,
(Department of Nuclear Medicine, Tianjin Medical University Cardiovascular Clinical Institute and TEDA International Cardiovascular Hospital, Tianjin 300457, China)
心源性猝死(sudden cardiac death, SCD)指突發(fā)的、不可預(yù)料的、在癥狀出現(xiàn)后1 h之內(nèi)的死亡,具有發(fā)病突然、進(jìn)展迅速、后果嚴(yán)重、死亡率高和難以準(zhǔn)確預(yù)測(cè)等特點(diǎn)。SCD最主要原因是惡性心律失常,其中室性心動(dòng)過(guò)速和心室顫動(dòng)等最多見(jiàn);但任何累及心臟的疾病最終均可能導(dǎo)致SCD,其確切機(jī)制尚不明確。冠狀動(dòng)脈粥樣硬化性心臟病(以下簡(jiǎn)稱(chēng)冠心病)是SCD最常見(jiàn)的病因,特別是心力衰竭患者發(fā)生SCD的概率更高;其他病因還有非粥樣硬化性冠狀動(dòng)脈疾病、心肌病和其他器質(zhì)性心臟病及遺傳性離子通道疾病。器質(zhì)性心臟病患者屬猝死高危人群,尤其是合并嚴(yán)重心力衰竭、室性心律失常、不明原因暈厥等患者。美國(guó)心力衰竭早期死亡病例中,SCD占約22%[1],而慢性心力衰竭治療過(guò)程中,SCD約占死亡原因的50%[2]。目前指南側(cè)重于以左心室射血分?jǐn)?shù)(left ventricular ejection fraction, LVEF)作為SCD風(fēng)險(xiǎn)分層和患者管理的主要指標(biāo)[3-4],許多LVEF正常的患者仍有發(fā)生SCD風(fēng)險(xiǎn),而根據(jù)指南,這類(lèi)患者不符合放置植入式心臟復(fù)律除顫器(implantable cardioverter defibrillator, ICD)適應(yīng)證,單純以L(fǎng)VEF作為SCD風(fēng)險(xiǎn)分層指標(biāo)顯然缺乏敏感度和特異度。放射性核素顯像的SPECT或PET技術(shù)可從心肌血流灌注、糖或脂肪酸代謝、心臟交感神經(jīng)活性分布等角度進(jìn)行分子水平無(wú)創(chuàng)性顯像,具有較高特異度和敏感度,可以預(yù)測(cè)主要心臟不良事件(major adverse cardiac event, MACE)發(fā)生、識(shí)別高危人群,甚至篩選干預(yù)性治療適應(yīng)證,為臨床提供無(wú)創(chuàng)性診斷、評(píng)價(jià)方法。
1.1 技術(shù)特點(diǎn) MPI由SPECT或PET技術(shù)獲得。由于PET的空間分辨力更高,其診斷敏感度和特異度高于SPECT。MPI顯像劑經(jīng)靜脈注射后隨冠狀動(dòng)脈血流進(jìn)入心肌細(xì)胞,其進(jìn)入心肌細(xì)胞的“量”與局部的“血流量”成正比,經(jīng)首次冠狀動(dòng)脈循環(huán)基本達(dá)到心肌最大攝取。MPI可定量或半定量化反映心肌血流減低程度,包括心肌梗死范圍、程度、LVEF及收縮同步性。有無(wú)缺血、范圍及程度、梗死瘢痕范圍及左心室功能等均與預(yù)后相關(guān),是包括SCD在內(nèi)的MACE預(yù)測(cè)因子。
