• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma

    2018-01-22 09:27:27HossenShahHossenandMamunDepartmentofPhysicsJahangirnagarUniversitySavarDhaka34Bangladesh
    Communications in Theoretical Physics 2017年4期

    M.A.Hossen,M.G.Shah,M.R.Hossen,and A.A.MamunDepartment of Physics,Jahangirnagar University,Savar,Dhaka-34,Bangladesh

    2Department of Physics,Hajee Mohammad Danesh Science and Technology University,Dinajpur-5200,Bangladesh

    3Department of General Educational Development,Daffodil International University,Sukrabad,Dhaka-1207,Bangladesh

    1 Introduction

    In contrast with the past,there has been continual attention in quantum plasmas in ultra-dense astrophysical systems[1?9]as well as laboratory plasmas.[10?12]The quantum effects become noticeable on the study of electron-positron(EP)plasmas which exist in the pulsar magnetosphere,[13?14]active galactic nuclei,[15]in the early universe,[16]etc.,and in laboratory situations.[17?18]In most of the cases,the EP plasma is supposed to exist in relativistic regimes,[19]and most of the theoretical investigations on the nonlinear structures in EP as well as electron-positron-ion(EPI)plasma medium have been done considering the relativistic cases.[20?21]Positrons are created in the interstellar medium when the atoms become interacted by the cosmic ray nuclei.[22]The data obtained during the alpha magnetic spectrometer flight permitting to probe the radiation belts in the Earths innermost magnetosphere provided an evidence of the presence of positrons.[23?24]In order to study the collective behavior of a plasma containing electrons and positron,it is necessary to find the condition to neglect the annihilation process.Many authors have neglected the annihilation process in the ultra-relativistic dense plasmas.[25?26]

    Many astrophysical environments(viz.neutron stars,white dwarfs,etc.) where Fermi energy of the plasma species becomes comparable to or higher than their rest mass energy,show an unavoidable dependency on relativistic effects of plasma components.[27?30]The density of such a compact objects turned into so high that prevents gravitational collapse through the presence of degenerate pressure.Perhaps,there is a dramatic increase in energy of the accelerated particles to generate electrons and positrons by virtue of colliding these high-energy particles.For such an interstellar compact object,the degenerate pressure for the cold positron fluid can be given by the following equation,

    where

    for the non-relativistic limit(where Λc=π?/mc=1.2 ×10?10cm,and ? is the Planck constant divided by 2π).While for the electron and hot positron fluids,

    where for the non-relativistic limit[31?35]

    and for the ultra-relativistic limit[31?35]

    Presently,a considerable attention has been drawn to study the PA waves in astrophysical dense EPI plasmas containing distinct group of positrons(i.e.cold positrons and/or hot positrons).[36?38]The coexistence of cold and hot positron populations in pulsar magnetosphere has been predicted by Bharuthram.[39]In two temperature EPI plasma the interesting phenomena differing from that of one temperature can exist.Furthermore,in contrast to the case of the pure EP plasma,in two temperature EPI plasma the modulational instability may occur.Therefore,the prediction of existing cold and hot positrons species becomes momemtous to know the novel electrostatic perturbations as well as multi-dimensional instability in magnetized EPI plasmas.Basically,PA waves are the result of two distinct positron components(cold positron and hot positron)at different temperatures.The cold positron mass provides the inertia whereas the hot positrons and hot electrons provide the essential thermal pressure to develop the restoring force for the existence of PA waves.It is typically high frequency waves in comparison with the ion plasma frequency propagating at a phase speed which lies between the hot and cold positron thermal velocities.On the PA wave time scale,the ions are generally assumed stationary forming a neutralizing background.This means that the ion dynamics does not in fluence the PA waves because the PA wave frequency is much larger than the ion plasma frequency.

    The nonlinear propagation of IA,PA and Electronacoustic waves for the relativistic plasma has been theoretically studied by a number of authors.[38,40?52]El-Shamyet al.[38]numerically investigated the in fluences of the cold/hot positron parameters on the phase shifts in a plasma system consisting of cold positrons,immobile ions,electrons,and hot positrons.Sahu[44]examined the planar and nonplanar PA shock waves in an unmagnetized EPI plasma system(containing mobile cold positrons,stationary positive ions,and Boltzmann-distributed electrons and hot positrons),and showed the effects of the ion kinematic viscosity,and Boltzmann-distributed electrons and hot positrons on PA shock waves.In a relativistically degenerate magnetoplasma,Ali and Rahman[53]investigated IA waves and numerically shown that the IA solitons and shocks are signi ficantly in fluenced by various parameters of plasma system.

    However,all of these theoretical investigations[38,40?45]on the PA waves are accomplished in an unmagnetized EPI plasma system,and the effect of magnetic field or obliqueness is ignored.The Zakharov–Kuznetsov(ZK)equation and it’s solitary wave solution have been derived using the reductive perturbation method in a magnetized EPI plasma(consisting of inertial cold positrons,negatively charged immobile heavy ions,degenerate electrons,and hot positrons).Their multi-dimensional instability are also studied by the small-k(long-wavelength plane wave)perturbation expansion method.The effects of relativistic electrons/hot positrons degenerate pressure,obliqueness,etc.on the width,amplitude,and phase speed of the PASWs have been studied.

    The article is organized in the following way.The normalized governing equations are presented in Sec.2.The ZK equation and it’s stationary solitary wave solution are derived on Sec.3.The instability of the PASWs(linear wave analysis)has been analyzed in Secs.4 and 5.The parametric investigations of our plasma systems is given in Sec.6.Finally,this paper ends up with the conclusion which is given in Sec.7.

