魏明剛,何偉明,熊佩華,孫 偉△
(1.蘇州大學(xué)附屬第一醫(yī)院中西醫(yī)結(jié)合科,蘇州 215006; 2. 江蘇省中醫(yī)院腎科,南京 210029)
慢性腎臟病(chronic kidney disease, CKD)已經(jīng)成為世界范圍內(nèi)危害公眾健康的常見(jiàn)病和多發(fā)病,CKD隨著病情進(jìn)展則腎功能逐漸減退并最終發(fā)展成為終末期腎病(end stage of renal disease, ESRD),而需要血液凈化或器官移植等維持生命,對(duì)社會(huì)和家庭造成極大影響[1],尋找有效的治療手段并闡明其作用機(jī)制對(duì)于大眾健康和社會(huì)發(fā)展至關(guān)重要。
對(duì)于CKD而言,導(dǎo)致病情不斷加重成為ESRD的直接原因是腎臟纖維化,腎臟纖維化的核心是腎間質(zhì)纖維化(renal interstitial fibrosis, RIF)[2]。RIF 病變中腎小管上皮細(xì)胞轉(zhuǎn)分化(epithelial to mesenchymal transition, EMT)和細(xì)胞外基質(zhì)(extracellular matrix, ECM)代謝失調(diào)是其主要原因[3-4]。EMT表現(xiàn)為上皮細(xì)胞轉(zhuǎn)分化為肌成纖維細(xì)胞導(dǎo)致組織纖維化,而肌成纖維細(xì)胞具有合成和促進(jìn)ECM的積聚,ECM積聚會(huì)進(jìn)一步加重EMT的程度。也就是說(shuō),EMT與ECM代謝失調(diào)兩者之間相互影響產(chǎn)生惡性循環(huán)導(dǎo)致腎臟纖維化,腎功能逐漸喪失成為ESRD。非感染性炎癥、氧化應(yīng)激和衰老等是影響CKD產(chǎn)生RIF的重要因素[5-6]。研究表明,調(diào)控某些功能蛋白可以一定程度上減輕RIF,延緩CKD病變進(jìn)展[7-10]。
腎間質(zhì)是腎小管之間、腎血管以外的腎臟實(shí)質(zhì)性組織,由細(xì)胞及ECM組成。細(xì)胞主要是間質(zhì)細(xì)胞。ECM主要包括膠原(collagen, COL)和纖維連接蛋白(fibronectin, FN)等五大類(lèi),COL是最主要的成分。眾所周知,ECM在腎小球及腎間質(zhì)過(guò)度堆積是腎臟纖維化的主要原因,而EMT與ECM的代謝相互促進(jìn)。因此,EMT和ECM代謝調(diào)控是治療的關(guān)鍵問(wèn)題。對(duì)于EMT的調(diào)控而言,轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor, TGF-β)是最重要的上游細(xì)胞因子,smads是其最主要的下游效應(yīng)物質(zhì),smads信號(hào)傳導(dǎo)是TGF-β1誘導(dǎo)EMT的關(guān)鍵通路[11]。對(duì)于腎小球而言,TGF-β1也是公認(rèn)導(dǎo)致其纖維化病變發(fā)生的上游細(xì)胞因子。也就是說(shuō),TGF-β/Smads細(xì)胞信號(hào)通路是纖維化病變時(shí)影響病變發(fā)生發(fā)展的主要細(xì)胞信號(hào)通路[12]。ECM降解酶系中基質(zhì)金屬蛋白酶系(matrix metalloproteina seseries,MMPs)對(duì)ECM有廣泛的降解作用,MMPs是調(diào)節(jié)ECM代謝平衡最重要的酶系[13]。金屬蛋白酶調(diào)控因子(tissue inhibitor of metalloproteinases,TIMPs)由巨噬細(xì)胞和結(jié)締組織細(xì)胞產(chǎn)生,其中TIMP-1能夠抑制所有已知的MMPs活性,從而維持生理狀況下ECM沉積和降解平衡。腎臟纖維化時(shí)ECM中富含COLIV,MMP-9是COLIV的特異性降解酶,TIMP-l不僅可與活化的MMP-9結(jié)合阻斷其活性,亦可與MMP-9前酶結(jié)合阻止其活化,從而導(dǎo)致COLIV在腎臟過(guò)度增加而加快腎臟纖維化過(guò)程。