1.2 在SCD中的應(yīng)用研究 對(duì)于ST段抬高型急性心肌梗死,應(yīng)通過(guò)介入技術(shù)盡早開(kāi)通梗死相關(guān)血管;而對(duì)于慢性穩(wěn)定型冠心病,尋找有無(wú)缺血及范圍的客觀證據(jù)、進(jìn)行危險(xiǎn)分層,進(jìn)而選擇藥物治療和/或血管重建更為重要[5]。一項(xiàng)對(duì)4 865例冠心病患者(LVEF>35%)MPI顯像后的風(fēng)險(xiǎn)評(píng)估研究[6]表明,負(fù)荷MPI灌注異常范圍與SCD發(fā)生相關(guān)。Piccini等[7]研究6 383例冠心病患者M(jìn)PI,進(jìn)行回顧性風(fēng)險(xiǎn)評(píng)估,發(fā)現(xiàn)MPI負(fù)荷總評(píng)分與SCD發(fā)生率相關(guān),是心臟性猝死預(yù)測(cè)因子之一。Rijnierse等[8]指出,在缺血性心臟病患者中,心肌血流量和左心室心肌血流儲(chǔ)備分?jǐn)?shù)異常減低與電生理評(píng)估過(guò)程中心室率失常有關(guān),表明受損心肌血流量與心臟電生理不穩(wěn)定相關(guān),有助于對(duì)SCD患者進(jìn)行危險(xiǎn)分層。Majmudar等[9]發(fā)現(xiàn)PET測(cè)定左心室心肌血流儲(chǔ)備分?jǐn)?shù)減低與MACE事件有關(guān)。Tsai等[10]認(rèn)為在缺血性心肌病患者中應(yīng)用MPI獲得的左心室收縮同步性參數(shù)有助于預(yù)測(cè)室性心律失常(包括室性心動(dòng)過(guò)速和心室顫動(dòng))發(fā)生,后者是導(dǎo)致SCD的重要因素。
2.1 技術(shù)特點(diǎn) 在空腹、有氧生理?xiàng)l件下,脂肪酸是心肌細(xì)胞代謝主要能量來(lái)源,占ATP供給總量65%,葡萄糖和乳酸提供心肌所需能量的35%。缺血或缺氧條件下,游離脂肪酸代謝受到抑制而轉(zhuǎn)向葡萄糖代謝。18F-FDG是葡萄糖類(lèi)似物,進(jìn)入心肌細(xì)胞后被磷酸化為18F-FDG-6-磷酸,但不能參與糖原合成、糖酵解和去磷酸化等其他代謝過(guò)程,不能進(jìn)一步代謝,而以該形式滯留在心肌細(xì)胞內(nèi),反映其攝取和利用葡萄糖速率;若心肌細(xì)胞壞死,則能量代謝活動(dòng)停止,不能攝取18F-FDG。BMIPP是游離脂肪酸分支類(lèi)似物,模擬體內(nèi)游離脂肪酸有氧氧化過(guò)程,123I標(biāo)記BMIPP反映脂肪酸代謝。123I-BMIPP減低不僅與病理?xiàng)l件下心臟脂肪酸代謝障礙有關(guān),還與隨之發(fā)生的MACE事件,包括SCD存在關(guān)聯(lián)。
2.2 在SCD中的應(yīng)用研究 缺血、缺氧時(shí)冬眠心肌局部存在去交感神經(jīng)分布支配,此現(xiàn)象與SCD發(fā)生率有密切關(guān)系。利用18F-FDG顯像提示有冬眠心肌時(shí),發(fā)生去交感神經(jīng)分布支配的冬眠心肌具有一定預(yù)測(cè)SCD發(fā)生的作用,有助于選擇ICD適應(yīng)證[11]。此外,心肌脂肪酸代謝障礙與室性心律失常緊密相關(guān),代謝障礙者易發(fā)展為室性心律失常,心肌脂肪酸顯像預(yù)測(cè)心臟事件發(fā)生有一定價(jià)值[12]。Yamashita等[13]對(duì)100例缺血性心肌病患者血運(yùn)重建后植入ICD,行123I-BMIPP脂肪酸和201Tl血流顯像,對(duì)比觀察接受和未接受ICD放電治療兩組(后者占19%),結(jié)果表明123I-BMIPP/201Tl顯像不匹配對(duì)ICD未來(lái)放電治療事件具有明顯預(yù)測(cè)價(jià)值。
