劉浩,李瑋,魏強,周永勝*
(1. 北京大學(xué)口腔醫(yī)學(xué)院·口腔醫(yī)院, 北京 100081; 2. 中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實驗動物研究所,北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,北京 100021)
自從高效聯(lián)合抗反轉(zhuǎn)錄病毒治療(highly active anti-retroviral therapy,HAART)廣泛應(yīng)用以來,艾滋病病毒(human immunodeficiency virus,HIV)感染者的期望壽命顯著延長[1-3]。然而,越來越多的證據(jù)表明許多年齡相關(guān)的并發(fā)癥如骨骼肌肉失能、心血管疾病、腎損傷以及非艾滋病(acquired immune deficiency syndrome,AIDS)相關(guān)的惡性腫瘤等疾病在HIV感染群體中呈現(xiàn)高風(fēng)險和低齡化的特點[4-6]。其中,AIDS相關(guān)的骨質(zhì)疏松和骨量減少引起了越來越多的學(xué)者們關(guān)注。
骨質(zhì)疏松癥(osteoporosis,OP)是一種以骨量減少、骨微結(jié)構(gòu)損壞、骨強度下降、易發(fā)生脆性骨折為特征的全身性骨代謝疾病。骨質(zhì)疏松骨折相關(guān)的病死率和病殘率的增加給社會、家庭帶來沉重的經(jīng)濟(jì)負(fù)擔(dān)。目前,世界衛(wèi)生組織(World Health Organization, WHO)骨質(zhì)疏松診斷標(biāo)準(zhǔn)為:使用雙能X線骨密度儀(dual energy X-ray absorptiometry, DEXA)檢測腰椎或髖部的骨密度(bone mineral density, BMD),與健康的同性別人群BMD平均值相比較,檢測值介于1-2.5個標(biāo)準(zhǔn)差的為骨量減低(-2.5SD 目前研究已經(jīng)確定HIV感染是骨質(zhì)疏松和骨量減少的高危因素[8-10],但發(fā)病機制仍不清楚。歐美國家的多項大樣本量隊列研究表明HIV感染者骨折發(fā)病率較未感染人群上升2~5倍,而且這種發(fā)病率的上升并沒有性別差異[11-13]。雖然我國關(guān)于HIV感染和骨質(zhì)疏松的大樣本量隊列研究沒有報道,但是小樣本量的研究也表明HIV感染者骨量減少的比率較健康對照者增高1.52~2倍[14]。綜合大量研究表明,艾滋病患者罹患骨質(zhì)疏松主要有以下三類原因:(1)年齡增長和激素變化導(dǎo)致的原發(fā)性骨質(zhì)疏松,這也是所有人群骨質(zhì)疏松發(fā)病的危險因素[15];(2)病毒感染導(dǎo)致的繼發(fā)性骨質(zhì)疏松[16];(3)HAART引發(fā)的繼發(fā)性骨質(zhì)疏松[17]。這三類骨質(zhì)疏松誘因共同作用導(dǎo)致了HIV感染者骨量快速下降,進(jìn)而導(dǎo)致骨質(zhì)疏松。目前,原發(fā)性骨質(zhì)疏松仍無持續(xù)有效的治療方法,藥物治療所帶來的副作用也不容忽視[18];而HIV病毒感染到如今也沒有有效的清除辦法。所以前兩種骨質(zhì)疏松的危險因素現(xiàn)階段無法有效解決。而HAART雖然會誘發(fā)繼發(fā)性骨質(zhì)疏松,但卻是目前唯一有效的AIDS治療方法,無法替代。因此,在保證HAART抗病毒療效的前提下,減少HAART誘發(fā)的骨質(zhì)疏松發(fā)病率已經(jīng)成為諸多科學(xué)家的研究方向。下面,本文將就HAART引發(fā)繼發(fā)性骨質(zhì)疏松的流行病學(xué)和機制的研究進(jìn)展做一綜述。 既往研究表明,在HAART治療的前兩年,相比較絕經(jīng)后骨質(zhì)疏松的HIV未感染人群,藥物因素額外貢獻(xiàn)了2%~6%的BMD降低率[19]。另一項研究也證明,相較于HIV未感染人群,HIV感染人群由于HAART引發(fā)骨質(zhì)疏松的比值比(odds ratio,OR)為2.5,而該研究對象所有骨質(zhì)疏松誘因的比值比僅為3.7 [95%置信區(qū)間(confidence interval,CI)2.3-5.9][20]。不僅如此,這種藥物相關(guān)的骨毒性是廣泛存在于不同年齡段的兩性人群中[9, 21]。目前,針對抗反轉(zhuǎn)錄病毒藥物和骨質(zhì)疏松之間關(guān)系的研究幾乎囊括了所有的抗病毒藥物的種類,但主要研究還是集中在核苷類反轉(zhuǎn)錄酶抑制劑(nucleotide reverse transcriptase inhibitor,NRTI)和蛋白酶抑制劑(protease inhibitors,PI)上。 NRTI是合成HIV過程中DNA逆轉(zhuǎn)錄酶底物脫氧核苷酸的類似物,在體內(nèi)可通過與天然的三磷酸脫氧核苷競爭HIV逆轉(zhuǎn)錄酶的結(jié)合位點來阻礙前病毒的合成。在該類藥物中,替諾福韋酯(tenofovir disoproxil fumarate,TDF)是公認(rèn)的骨量降低/骨質(zhì)疏松的禁忌藥物。有研究表明采用TDF進(jìn)行抗病毒治療的患者比用其他NRTI藥物治療的患者,其BMD要多下降1%~3%[22, 23]。