡| 国产精品无大码| 狂野欧美激情性bbbbbb| 久久久久久久精品精品| 国产中年淑女户外野战色| 日本黄色日本黄色录像| 搡老乐熟女国产| 国产色爽女视频免费观看| 日韩制服骚丝袜av| 色婷婷久久久亚洲欧美| 亚洲性久久影院| 亚洲成色77777| 国产综合精华液| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的| 你懂的网址亚洲精品在线观看| 热re99久久国产66热| 国产欧美亚洲国产| 在线观看国产h片| 日韩精品免费视频一区二区三区 | 夜夜骑夜夜射夜夜干| 国产黄片美女视频| 久久青草综合色| 亚洲在久久综合| 欧美性感艳星| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| www.色视频.com| 自线自在国产av| 国产欧美日韩综合在线一区二区 | 国产在线免费精品| 人人妻人人添人人爽欧美一区卜| 国产精品人妻久久久久久| 精品久久国产蜜桃| h视频一区二区三区| 一边亲一边摸免费视频| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 熟妇人妻不卡中文字幕| 少妇丰满av| 欧美成人精品欧美一级黄| 国产精品成人在线| 在线观看www视频免费| 日本色播在线视频| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品古装| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 22中文网久久字幕| 国产黄色视频一区二区在线观看| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 久久免费观看电影| 韩国av在线不卡| av播播在线观看一区| 国产日韩欧美视频二区| 国产黄色免费在线视频| 国产美女午夜福利| 日产精品乱码卡一卡2卡三| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 久久久久久久国产电影| 亚洲美女视频黄频| 97在线人人人人妻| 十分钟在线观看高清视频www | 国产男女超爽视频在线观看| 精品国产国语对白av| 人体艺术视频欧美日本| 精品国产国语对白av| 最近中文字幕2019免费版| 亚洲四区av| 国产永久视频网站| 日本黄色片子视频| 欧美日韩视频精品一区| 亚洲精品国产av蜜桃| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 日韩三级伦理在线观看| 大又大粗又爽又黄少妇毛片口| 有码 亚洲区| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 中国美白少妇内射xxxbb| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| 日本av手机在线免费观看| 少妇高潮的动态图| 国产精品久久久久久av不卡| 波野结衣二区三区在线| 日韩欧美精品免费久久| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 美女大奶头黄色视频| 日韩一区二区三区影片| 日本av免费视频播放| 自线自在国产av| 精品久久久久久电影网| 精品久久久噜噜| 国产精品免费大片| 18+在线观看网站| 久久精品久久精品一区二区三区| 女性生殖器流出的白浆| 一本久久精品| 日韩欧美 国产精品| 免费在线观看成人毛片| 欧美日韩视频精品一区| 99热这里只有精品一区| av免费在线看不卡| 男人添女人高潮全过程视频| 精品一区在线观看国产| 在线精品无人区一区二区三| 国产成人免费无遮挡视频| 大陆偷拍与自拍| 成年人午夜在线观看视频| 午夜日本视频在线| 亚洲精品中文字幕在线视频 | 男男h啪啪无遮挡| 高清午夜精品一区二区三区| av女优亚洲男人天堂| 日本av免费视频播放| 亚洲图色成人| 国产精品人妻久久久影院| 国产成人午夜福利电影在线观看| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 人妻人人澡人人爽人人| 久久久久久久久久久久大奶| 亚洲国产欧美日韩在线播放 | 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 国产男女内射视频| kizo精华| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 人妻少妇偷人精品九色| 如日韩欧美国产精品一区二区三区 | 少妇丰满av| 久久精品国产鲁丝片午夜精品| 777米奇影视久久| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 免费看日本二区| 久久久久久伊人网av| 精品一区二区三卡|