3.1 技術(shù)特點(diǎn) 心臟自主神經(jīng)系統(tǒng)包括交感神經(jīng)與副交感神經(jīng)。交感神經(jīng)末梢釋放去甲腎上腺素和腎上腺素,作用于心肌細(xì)胞β1腎上腺素能受體;副交感神經(jīng)末梢釋放乙酰膽堿,作用于心肌毒蕈堿受體。去甲腎上腺素及乙酰膽堿都可以被神經(jīng)末梢重新攝取回神經(jīng)細(xì)胞內(nèi)。心力衰竭者心肌的顯著特征之一是交感神經(jīng)前突觸去甲腎上腺素?cái)z取明顯減少和后突觸β-腎上腺素能受體密度降低[14]。
MIBG類(lèi)似于去甲腎上腺素,參與神經(jīng)遞質(zhì)特異度攝取與儲(chǔ)存,但不同于去甲腎上腺素,MIBG被攝取分布后不被代謝,從而可顯示其分布[15]。123I-MIBG-SPECT平面成像分為早期像(注射后15~30 min)與延遲像(注射后3~4 h),采用心臟/縱隔比值(heart mediastinal ratio, HMR),即ROI技術(shù)勾畫(huà)心臟和縱隔區(qū)域ROI,計(jì)算二者ROI平均計(jì)數(shù)比值,可對(duì)圖像進(jìn)行半定量評(píng)估。此外,比較早期像與延遲像心臟區(qū)域MIBG計(jì)數(shù)比值,即MIBG在心臟神經(jīng)元內(nèi)洗脫,可作為反映去甲腎上腺素在心臟神經(jīng)元內(nèi)滯留的參數(shù)。
3.2 在SCD中的應(yīng)用研究 心臟交感神經(jīng)干走行分布與冠狀動(dòng)脈分布一致,其損傷位置往往呈現(xiàn)在心肌損傷處及其遠(yuǎn)端,且對(duì)缺血性損傷十分敏感,受損后修復(fù)緩慢?;诖耍琈IBG顯像被用來(lái)顯示“缺血記憶”,即“缺血記憶”顯像[16]。MIBG延遲像獲得的HMR是反映生存預(yù)后的參數(shù)之一,其閾值一般為1.2,HMR≤1.2預(yù)示生存預(yù)后較差,SCD發(fā)生率較高,與LVEF具有較好相關(guān)性。對(duì)心力衰竭患者的123I-MIBG顯像對(duì)照研究[17]顯示,在年齡60歲以上心肌梗死患者(心功能NYHA分級(jí)為Ⅲ~Ⅳ級(jí))中,延遲像HMR減低是SCD的預(yù)測(cè)因子。Nakajima等[18]對(duì)接受123I-MIBG顯像的955例慢性心力衰竭患者隨訪(fǎng)5年,發(fā)現(xiàn)205例死亡者中30%為SCD,且與MIBG顯像HMR危險(xiǎn)度分級(jí)明顯相關(guān),從而肯定了MIBG顯像在心力衰竭患者中預(yù)測(cè)SCD的明顯增益價(jià)值。ADMIR-HF多中心研究[19]表明,HMR<1.60組心力衰竭患者2年心性死亡率和全因死亡率為11.2%和16.1%,而HMR≥ 1.60組分別為1.8%和3.0%,二者差異明顯。
MIBG與MPI聯(lián)合顯像研究[20]結(jié)果顯示,交感神經(jīng)削弱和心肌灌注減低與導(dǎo)致SCD的致死性心律失常發(fā)生密切相關(guān),有助于篩選能從ICD治療中獲益較大的患者。Kawai等[21]發(fā)現(xiàn),MIBG顯像中顯像劑分布低評(píng)分對(duì)心力衰竭患者無(wú)需ICD治療的陽(yáng)性預(yù)測(cè)值達(dá)100%,可協(xié)助篩選ICD植入適應(yīng)證。Boogers等[22]對(duì)116例心力衰竭患者于植入ICD前行123I-MIBG顯像,MIBG顯像有明顯顯像劑分布減低(累積評(píng)分>26)患者ICD治療獲益大,提示123I-MIBG顯像所示心臟交感神經(jīng)去神經(jīng)化支配能改善因致死性心律失常而接受ICD治療者的危險(xiǎn)度分層。Nakajima等[23]指出,HMR比值低于1.6~1.8和MIBG洗脫率加速是心臟泵衰竭、SCD和致死性心律失常的高危指征,與其他指標(biāo)相比具有獨(dú)立或增益價(jià)值;HMR>2.0者則具有較好的長(zhǎng)期預(yù)后。