    2 Governing Equations

    We consider the propagation of low-frequency PASWs in a four components magnetized EPI plasma(containing inertial cold positrons,negatively charged immobile heavy ions,degenerate electrons,and hot positrons).At equilibrium,the quasi-neutrality condition readsnpc0+nhp0=ne0+Zini0,wherenpc0,nhp0,ne0,andni0are the equilibrium densities of the cold positrons,hot positrons,electrons and ions,respectively andZiis the ion-charged state.In our present work,we have considered the effects that come from degenerate pressure only;not any quantum effects related to any particular components.For this reason,quantum effect terms i.e.,Bohm potential,quantum spin effects,etc.are ignored in Eqs.(6)and(7).In some other works,[54?55]authors have taken into account Bohm potential associated with particular plasma components such as electrons and positrons.Authors may consider typical parameters instead of the normalized parameters but that is beyond the scope of the present work.It is notable that the mass of cold positron is exactly the same as that of hot positron and electron,but their temperatures are different.The temperature of the cold positron is assumed to be very small,and in our present work it is neglected compared to the temperatures of hot positrons and electrons.So,we consider inertial cold positron,and define the waves associated with the inertial cold positron fluid as the PASWs.The model,what we have considered,is magnetized and since cold positron gives the inertia of this system so that we provide the magnetized equation for the cold positron only.Furthermore,the magnetized cold ion or cold positron or cold electron is common in Refs.[56–59].

    The phase velocity of the PASWs is assumed to be much larger than the cold positrons thermal velocity and much less than the electrons/hot positrons thermal velocities,i.e.vTpc?ω/κ?vTph/vTe.In addition,electrons and hot positrons are considered to be inertialess and move almost parallel to the external magnetic field direction and negatively charged immobile heavy ions participate only to maintain the quasi-neutrality conditon.Under these situations,the basic set of nonlinear dynamic equations for magnetized cold positrons are governed as follows:

    The momentum equations for inertialess degenerate electrons and hot positrons are given by

    The Poisson equation is written as

    wherenpc(ns)is the cold positron(hot positron/electron)number density normalized by its equilibrium valuenpc0(nph0/ne0);upcis the cold positron fluid speed normalized byCpc=(msc2/mpc)1/2,ms(mpcandme)being the rest mass of species(cold positron and electron);jrepresents the charge state of plasma species(i.e.j=1 for electron andj=?1 for hot positron);cbeing the speed of light in vacuum;?is the electrostatic wave potential normalized bymec2/e,ebeing the magnitude of the charge of an electron;the time variabletis normalized byωpc?1=(mpc/4πe2npc0)1/2,and the space variable is normalized byλD=(mec2/4πe2npc0)1/2,respectively.Hereα=ne0/npc0,σ=nph0/npc0,μ=ni0/npc0,andωcpcbeing the cold positron cyclotron frequency(eB0/mpcc)normalized byωpc?1,andKs=nγ?1s0Ls/msc2,respectively.

    3 Derivation of Z-K Equation

    To derive the ZK equation for describing the nonlinear propagation of the PASWs in the EPI plasma under consideration,we use Eqs.(6)–(9),and employ the reductive perturbation technique.[60]We first introduce the stretched coordinates as

    where?is a small parameter measuring the weakness of the dispersion,Vpis the linear phase speed normalized by the PASWs speed(Cpc).It may be noted here thatX,Y,andZare all normalized by the Debye radius(λD),andτis normalized by the ion plasma periodWe next expand the quantities about their equilibrium values in a power series of?as[60?61]

    Now,using Eqs.(10)–(19)into Eqs.(6)–(9),taking the lowest order coeきcient of?,we can write

    whereK′=γKand Eq.(23)is the phase speed of the PA waves propagating in the magnetized EPI plasma under consideration.It is seen thatVpdecreases(increases)with the increase of the electron number density(cold positron number density).The first orderXandY-components of Eq.(7)can be written as

    Equations(24)and(25)represent theXandYcomponents of the cold positron electric field drifts.These equations are also satis fied by the second order continuity equation.Again,using Eqs.(10)–(19)into Eqs.(6)–(9),and eliminatingandthe next higher orderXandYcomponents can be found as

    Equations(26)and(27)represent theXandYcomponents of the cold positron polarization drifts.Now,following the same procedure one can obtain the next higher order continuity equation,andZcomponent of the momentum equation.Using these new higher order equations along with Eqs.(20)–(28),one can eliminateand?(2),and finally obtain

    where

    Equation(29)is the ZK equation describing the nonlinear propagation of the PASWs in a magnetized EPI plasma with degenerate relativistic electron and hot positron fluids.

    The stationary SWs solution of the ZK equation can be written as

    whereψm=3U0/δ1is the amplitude,andis the inverse of the width of the solitary waves.The PASWs with positive(negative)potentialψm>0(ψm<0)is found forB>0(B<0)for the permissible value of any parameter.