Assoumou L的研究也表明TDF與髖骨BMD(OR 2.8, 95% CI 1.3-5.9)和椎體BMD(OR 2.4, 95% CI 1.2-4.9)下降顯著相關(guān)[24]。 PI是基于肽類的化合物,PI能競爭性抑制蛋白酶活性或作為互補蛋白酶活性點的抑制劑。其主要作用于艾滋病病毒復(fù)制的最后階段,使HIV病毒無法從感染的CD4細(xì)胞核中形成DNA進(jìn)而病毒不能聚集和釋放。目前,絕大部分研究已經(jīng)確認(rèn)PI和BMD降低存在相關(guān)性[25-27]。例如,一項隊列研究表明使用PI藥物與腰椎和股骨頸低骨量的OR值分別為1.100 [95% CI 1.003-1.207]和1.187 [95% CI 1.043-1.351][25];此外,Bedimo等[28]學(xué)者認(rèn)為洛匹那韋/利托那韋(lopinavir/ ritonavir,LPV/r)是骨質(zhì)疏松骨折的獨立預(yù)測因子。但是,也有學(xué)者持反對意見。例如,艾滋病臨床研究小組(AIDS Clinical Trials Group,ACTG)一項研究顯示,兩組患者分別服用依法韋侖(efavirenz,EFV)或奈非那韋/利托那韋(nelfinavir/ ritonavir,NFV/r),服藥前后兩組患者全身平均BMD差值沒有顯著性差異。由于之前研究表明EFV并不會導(dǎo)致骨質(zhì)疏松,所以研究者推斷NFV/r 也不會造成骨質(zhì)疏松[29]。當(dāng)然,這或許與此研究測量的是全身體平均BMD而不是WHO推薦的椎體或髖骨等特異性位點有關(guān)。此外,還有少量研究探索了不同PI藥物對BMD降低的影響。ACTG的另一項研究認(rèn)為服用阿扎那韋/利托那韋(atazanavir/ ritonavir,ATV/r)或地瑞那韋/利托那韋(darunavir/ ritonavir,DRV/r)的患者的椎體和髖骨BMD下降程度沒有顯著性差異,但這兩類PIs導(dǎo)致椎體和髖骨BMD下降程度比整合酶鏈轉(zhuǎn)移抑制劑(integrase strand transfer inhibitor,INSTI)雷特格韋(raltegravir,RAL)要大得多[30]。 骨組織重塑終生持續(xù)存在,其維持正常生理功能是通過成骨細(xì)胞介導(dǎo)的骨形成和破骨細(xì)胞介導(dǎo)的骨吸收之間的動態(tài)平衡來實現(xiàn)的[31-32]。骨吸收和骨形成受多種因素調(diào)節(jié)。雖然目前HAART引發(fā)繼發(fā)性骨質(zhì)疏松的可能機制仍不清楚,但是這種作用必然是骨吸收速率大于骨形成速率的結(jié)果。目前,研究者們認(rèn)為HAART引發(fā)繼發(fā)性骨質(zhì)疏松的可能機制有以下四種: 抗病毒藥物對骨細(xì)胞的作用體現(xiàn)在兩個方面——影響來源于造血干細(xì)胞的破骨細(xì)胞和來源于骨髓間充質(zhì)干細(xì)胞的成骨細(xì)胞。破骨細(xì)胞方面,有研究表明TDF通過下調(diào)Gnas,Got2和Snord32 a基因的表達(dá)導(dǎo)致原代破骨細(xì)胞功能紊亂[33];利托那韋(ritonavir,RTV)可以通過上調(diào)生長因子的表達(dá)來促進(jìn)外周血單核淋巴細(xì)胞(peripheral blood mononuclear cells,PBMCs)分化成破骨細(xì)胞[34]。成骨細(xì)胞方面,Grigsby IF的研究認(rèn)為TDF在體外影響了原代成骨細(xì)胞的多條成骨信號通路、細(xì)胞周期、氨基酸和能量代謝的多個基因[35]。Vincenzo Esposito的研究也表明TDF和阿巴卡韋(abacavir,ABC)通過降低I型膠原基因和p21 mRNA的表達(dá)減少了骨肉瘤細(xì)胞的鈣沉積量[36]。Hernandez-Vallejo SJ的研究表明ATV和LPV會通過誘導(dǎo)人骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)沉默而導(dǎo)致干細(xì)胞成骨細(xì)胞向分化能力下降,這與臨床觀察相一致[32]。 此外,也有研究者有不一致的觀點。Gibellini等[37]認(rèn)為膦沙那韋(fosamprenavir,F(xiàn)PV)作用于成骨樣細(xì)胞時導(dǎo)致其增加了OPG的表達(dá),降低了RANKL的表達(dá),這樣的結(jié)果應(yīng)該是導(dǎo)致BMD增加而不是降低。但是,由于成骨和破骨是類似蹺蹺板式的關(guān)系,單純觀測成骨或破骨一方的升高或降低不足以推斷出最終的骨變化。進(jìn)一步全面深入的研究才有可能解釋抗病毒藥物對骨代謝的影響。 因為HAART誘發(fā)骨質(zhì)疏松具有普遍性,所以推斷可能是由于HAART抑制了HIV感染和促進(jìn)免疫恢復(fù)的原因。Ofotokun等[37]研究表明HAART治療12周后T細(xì)胞數(shù)量達(dá)到峰值,與此同時,在這個時間點骨吸收也達(dá)到了峰值。通過免疫重構(gòu)動物模型觀察到,免疫重構(gòu)后小鼠BMD確實出現(xiàn)了顯著下降,這是由于T細(xì)胞和其他免疫細(xì)胞產(chǎn)生了RANKL和TNF-α等促破骨的細(xì)胞因子[38]。