羥基麻黃堿(hydroxyephedrine,11C-HED)PET顯像為近期國(guó)外研究熱點(diǎn),用于定量交感神經(jīng)末梢分布密度。11C-HED攝取與去甲腎上腺素組織濃度相關(guān),攝取減低提示局部去交感神經(jīng)支配,是心律失常性MACE事件高危信號(hào)[24]。臨床前研究[25]表明,即使在無(wú)心肌梗死和心力衰竭情況下,有冬眠心肌者死于室速或室顫的發(fā)生率較高,且11C-HED PET顯像發(fā)現(xiàn)有廣泛的去交感神經(jīng)支配。Cain等[26]應(yīng)用11C-HED PET顯像對(duì)缺血性心肌病SCD發(fā)生危險(xiǎn)度進(jìn)行評(píng)估研究,結(jié)果顯示左心室去交感神經(jīng)支配大于37.6%是SCD發(fā)生的獨(dú)立預(yù)測(cè)因子,PET定量去交感神經(jīng)支配心肌能強(qiáng)有力預(yù)測(cè)SCD發(fā)生的危險(xiǎn)性,且獨(dú)立于LVEF、心肌梗死面積和其他參數(shù)。雖然11C-HED目前展示出了巨大前景,但由于其半衰期短,需由回旋加速器現(xiàn)場(chǎng)制備,目前應(yīng)用仍受限。LMI1195是一種基于18F的PET示蹤劑,類(lèi)似于MIBG,其半衰期較長(zhǎng),是極具前景的新型示蹤劑。初步研究結(jié)果[27-28]表明,LMI1195有助于識(shí)別高風(fēng)險(xiǎn)SCD患者,并可以協(xié)助引導(dǎo)ICD治療。
及時(shí)有效識(shí)別SCD高風(fēng)險(xiǎn)患者并采取相應(yīng)干預(yù)手段至關(guān)重要。目前診斷SCD主要依賴(lài)于評(píng)估LVEF,缺乏敏感度和特異度,而心臟核醫(yī)學(xué)成像提供了新型診斷手段。心肌血流、代謝、神經(jīng)成像對(duì)于識(shí)別LVEF增高或無(wú)LVEF功能障礙的患者更具優(yōu)勢(shì)。但目前仍缺乏大量的前瞻性研究,有待于進(jìn)一步驗(yàn)證心臟核素成像對(duì)于SCD的預(yù)測(cè)能力,從而發(fā)現(xiàn)過(guò)去未能識(shí)別的SCD患者,并對(duì)其進(jìn)行適當(dāng)干預(yù),為預(yù)測(cè)包括心臟猝死在內(nèi)的心臟事件、識(shí)別高危人群乃至篩選ICD植入適應(yīng)證提供無(wú)創(chuàng)影像學(xué)方法。
[參考文獻(xiàn)]
[1] Mehta PA, Dubrey SW, McIntyre HF, et al. Mode of death in patients with newly diagnosed heart failure in the general population. Eur J Heart Fail, 2008,10(11):1108-1116.
[2] MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet, 1999,353(9169):2001-2007.
[3] Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A reportof the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2012,60(14):1297-313.