    4 Instability of the SWs

    The instability of the obliquely propagating PASWs is studied by adopting the method of small-kperturbation expansion.[62?66]We first assume that

    for a long-wavelength plane wave perturbation in a direction with direction cosines(lζ,lη,lξ),ψcan be written as

    After some algebric calculation the linearized ZK equation can be expressed as

    We have to find the expression ofω1by solving the zeroth,first,and second-order equations obtained from Eqs.(35)–(38).After integration,we can write the zeroth-order equation as

    whereCis an integration constant.The solutions of the homogeneous part of the Eq.(38)can be written as

    So,the general solution of this zeroth-order equation is as

    whereC1andC2are two integration constants.Now,evaluating all integrals,the general solution of this zerothorder equation,forφ0not tending to±∞ as Z → ±∞,can finally be simpli fied to

    The first-order equation,i.e.the equation with terms linear ink,obtained from Eqs.(35)–(38),and(42),after integration,it can be expressed as

    whereKis another integration constant,andα1andβ1are given by

    Now,following the same procedure,the general solution of this first-order equation,forφ1not tending to ±∞ as

    Z→±∞,can be written as

    The second-order equation,i.e.the equation with terms involvingk2,obtained from Eq.(38)after substituting Eqs.(35)–(37),can be written as

    where

    The solution of this second-order equation exists if the right-hand side is orthogonal to a kernel of the operator adjoint to the operator

    This kernel,which must tend to zero as Z→ ±∞,is?0=?msech2(κZ).Thus we can write the following equation determiningω1as follows

    Now,substituting the expressions forφ0andφ1given by Eqs.(48)and(51),and after integration,we arrive at the following dispersion relation

    where

    It is clear from the dispersion relation(50)that there is always instability if(Υ? ?2)>0.Thus,using Eqs.(32),(36),(44),(47),(51),and(52),one can express the instability criterion as[67?68]

    whereSican be expressed as

    If this instability criterionSi>0 is satis fied,the growth rateof the unstable perturbation of these PASWs is given by

    Equation(55)represents that the growth rate(Γ)of the unstable perturbation is a linear function of PASWs speed(U0),but a nonlinear function of the propagating angle(δ),cold positron-cyclotron frequency(ωcpc)and direction cosines(lζandlη).

    5 Linear Wave Analysis

    We have derived the linear dispersion relation for PASWs to evaluate the characteristics of the linear waves.By linearizing equation(29),we can write

    We assume that the variation of the dispersion relation(ω/k)in the transverse dimensions(theXandYdirections)is much slower than that of theZdirection.Afterward,we can neglect the transverse dimensions,i.e.,?/?X=?/?Y?→ 0.Then from Eq.(61),

    We first consider that perturbation varying as?(1)∝e?(iω+ikZ)in the small amplitude limit to derive the dispersion relation.Now,from Eq.(62),the dispersion relation for the linear ZK equation is given by,

    It is seen from the dispersion relation that PASWs signi ficantly modi fied by the the ratio of electron to cold positron number density(α),and with the ratio of hot positron to cold positron number density(σ).

    6 Parametric Investigations

    In this section,we will brie fly discuss the effects of the variation of the relative number densities such as the ratio of electron to cold positron number density(α),the ratio of hot positron to cold positron number density(σ),and the obliqueness(δ)of the magnetic field on the basic properties of the PASWs such as the amplitude(ψm),the width(Δ),and the instability.

    6.1 Linear Properties

    The dispersion relation which is shown in Eq.(63)is graphically represented in Fig.1.We find that the curve of the ultra-relativistic case is higher than that of the nonrelativistic case.The value ofωincreases more rapidly with the increase of the value ofkfor ultra-relativistic case than the non-relativistic case.

    Fig.1 (Color online)The variation of the angular frequency(ω)with wave number(k)of the PASWs for the non-relativistic(red)and ultra-relativistic(blue)cases.

    6.2 Nonlinear Properties

    (i)Effect of electron to cold positron number density ratioα:

    Fig.2 The variation of amplitude(ψm)of the PASWs for different values of α.The dashed curves are for the ultra-relativistic case where the solid curves are for the non-relativistic case.

    The effect of electron to cold positron number density ratio(α)on the amplitude(ψm)of the PASWs pro file is shown in Fig.2.It is found that the variation ofψmfor ultra-relativistic(γ=4/3)case is higher than the nonrelativistic(γ=5/3)case.The variation ofψmfor different values ofαis depicted Fig.2.It is found that theψmdecreases(increases)with the increase of the value of electron number density(cold positron number density).The variation of Δ with respect to the variation ofδandαis shown in Figs.5 and 6.It has been clear from our observation thatψmas well as Δ is always greater for the ultra-relativistic case than the non-relativistic case.After reaching a certain value,Δ begins to decrease with the increase ofδ,and becomes zero atδ=90°.

    (ii)Effect of hot positron to cold positron number density ratioσ:

    The variation of the PASWs pro fileψmandξwithσis shown in Fig.3 for both non-relativistic and ultrarelativistic cases.It is seen thatψmdecreases with the increase of the value ofσ.The variation of Δ with respect to the variation ofδandσare depicted in Figs.7 and 8.The Δ increases withδand reaches to it is maximum value with increasing ofδ.After reaching a certain value it begins to decrease and becomes zero atδ=90°.It has been clear from our observation that Δ is always greater in ultra-relativistic case than the non-relativistic case.

    Fig.3 The variation of amplitude(ψm)of the PASWs for different values of σ.The dashed curves are for the ultra-relativistic case where the solid curves are for the non-relativistic case.