但是,也有研究表明,利用TDF進(jìn)行健康兩性人群HIV暴露前的預(yù)防時,TDF導(dǎo)致的骨丟失可以逆轉(zhuǎn),據(jù)此可以推斷TDF的骨毒性或許跟HIV感染或免疫重構(gòu)無關(guān)[39-41]。 維生素D對于骨代謝和血清鈣含量的維持具有重要作用。在HIV感染人群中,維生素D缺乏非常常見,特別是在使用TDF和EFV進(jìn)行抗病毒治療時[42-44]。有研究表明,在體外,PIs通過抑制肝細(xì)胞和單核細(xì)胞的25-和1α-羥化酶來降低活性代謝產(chǎn)物1,25-二羥維生素D [1,25-(OH)2D]的含量[45]。此外,多項研究也表明了PIs和25-羥維生素D [25-(OH)D]存在顯著正相關(guān),這或許與PIs抑制了25-(OH)D轉(zhuǎn)化為活性產(chǎn)物1,25-(OH)2D有關(guān)[46-48]。 目前研究發(fā)現(xiàn),TDF在腎近曲小管上皮細(xì)胞處累積會造成近曲腎小管的功能紊亂,嚴(yán)重時可引起范可尼綜合征(高磷酸鹽尿癥、高氨基酸尿癥和糖尿),導(dǎo)致骨質(zhì)降低、骨軟化以及骨質(zhì)疏松[14]。 HAART導(dǎo)致骨質(zhì)疏松具有普遍性,其中NRTI和PI仍是兩類對BMD影響最大的抗病毒藥物,也是HAART療法的重要組成部分。這類藥物的骨毒性可能是由于HAART治療后抑制HIV感染和促進(jìn)T細(xì)胞恢復(fù)有關(guān),也可能與藥物影響了骨細(xì)胞或維生素D代謝相關(guān)。當(dāng)前,HAART療法是AIDS治療的主要方法且具有不可替代性,因此,通過研究HAART療法中抗病毒藥物導(dǎo)致骨質(zhì)疏松的機制和相關(guān)防治方法來降低藥物的骨毒性具有重要的臨床意義。 參考文獻(xiàn)(References) [1] Gunthard HF, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel [J]. JAMA, 2014, 312: 410-425. [2] Group ISS, Lundgren JD, Babiker AG, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection [J]. N Engl J Med, 2015, 373: 795-807. [3] Harrison KM, Song R, Zhang X. Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States [J]. J Acquir Immune Defic Syndr, 2010, 53: 124-130. [4] Aberg JA. Aging, inflammation, and HIV infection [J]. Top Antivir Med, 2012, 20: 101-105. [5] Smit M, Brinkman K, Geerlings S, et al. Future challenges for clinical care of an ageing population infected with HIV: a modelling study [J]. Lancet Infect Dis, 2015, 15: 810-818. [6] Odongo P, Wanyama R, Obol JH, et al. Impaired renal function and associated risk factors in newly diagnosed HIV-infected adults in Gulu Hospital, Northern Uganda [J]. BMC Nephrol 2015, 16: 43. [7] Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis [J]. N Engl J Med, 2016, 375: 1532-1543. [8] Dong HV, Cortes YI, Shiau S, et al. Osteoporosis and fractures in HIV/hepatitis C virus coinfection: a systematic review and meta-analysis [J]. AIDS, 2014, 28: 2119-2131. [9] Short CE, Shaw SG, Fisher MJ, et al. Prevalence of and risk factors for osteoporosis and fracture among a male HIV-infected population in the UK [J]. Int J STD AIDS, 2014, 25: 113-121. [10] Aydin OA, Karaosmanoglu HK, Karahasanoglu R, et al. Prevalence and risk factors of osteopenia/osteoporosis in Turkish HIV/AIDS patients [J]. Braz J Infect Dis, 2013, 17: 707-711. [11] Sharma A, Shi Q, Hoover DR, et al. Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the Women’s Interagency HIV Study [J]. J Acquir Immune Defic Syndr, 2015, 70: 54-61. [12] Guerri-Fernandez R, Vestergaard P, Carbonell C, et al. HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study [J]. J Bone Miner Res, 2013, 28: 1259-1263. [13] Young B, Dao CN, Buchacz K, et al. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006 [J]. Clin Infect Dis, 2011, 52:1061-1068. [14] Tien C, Xu JJ, Chan LS, et al. Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling [J]. Dig Dis Sci, 2015, 60: 566-572. [15] Jackson RD, Mysiw WJ. Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative [J]. Semin Reprod Med, 2014, 32: 454-462. [16] Compston J. HIV infection and osteoporosis [J]. Bonekey Rep, 2015, 4: 636. [17] Madeddu G, Spanu A, Solinas P, et al. Different impact of NNRTI and PI-including HAART on bone mineral density loss in HIV-infected patients [J]. Eur Rev Med Pharmacol Sci, 2015, 19: 4576-4589. [18] Gu HF, Gu LJ, Wu Y, et al. Efficacy and safety of denosumab in postmenopausal women with osteoporosis: a meta-analysis [J]. Medicine (Baltimore), 2015, 94: e1674. [19] McComsey GA, Tebas P, Shane E, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers [J]. Clin Infect Dis, 2010, 51: 937-946. [20] Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review [J]. AIDS, 2006, 20: 2165-2174. [21] Chun EH, Kim H, Suh CS, et al. Polymorphisms in neuropeptide genes and bone mineral density in Korean postmenopausal women [J]. Menopause, 2015, 22: 1256-1263. [22] Huang JS, Hughes MD, Riddler SA, et al. Bone mineral density effects of randomized regimen and nucleoside reverse transcriptase inhibitor selection from ACTG A5142 [J]. HIV Clin Trials, 2013, 14: 224-234. [23] Wohl DA, Bhatti L, Small CB, et al. The ASSURE study: HIV-1 suppression is maintained with bone and renal biomarker improvement 48 weeks after ritonavir discontinuation and randomized switch to abacavir/lamivudine + atazanavir [J]. HIV Med, 2016, 17: 106-117. [24] Assoumou L, Katlama C, Viard JP, et al. Changes in bone mineral density over a 2-year period in HIV-1-infected men under combined antiretroviral therapy with osteopenia [J]. AIDS 2013, 27: 2425-2430. [25] Kinai E, Nishijima T, Mizushima D, et al. Long-term use of protease inhibitors is