[4] Priori SG, Blomstr?m-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J, 2015,36(41):2793-2867.
[5] Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation, 1998,97(6):535-543.
[6] Piccini JP, Starr AZ, Horton JR, et al. Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction >35%. Circulation, 2010,56(3):206-214.
[7] Piccini JP, Horton JR, Shaw LK, et al. Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging, 2008,1(3):180-188.
[8] Rijnierse MT, de Haan S, Harms HJ, et al. Impaired hyperemic myocardial blood flow is associated with inducibility of ventricular arrhythmia in ischemic cardiomyopathy. Circ Cardiovasc Imaging, 2014,7(1):20-30.
[9] Majmudar MD, Murthy VL, Shah RV,et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical out comes. Eur Heart J Cardiovascular Imaging, 2015,16(8):900-909.
[10] Tsai SC, Chang YC, Chiang KF, et al. LV dyssynchrony is helpful in predicting ventricular arrhythmia in ischemic cardiomyopathy after cardiac resynchronization therapy. Medicine (Baltimore), 2016,95(7):e2840.
[11] Kelesidis IK, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol, 2012,19(1):142-152.
[12] Nishimura M, Tsukamoto K, Hasebe N, et al. Prediction of cardiac death in hemodialysis patients by myocardial fatty acid imaging. J Am Coll Cardiol, 2008,51(2):139-145.
[13] Yamashita M, Inoue K, Iguchi N, et al. Abstract 12640: Prognostic utility of myocardial fatty acid imaging in risk stratification for sudden cardiac death in patients with ischemic cardiomyopathy. Circulation, 2011,124(21):A12640.
[14] Caldwell JH, Link JM, Levy WC, et al. Evidence for pre-to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med, 2008,49(2):234-241.
[15] Kasama S, Toyama T, Kurabayashi M. Usefulness of cardiac sympathetic nerve imaging using (123)iodine-metaiodobenzylguanidine scintigraphy for predicting sudden cardiac death in patients with heart failure. Int Heart, 2016,57(2):140-144.
[16] Dilsizian V, Bateman TM, Bergmann SR, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation, 2005,112(14):2169-2174.
[17] Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol, 1998,5(6):579-590.
[18] Nakajima K, Nakata T, Yamada T, et al. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using123I-metaiodobenzylguanidine imaging. Eur J Nucl Med Mol Imaging, 2014,41(9):1673-1682.
[19] Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol, 2010,55(20):2212-2221.
[20] Nishisato K, Hashimoto A, Nakata T, et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: Quantification of cardiac tracers in patients with ICDs. J Nucl Med, 2010,51(8):1241-1249.
[21] Kawai T, Yamada T, Tamaki S, et al. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction <35% at low risk for sudden cardiac death. Am J Cardiol, 2015,115(11):1549-1554.
[22] Boogers MJ, Jan WB, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol, 2010,55(24):2769-2777.
[23] Nakajima K, Nakata T. Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med, 2015,56(Suppl 4):11-19.
[24] Barletta V, Fabiani I, Lorenzo C, et al. Sudden cardiac death: A review focused on cardiovascular imaging. J Cardiovasc Echogr, 2014,24(2):41-51.
[25] Luisi AJ Jr, Suzuki G, Dekemp R, et al. Regional11C-hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med, 2005,46(8):1368-1374.
[26] Cain ME. Impact of denervated myocardium on improving risk stratification for sudden cardiac death. Trans Am Clin Climatol Assoc, 2014,125:141-153; discussion 153.
[27] Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the18F-labeled sympathetic nerve PET tracer LMI1195: Comparison with11Chydroxyephedrine and123I-MIBG. J Nucl Med, 2015,56(9):1429-1433.
[28] Higuchi T, Yousefi BH, Kaiser F, et al. Assessment of the18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med, 2013,54(7):1142-1146.
中國(guó)醫(yī)學(xué)影像技術(shù)2018年6期