    (iii)Effect of obliqueness parameterδ:

    It is assumed that the external magnetic field is directed along thez-axis,i.e.,B0=B0and the propagation is in thex–yplane.It is seen that the magnitude of the external magnetic field has no effect on the amplitude of the solitary waves.However,it does have an effect on the width of these solitary waves.The impact of the external magnetic fieldB0through cold positron cyclotron frequencyωcpcon the width of PASWs has been observed and found that the width of the K-dV soliton increases with the decreasing value ofωcpcfor the non-relativistic and the ultra-relativistic limits.It is shown that,as we increase the magnitude of the magnetic field,the width of these solitary waves decreases,i.e.the external magnetic field makes the solitary structures more spiky.The variation of Δ withδ(αandσ)for non-relativistic and ultrarelativistic case is represented in Fig.4(Figs.5–8).Δ increases with the increase of the value ofδ(from 0°? 55°)but begins to decrease for the values which lies within(55°? 90°).It should be mentioned here that the maximum obliqueness i.e.whenδ?→ 90°,the Δ?→ 0 andψmbecomes∞.So,the assumption that are electrostatic will no longer be valid,and fully electromagnetic theory is needed.

    Fig.4 Comparison between width(Δ)and obliqueness parameter(δ)in considering non-relativistic(dotted curve)and ultra-relativistic(solid curve)cases.

    Fig.6 The variation of width(Δ)of the potential associated with the PASWs with the obliqueness parameter(δ)and the ratio of electron to cold positron number density(α)considering ultra-relativistic case.

    Fig.7 Showing the pro file of the PASWs along with the variation of the width(Δ)and the obliqueness(δ)with σ considering non-relativistic case.

    Fig.8 Showing the pro file of the PASWs along with the variation of the width(Δ)and the obliqueness(δ)with σ considering ultra-relativistic case.

    (iv)Instability of the PASWs:

    We have graphically obtained the parametric regimes by theSi=0 surface plots(Figs.9–12)above which the PASWs become unstable,and below which the PASWs become stable.These show the variation of the parametric regimes which play an important role for the instability of the PASWs indicating that for the parameters above the surface,the PASWs become unstable.It is seen thatωcpcincreases with the increase of bothδandlζshown in Fig.9.The increment of the values ofδandlζgives a clear indication that the value ofωcpcincreases for which the PASWs become unstable.Si=0 surface plot showing the variation ofωcpcwithlζandlηforδ=15°which is represented in Fig.10.This indicates that as the value oflζandlηincrease,the value ofωcpcfor which the solitary waves become unstable decreases.The nonlinear variations of Γ withlζ,lη,ωcpc,andδare shown in Figs.11–12.The variation of Γ withlζ,andlηis depicted in Fig.11.It is clear from this that the unstable perturbation increases as the increasing of bothlζandlη.With the increasing of the values ofωcpcandδ,the value of Γ decreases which is depicted in Fig.12.It is found thatαandσhave no any effect on the instability or growth rate of the PASWs.

    Fig.9 Plot Si=0.The variation of ωcpcwith δ and lζ for the parameter lη=0.10.

    Fig.10 Plot Si=0.The variation of ωcpcwith lζ and lη for the parameter δ=15.

    Fig.11 The variation of Γ with lζ and lη for the parameters U0=0.1,δ=15,ωcpc=0.80.

    Fig.12 The variation of Γ with ωcpcand δ for the parameters U0=0.1,lη=0.70,and lζ=0.20.

    7 Conclusion

    To summarize,the propagation of the PASWs in amagnetized EPIplasma(containinginertialcold positrons, relativistic degenerate electrons and hot positrons,and negatively charged immobile heavy ions)has been theoretically investigated.We have studied the basic properties of the PASWs by analyzing the stationary solitary wave solution of the ZK equation,and finally analyzed the instability of these structures by small-k perturbation expansion method.

    The solitary like structures,which we have predicted here,are due to balance between the nonlinearity and the dispersion,where the inertia comes from cold positron,and restoring force from the degenerate electron as well as hot positron.In our model,we used the following parameters for our numerical analysis,U0=0.01?0.1,σ=0.1?0.8,nso=1.0×1025?1030,δ=15,α=0.1?0.9,andμ=0.1 ? 0.6[38,44]and for instability analysisωcpc=0.2 to 0.9,lζ=lη=0.1 to 0.9,andδ=0°to 90°.However,the ranges of the plasma parameters are very wide and relevant to many dense plasma environments.Finally,we hope that our present investigation may help to analyze the formation,and the basic characteristics of PASWs structures in a relativistic degenerate EPI plasma which occurs in space and many astrophysical situations,especially in pulsar environments.[38]

    [1]M.Opher,L.O.Silva,D.E.Dauger,V.K.Decyk,and J.M.Dawson,Phys.Plasmas 8(2001)2454.

    [2]S.Sadiq,S,Mahmood,Q.Haque,and M.Z.Ali,Astrophys.J.793(2014)27.

    [3]J.Rafelski,L.Labun,and J.Birrell,Phys.Rev.Lett.110(2013)111102.

    [4]S.Ahmad,Ata-ur-Rahman and S.A.Khan,Astrophys.Space Sci.358(2015)16.

    [5]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,High Energy Density Phys.13(2014)13.

    [6]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.353(2014)123.

    [7]M.R.Hossen,L.Nahar,and A.A.Mamun,Phys.Scr.89(2014)105603.

    [8]B.Hosen,M.G.Shah,M.R.Hossen,and A.A.Mamun,Euro.J.Plus 131(2016)81.

    [9]B.Hosen,M.Amina,A.A.Mamun,and M.R.Hossen,J.Korean Phys.Soc.69(2016)1762.

    [10]S.Datta and M.J.McLennan,Rep.Prog.Phys.53(1999)1003.

    [11]S.C.Wilks,H.Chen,E.Liang,P.Patel,D.Price,B.Remington,R.Shepherd,M.Tabak,and W.L.Kruer,Astrophys.Space Sci.298(2005)347.