associated with bone mineral density loss [J]. AIDS Res Hum Retroviruses, 2014,30:553-559. [26] Grant PM, Kitch D, McComsey GA, et al. Low baseline CD4+count is associated with greater bone mineral density loss after antiretroviral therapy initiation [J]. Clin Infect Dis, 2013, 57: 1483-1488. [27] Kooij KW, Wit FW, Bisschop PH, et al. Low bone mineral density in patients with well-suppressed HIV infection: association with body weight, smoking, and prior advanced HIV disease [J]. J Infect Dis, 2015, 211: 539-548. [28] Bedimo R, Maalouf NM, Zhang S, et al. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents [J]. AIDS, 2012, 26: 825-831. [29] Tebas PU, T.; Dube, MP., et al. Initiation of ART is associated with bone loss independent of the specific ART regimen. The results of ACTG A5005s [C]. In: 14th Conference on Retroviruses and Opportunistic Infections. Edited by editors. Los Angeles, CA, 2007. [30] Brown TT, Moser C, Currier JS, et al. Changes in bone mineral density after initiation of antiretroviral treatment with Tenofovir Disoproxil Fumarate/Emtricitabine plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir [J]. J Infect Dis, 2015,212:1241-1249. [31] Ofotokun I, McIntosh E, Weitzmann MN. HIV: inflammation and bone [J]. Curr HIV/AIDS Rep, 2012, 9: 16-25. [32] Hernandez-Vallejo SJ, Beaupere C, Larghero J, et al. HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin [J]. Aging Cell, 2013, 12: 955-965. [33] Grigsby IF, Pham L, Gopalakrishnan R, et al. Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts [J]. Biochem Biophys Res Commun, 2010, 391: 1324-1329. [34] Santiago F, Oguma J, Brown AM, et al. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir [J]. Biochem Biophys Res Commun, 2012, 417: 223-230. [35] Grigsby IF, Pham L, Mansky LM, et al. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss [J]. Biochem Biophys Res Commun, 2010, 394: 48-53. [36] Esposito V, Perna A, Lucariello A, et al. Different impact of antiretroviral drugs on bone differentiation in an in vitro model [J]. J Cell Biochem, 2015, 116: 2188-2194. [37] Gibellini D, Borderi M, de Crignis E, et al. Analysis of the effects of specific protease inhibitors on OPG/RANKL regulation in an osteoblast-like cell line [J]. New Microbiol, 2010, 33: 109-115. [38] Ofotokun I, Titanji K, Vikulina T, et al. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss [J]. Nat Commun, 2015, 6: 8282. [39] Mulligan K, Glidden DV, Anderson PL, et al. Effects of Emtricitabine/Tenofovir on bone mineral density in HIV-negative persons in a randomized, double-blind, placebo-controlled trial [J]. Clin Infect Dis, 2015,61:572-580. [40] Tyack PL, Calambokidis J, Friedlaender A, et al. Formal Comment on Schorr GS, Falcone EA, Moretti DJ, Andrews RD (2014) First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives [J]. PLoS ONE 9(3): e92633. doi:10.1371/journal.pone.0092633. PLoS One, 2015, 10: e0142287. [41] Mirembe BG, Kelly CW, Mgodi N, et al. Bone mineral density changes among young, healthy african women receiving oral Tenofovir for HIV preexposure prophylaxis [J]. J Acquir Immune Defic Syndr, 2016, 71: 287-294. [42] Hidron AI, Hill B, Guest JL, et al. Risk factors for vitamin D deficiency among veterans with and without HIV infection [J]. PLoS One, 2015, 10: e0124168. [43] Cervero M, Agud JL, Garcia-Lacalle C, et al. Prevalence of vitamin D deficiency and its related risk factor in a Spanish cohort of adult HIV-infected patients: effects of antiretroviral therapy [J]. AIDS Res Hum Retroviruses, 2012, 28: 963-971. [44] Havens PL, Stephensen CB, Hazra R, et al. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial [J]. Clin Infect Dis, 2012, 54: 1013-1025. [45] Cozzolino M, Vidal M, Arcidiacono MV, et al. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D [J]. AIDS, 2003, 17: 513-520. [46] Kim JH, Gandhi V, Psevdos G, Jr., et al. Evaluation of vitamin D levels among HIV-infected patients in New York City [J]. AIDS Res Hum Retroviruses, 2012, 28: 235-241. [47] Cervero M, Agud JL, Torres R, et al. Higher vitamin D levels in HIV-infected out-patients on treatment with boosted protease inhibitor monotherapy [J]. HIV Med, 2013, 14: 556-562. [48] Koga I, Seo K, Yoshino Y, et al. Increase of 25-hydroxyvitamin D levels after initiation of combination antiretroviral therapy [J]. J Infect Chemother, 2015, 21: 737-741.1 HAART引發(fā)繼發(fā)性骨質(zhì)疏松的流行病學(xué)調(diào)查
1.1 NRTI引發(fā)繼發(fā)性骨質(zhì)疏松的流行病學(xué)調(diào)查
1.2 PI引發(fā)繼發(fā)性骨質(zhì)疏松的流行病學(xué)調(diào)查
2 HAART引發(fā)繼發(fā)性骨質(zhì)疏松的可能機制
2.1 抗病毒藥物直接影響骨細(xì)胞代謝
2.2 HAART通過抑制HIV感染和促進(jìn)免疫恢復(fù)導(dǎo)致繼發(fā)性骨質(zhì)疏松
2.3 HAART通過改變維生素D代謝誘發(fā)繼發(fā)性骨質(zhì)疏松
2.4 TDF通過腎毒性導(dǎo)致繼發(fā)性骨質(zhì)疏松
3 結(jié)語