    [12]N.Crouseilles,P.A.Hervieux,and G.Manfredi,Phys.Rev.B 78(2008)155412.

    [13]P.Goldreich and W.H.Julian,Astrophys.J.157(1969)869.

    [14]F.C.Michel,Rev.Mod.Phys.54(1982)1.

    [15]H.R.Miller and P.J.Witta,Active Galactic Nuclei,Springer,Berlin(1987).

    [16]W.Misner,K.S.Thome,and J.A.Wheeler,Gravitation,Freeman,San Francisco(1973).

    [17]R.G.Greaves,M.D.Tinkle,and C.M.Surko,Phys.Plasmas 1(1994)1439.

    [18]P.Helander and D.J.Ward,Phys.Rev.Lett.90(2003)135004.

    [19]M.L.Burns,Positron-Electron Pairs in Astrophysics,American Institute of Physics,Melville,New York(1983).

    [20]V.I.Berezhiani,M.Y.El-Ashry,and U.A.Mo fiz,Phys.Rev.E 50(1994)448.

    [21]J.Zhao,J.I.Sakai,K.I.Nishikawa,and T.Neubert,Phys.Plasmas 1(1994)4114.

    [22]O.Adrani,G.C.Barbarino,and G.A.Bazilevskaya,et al.,Nature(London)458(2009)607.

    [23]E.Fiandrini,G.Esposito,B.Bertucci,B.Alpat,et al.,Space Weather 2(2004)S09S02.

    [24]V.Plyaskin,Astropart.Phys.30(2008)18.

    [25]W.F.El-Taibany and A.A.Mamun,Phys.Rev.E 85(2012)026406.

    [26]E.W.Laing and D.A.Diver,Plasma Phys.Control.Fusion 55(2013)065006.

    [27]S.L.Shapiro and S.A.Teukolsky,Black Holes,White Dwarfs and Neutron Stars:The Physics of Compact Objects,John Wiley&Sons,New York(1983).

    [28]F.C.Michel,Theory of Neutron Star Magnetosphere,IL:Chicago University,Chicago(1991).

    [29]M.A.Hossen and A.A.Mamun,Phys.Plasmas 22(2015)102710.

    [30]M.A.Hossen,M.R.Hossen,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.357(2015)34.

    [31]S.Chandrasekhar,Philos.Mag.11(1931)592.

    [32]S.Chandrasekhar,Astrophys.J.74(1931)81.

    [33]M.R.Hossen and A.A.Mamun,Braz.J.Phys.44(2014)673.

    [34]M.R.Hossen,L.Nahar,and A.A.Mamun,Braz.J.Phys.44(2014)638.

    [35]M.A.Hossen,M.R.Hossen,and A.A.Mamun,Braz.J.Phys.44(2014)703.

    [36]J.Srinivas,S.I.Popel,and P.K.Shukla,J.Plasma Phys.55(1996)209.

    [37]I.J.Lazarus,R.Bharuthram,S.V.Singh,S.R.Pillay,and G.S.Lakhina,J.Plasma Phys.78(2012)621.

    [38]E.F.El-Shamy,W.F.El-Taibany,E.K.El-Shewy,and K.H.El-Shorbagy,Astrophys.Space Sci.338(2012)279.

    [39]R.Bharuthram,Astrophys.Space Sci.189(1992)213.

    [40]M.G.Shah,M.R.Hossen,S.Sultana,and A.A.Mamun,Chin.Phys.Lett.32(2015)085203.

    [41]M.G.Shah,M.R.Hossen,and A.A.Mamun,Braz.J.Phys.45(2015)219.

    [42]M.G.Shah,M.R.Hossen,and A.A.Mamun,J.Plasma Phys.81(2015)905810517.

    [43]M.G.Shah,A.A.Mamun,and M.R.Hossen,J.Korean Phys.Soc.66(2015)1239.

    [44]B.Sahu,Phys.Scr.82(2010)065504.

    [45]S.K.El-Labany,M.Shalaby,R.Sabry,and L.S.El-Sherif,Astrophys.Space Sci.340(2012)101.

    [46]M.R.Hossen,S.A.Ema,and A.A.Mamun,Commun.Theor.Phys.62(2014)888.

    [47]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Astrophys.2014(2014)653065.

    [48]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1863.

    [49]M.R.Hossen and A.A.Mamun,Plasma Sci.Technol.17(2015)177.

    [50]M.A.Hossen,M.R.Hossen,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1883.

    [51]M.R.Hossen and A.A.Mamun,J.Korean Phys.Soc.65(2014)2045.

    [52]S.A.Ema,M.R.Hossen,and A.A.Mamun,Contrib.Plasma Phys.55(2015)551.

    [53]S.Ali and Ata-ur-Rahman,Phys.Plasmas 21(2014)042116.

    [54]M.A.Hossen and A.A.Mamun,Phys.Plasmas 22(2015)073505.

    [55]M.M.Hasan,M.A.Hossen,A.Rafat,and A.A.Mamun,Chin.Phys.B 25(2016)105203.

    [56]Z.Zhenni,W.Zhengwei,L.Chunhua,and Y.Weihong,Plasma Sci.Technol.16(2014)995.

    [57]M.Shahmansouri and H.Alinejad,Astrophys.Space Sci.347(2013)305.

    [58]H.Alinejad and A.A.Mamun,Phys.Plasmas 18(2011)112103.

    [59]M.Rahman,M.S.Alam,and A.A.Mamun,Astrophys.Space Sci.357(2015)36.

    [60]H.Washimi and T.Taniuti,Phys.Rev.Lett.17(1966)996.

    [61]P.K.Shukla and M.Y.Yu,J.Math.Phys.19(1978)2506.

    [62]A.A.Mamun,Phys.Scr.58(1998)505.

    [63]A.A.Mamun and R.A.Cairns,J.Plasma Phys.56(1996)175.

    [64]E.Infeld,J.Plasma Phys.33(1985)171.

    [65]M.G.M.Anowar and A.A.Mamun,Phys.Plasmas 15(2008)102111.

    [66]S.Akter,M.M.Haider,S.S.Duha,M.Salahuddin,and A.A.Mamun,Phys.Scr.88(2013)015501.

    [67]M.M.Haider and A.A.Mamun,Phys.Plasmas 19(2012)102105.

    [68]M.M.Haider,Contrib.Plasma Phys.53(2013)234.

    18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一出视频| 性色av一级| 精品人妻在线不人妻| 午夜福利免费观看在线| 嫁个100分男人电影在线观看 | 老汉色∧v一级毛片| av欧美777| 一级毛片黄色毛片免费观看视频| 美女主播在线视频| 国产成人av激情在线播放| 在线 av 中文字幕| 无遮挡黄片免费观看| 亚洲精品美女久久av网站| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲午夜精品一区二区久久| 美国免费a级毛片| 亚洲图色成人| 老汉色av国产亚洲站长工具| 亚洲天堂av无毛| 久久午夜综合久久蜜桃| 亚洲中文字幕日韩| 亚洲,欧美精品.| 大话2 男鬼变身卡| 91麻豆av在线| 老司机影院成人| 波多野结衣av一区二区av| 夫妻性生交免费视频一级片| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 亚洲三区欧美一区| 999精品在线视频| 麻豆国产av国片精品| av网站免费在线观看视频| 久久精品成人免费网站| av福利片在线| 日韩伦理黄色片| 国产国语露脸激情在线看| 视频在线观看一区二区三区| 久久精品成人免费网站| cao死你这个sao货| 1024视频免费在线观看| 国产女主播在线喷水免费视频网站| 中国美女看黄片| 欧美在线一区亚洲| 国产福利在线免费观看视频| 欧美成狂野欧美在线观看| 国产亚洲欧美精品永久| 免费日韩欧美在线观看| 男人添女人高潮全过程视频| av网站免费在线观看视频| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 性少妇av在线| 婷婷色综合www| 日本91视频免费播放| 国产男女超爽视频在线观看| 成人国产av品久久久| 一级毛片 在线播放| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看 | 国产成人a∨麻豆精品| 999久久久国产精品视频| 欧美人与善性xxx| 香蕉国产在线看| 黄色怎么调成土黄色| 蜜桃国产av成人99| 国产精品九九99| 操出白浆在线播放| 咕卡用的链子| av在线老鸭窝| 人成视频在线观看免费观看| 亚洲欧洲日产国产| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免| 青草久久国产| 日日夜夜操网爽| 国产欧美日韩一区二区三区在线| 亚洲中文av在线| 国产成人av教育| 精品高清国产在线一区| 新久久久久国产一级毛片| 老司机影院毛片| 一级毛片 在线播放| 高清欧美精品videossex| 亚洲成人免费av在线播放| 少妇裸体淫交视频免费看高清 | 亚洲精品国产一区二区精华液| 日本欧美国产在线视频| 国产主播在线观看一区二区 | 亚洲精品国产av蜜桃| 啦啦啦 在线观看视频| 丝袜喷水一区| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| av天堂在线播放| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 日本91视频免费播放| 欧美日韩视频高清一区二区三区二| 日本猛色少妇xxxxx猛交久久| 我的亚洲天堂| 欧美 亚洲 国产 日韩一| 久久久精品区二区三区| 亚洲精品国产av蜜桃| 精品一品国产午夜福利视频| 久久国产精品男人的天堂亚洲| 亚洲男人天堂网一区| 岛国毛片在线播放| 国产男女超爽视频在线观看| 中文字幕人妻丝袜制服| 1024视频免费在线观看| 亚洲天堂av无毛| 国产成人啪精品午夜网站| 男女国产视频网站| 免费一级毛片在线播放高清视频 | 18在线观看网站| 青青草视频在线视频观看| 久久久久久久国产电影| 免费女性裸体啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 成人国语在线视频| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 成人国产av品久久久| 在线观看国产h片| 晚上一个人看的免费电影| 色网站视频免费| 又粗又硬又长又爽又黄的视频| 少妇 在线观看| 亚洲成av片中文字幕在线观看| bbb黄色大片| av不卡在线播放| 考比视频在线观看| 欧美日韩福利视频一区二区| av不卡在线播放| 久热这里只有精品99| 国产成人精品无人区| 亚洲天堂av无毛| 久久久国产欧美日韩av| 午夜福利一区二区在线看| 亚洲国产精品999| 大香蕉久久网| 中国美女看黄片| 美女主播在线视频| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| 亚洲精品国产av成人精品| 亚洲欧美精品综合一区二区三区| 美女视频免费永久观看网站| 国产又爽黄色视频| 国产一区二区三区综合在线观看| 久久久国产精品麻豆| 日韩av不卡免费在线播放| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 精品一区二区三卡| 国产精品成人在线| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 咕卡用的链子| 免费在线观看完整版高清| 精品久久久久久电影网| 精品少妇一区二区三区视频日本电影| 波野结衣二区三区在线| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| av网站免费在线观看视频| 亚洲欧美日韩高清在线视频 | 久久久久网色| 熟女av电影| 午夜老司机福利片| 少妇 在线观看| 久久久国产精品麻豆| 国产男女内射视频| 午夜精品国产一区二区电影| 黄频高清免费视频| 久久99热这里只频精品6学生| 久久久国产欧美日韩av| 成年人黄色毛片网站| 一本久久精品| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 欧美成人午夜精品| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 一个人免费看片子| 99精品久久久久人妻精品| 一本大道久久a久久精品| 亚洲成人国产一区在线观看 | 精品人妻在线不人妻| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀 | 国产91精品成人一区二区三区 | 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 欧美 日韩 精品 国产| 高清黄色对白视频在线免费看| 亚洲精品久久午夜乱码| 久热这里只有精品99| 亚洲欧美成人综合另类久久久| 丝袜脚勾引网站| 国产在线视频一区二区| www.精华液| 欧美+亚洲+日韩+国产| 亚洲av欧美aⅴ国产| 丁香六月欧美| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩视频高清一区二区三区二| 免费在线观看日本一区| 欧美在线黄色| 亚洲国产av影院在线观看| 久热爱精品视频在线9| 岛国毛片在线播放| 久久久久久亚洲精品国产蜜桃av| 久久精品久久精品一区二区三区| 在线av久久热| 老司机亚洲免费影院| 亚洲三区欧美一区| 精品久久久久久久毛片微露脸 | 久久亚洲精品不卡| 日本a在线网址| 国产色视频综合| 一区二区三区四区激情视频| 秋霞在线观看毛片| www.av在线官网国产| 精品一区二区三区四区五区乱码 | 亚洲av成人不卡在线观看播放网 | 亚洲精品一区蜜桃| 亚洲av日韩在线播放| 操美女的视频在线观看| 亚洲成人手机| 精品亚洲成国产av| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| 一级黄片播放器| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 美女福利国产在线| 韩国精品一区二区三区| 色网站视频免费| 精品熟女少妇八av免费久了| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻一区二区| 国产免费又黄又爽又色| 国产成人精品无人区| 首页视频小说图片口味搜索 | 欧美日韩综合久久久久久| 日本午夜av视频| 久久人人爽av亚洲精品天堂| 2021少妇久久久久久久久久久| 巨乳人妻的诱惑在线观看| 肉色欧美久久久久久久蜜桃| 国产高清videossex| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 建设人人有责人人尽责人人享有的| 在线看a的网站| 精品高清国产在线一区| 啦啦啦 在线观看视频| 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 中文精品一卡2卡3卡4更新| 成年动漫av网址| 欧美在线一区亚洲| 91麻豆精品激情在线观看国产 | 欧美 日韩 精品 国产| 亚洲成人国产一区在线观看 | 亚洲欧美激情在线| 91麻豆精品激情在线观看国产 | 国产在线视频一区二区| 国产精品偷伦视频观看了| 99久久综合免费| 国产一区有黄有色的免费视频| 观看av在线不卡| 欧美成人午夜精品| 亚洲av国产av综合av卡| 精品福利观看| 国产成人精品久久二区二区91| 9191精品国产免费久久| 午夜福利免费观看在线| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精| 美女扒开内裤让男人捅视频| 男女无遮挡免费网站观看| 成人国产av品久久久| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| 精品卡一卡二卡四卡免费| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 蜜桃在线观看..| 一级片'在线观看视频| 日本91视频免费播放| 一区二区av电影网| 成年av动漫网址| 波多野结衣一区麻豆| 亚洲三区欧美一区| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 一本综合久久免费| 精品国产乱码久久久久久男人| 大片免费播放器 马上看| 黄色一级大片看看| 亚洲,一卡二卡三卡| 一本一本久久a久久精品综合妖精| 一级毛片电影观看| 考比视频在线观看| 国产视频首页在线观看| 久久亚洲国产成人精品v| www.精华液| 精品国产一区二区三区四区第35| xxx大片免费视频| 亚洲成人免费av在线播放| 极品人妻少妇av视频| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 日韩一区二区三区影片| 只有这里有精品99| 妹子高潮喷水视频| 国产一区二区三区av在线| 日韩中文字幕欧美一区二区 | 亚洲专区中文字幕在线| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 国产国语露脸激情在线看| 亚洲精品国产av蜜桃| 99精品久久久久人妻精品| 老司机靠b影院| 欧美精品一区二区免费开放| 黄色 视频免费看| 日本av免费视频播放| 啦啦啦啦在线视频资源| 国产精品一国产av| 国产精品久久久久久精品古装| 久久性视频一级片| 黄色 视频免费看| 男人操女人黄网站| 亚洲国产成人一精品久久久| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 日韩一卡2卡3卡4卡2021年| 亚洲av在线观看美女高潮| 亚洲国产av新网站| 日本91视频免费播放| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 亚洲精品在线美女| www日本在线高清视频| 日韩欧美一区视频在线观看| 婷婷色麻豆天堂久久| 丝袜美足系列| h视频一区二区三区| e午夜精品久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 国产视频一区二区在线看| av有码第一页| 精品欧美一区二区三区在线| 丝瓜视频免费看黄片| 18在线观看网站| 婷婷色综合www| 国产亚洲欧美在线一区二区| 久久ye,这里只有精品| 在线观看人妻少妇| 超色免费av| 五月天丁香电影| 午夜免费观看性视频| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 亚洲av日韩精品久久久久久密 | av天堂久久9| 丁香六月天网| 欧美精品一区二区大全| 久久国产亚洲av麻豆专区| 亚洲成人国产一区在线观看 | 日本欧美视频一区| 精品国产一区二区久久| 午夜两性在线视频| 久久中文字幕一级| 91精品伊人久久大香线蕉| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 精品福利观看| 香蕉丝袜av| 我的亚洲天堂| 青春草视频在线免费观看| 久久这里只有精品19| 国产精品久久久久久精品古装| 一级片免费观看大全| 亚洲欧美一区二区三区久久| 亚洲精品美女久久久久99蜜臀 | 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 老熟女久久久| 一区在线观看完整版| 亚洲精品成人av观看孕妇| 大型av网站在线播放| netflix在线观看网站| 日韩,欧美,国产一区二区三区| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 日本vs欧美在线观看视频| 午夜视频精品福利| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 99久久综合免费| 久久鲁丝午夜福利片| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 色综合欧美亚洲国产小说| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 成人手机av| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 看十八女毛片水多多多| 国精品久久久久久国模美| 19禁男女啪啪无遮挡网站| 久久久久久久精品精品| 亚洲国产精品999| 久久午夜综合久久蜜桃| 日韩伦理黄色片| 九色亚洲精品在线播放| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美网| 久久久久精品人妻al黑| 精品第一国产精品| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 国产精品久久久av美女十八| 两人在一起打扑克的视频| 自线自在国产av| 操美女的视频在线观看| 成人午夜精彩视频在线观看| 亚洲色图综合在线观看| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 丝袜喷水一区| 在线观看国产h片| 看十八女毛片水多多多| a级毛片黄视频| 成年人黄色毛片网站| 亚洲伊人色综图| 亚洲精品国产一区二区精华液| 亚洲男人天堂网一区| 精品卡一卡二卡四卡免费| 国产女主播在线喷水免费视频网站| 日韩中文字幕欧美一区二区 | 国产在线一区二区三区精| 亚洲国产欧美在线一区| 高清视频免费观看一区二区| av国产久精品久网站免费入址| 永久免费av网站大全| 超碰97精品在线观看| av片东京热男人的天堂| 亚洲视频免费观看视频| 亚洲成人手机| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 亚洲免费av在线视频| 国产av一区二区精品久久| 国产av国产精品国产| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区国产| 国产色视频综合| 精品亚洲成a人片在线观看| 男女国产视频网站| 久久精品人人爽人人爽视色| 亚洲欧美中文字幕日韩二区| 久9热在线精品视频| 国产亚洲av片在线观看秒播厂| 国产精品欧美亚洲77777| 九草在线视频观看| 一边摸一边抽搐一进一出视频| 亚洲熟女精品中文字幕| 国产日韩欧美在线精品| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜制服| 啦啦啦啦在线视频资源| 首页视频小说图片口味搜索 | 9191精品国产免费久久| 免费看十八禁软件| av天堂在线播放| 国产高清videossex| 亚洲成色77777| 午夜激情av网站| 国产极品粉嫩免费观看在线| 亚洲精品久久成人aⅴ小说| 国产99久久九九免费精品| 天堂中文最新版在线下载| 久久精品久久久久久久性| 成人国产av品久久久| 国产一级毛片在线| 亚洲国产欧美在线一区| 日本黄色日本黄色录像| 色婷婷久久久亚洲欧美| 99香蕉大伊视频| 国产淫语在线视频| 高清不卡的av网站| 永久免费av网站大全| 午夜视频精品福利| 日本猛色少妇xxxxx猛交久久| 大香蕉久久网| 狂野欧美激情性bbbbbb| 精品一区二区三区四区五区乱码 | 大码成人一级视频| 日本黄色日本黄色录像| a级毛片黄视频| 国产欧美日韩综合在线一区二区| 久久亚洲精品不卡| 午夜日韩欧美国产| 十八禁人妻一区二区| 97在线人人人人妻| 欧美久久黑人一区二区| 国产熟女欧美一区二区| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 咕卡用的链子| 欧美精品一区二区免费开放| 日本欧美视频一区| 丁香六月欧美| 日韩av在线免费看完整版不卡| 欧美+亚洲+日韩+国产| 精品一区在线观看国产| 老司机影院毛片| 国产精品一二三区在线看| 国产成人欧美在线观看 | 一本综合久久免费| 国产一区二区三区av在线| 美女午夜性视频免费| 久久影院123| 久久中文字幕一级| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲五月色婷婷综合| 三上悠亚av全集在线观看| 国产精品一国产av| 黄网站色视频无遮挡免费观看| 日韩大码丰满熟妇| 少妇粗大呻吟视频| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 亚洲国产av影院在线观看| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 亚洲图色成人| 狂野欧美激情性xxxx| 午夜福利乱码中文字幕| 国产高清国产精品国产三级| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 免费女性裸体啪啪无遮挡网站| 97人妻天天添夜夜摸| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 亚洲国产欧美在线一区| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 丝袜脚勾引网站| 国产一区二区三区av在线| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 在线精品无人区一区二区三| 好男人视频免费观看在线| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| av不卡在线播放| 少妇人妻 视频| 深夜精品福利| 777久久人妻少妇嫩草av网站| 日本vs欧美在线观看视频| 精品人妻熟女毛片av久久网站| 一级a爱视频在线免费观看| 国产97色在线日韩免费| 黄色视频不卡| 又紧又爽又黄一区二区| av又黄又爽大尺度在线免费看| 成人亚洲精品一区在线观看| 啦啦啦啦在线视频资源|