ECM異常的積聚導(dǎo)致正常組織結(jié)構(gòu)破壞,這種病理現(xiàn)象在腎小球和腎小管間質(zhì)均存在,腎小球硬化和腎小管間質(zhì)纖維化導(dǎo)致腎功能喪失[14]。因此,RIF是各種腎小球和腎小管間質(zhì)疾病的最后結(jié)局,是導(dǎo)致ESRD的共同通路。也就是說(shuō),ECM調(diào)控是延緩甚至逆轉(zhuǎn)CKD病情發(fā)展的核心問(wèn)題。本研究應(yīng)用“芪歸益腎方”(qiguiyishen, QGYS)調(diào)控ECM代謝的研究發(fā)現(xiàn),方劑及其組分對(duì)于ECM代謝的調(diào)控作用確切[15]。但這僅僅是研究中發(fā)現(xiàn)的現(xiàn)象,其病變機(jī)制尚需進(jìn)行深入探討才能揭示其本質(zhì)。
NF-κB(Nuclear factor-κB, NF-κB)是從成熟的B淋巴細(xì)胞中提取,因其能與κ輕鏈基因增強(qiáng)子的κB序列(5-GGG ACT TTC C-3)特異性結(jié)合,并促進(jìn)κ輕鏈基因蛋白的表達(dá),故稱(chēng)之為核因子κB (NF-κB)[16]。NF-κB家族有5位成員NF-κB1(p50)、NF-κB 2(p52)和RelA(p65)等。它們的N末端均由約300個(gè)氨基酸組成的Rel同源區(qū)(Rel homology domai-n, RHD) ,故而又稱(chēng)之為NF-κB/Rel蛋白家族。RHD有發(fā)生二聚化和結(jié)合DNA等功能。NF-κB/Rel蛋白家族多以同源或異源二聚體的形式存在,不同的NF-κB/Rel蛋白二聚體具有不同的結(jié)合序列和功能。NF-κB最常見(jiàn)p50/p65二聚體,NF-κB 廣泛存在于細(xì)胞中并調(diào)節(jié)細(xì)胞因子、黏附因子和免疫受體基因等表達(dá),從而影響細(xì)胞的分化、炎癥反應(yīng)和凋亡等[17-18]。TGF-β與上述功能關(guān)系密切,而且是公認(rèn)引起CKD纖維化的主要細(xì)胞因子[19-20]。TGF-β直接作用于其下游效應(yīng)物質(zhì)smads,進(jìn)而影響EMT過(guò)程和ECM代謝。也就是說(shuō),NF-κB通過(guò)影響TGF-β/smads信號(hào)通路,從而影響腎臟組織纖維化相關(guān)的過(guò)程和ECM代謝[21]。另外,TGF-β激活激酶1(transforming growth factor β activated kinase 1,TAK1)參與了NF-κB上游的免疫復(fù)合物激活,而TAK1也可以被TGF-β1激活。這種相互作用導(dǎo)致纖維化持續(xù)惡化最終引起腎功能喪失[22]。靜息狀態(tài)下NF-κB與其抑制蛋白IκB(inhibitor of NF-κB, IκB)以非活性的形式存在于胞漿中,細(xì)胞的衰老、炎癥或氧化應(yīng)激等條件下IκB激酶 (IκB kinase,IKK)被激活,從而使IκB經(jīng)快速磷酸化和泛素化后降解,并暴露出 NF-κB的核定位序列,NF-κB發(fā)生核移位并與特定的κB序列結(jié)合后引起相應(yīng)靶基因的轉(zhuǎn)錄激活。Ricardo等[23]發(fā)現(xiàn),盡管NF-κB不能控制TGF-β1的基因啟動(dòng)因子,但NF-κB能調(diào)節(jié)谷氨酰胺轉(zhuǎn)胺酶(Transglutaminase, TGase)的啟動(dòng)和轉(zhuǎn)錄,而在組織中此酶是TGF-β1的激活劑。組織中TGase與基質(zhì)蛋白交聯(lián),模型動(dòng)物如果增加此酶的表達(dá)不但能加重腎臟纖維化[24],而且間接誘導(dǎo) TGF-β1表達(dá)增強(qiáng),從而加重腎臟EMT和ECM聚集。因此,NF-κB與TGF-β1的聯(lián)系一定程度上通過(guò)調(diào)控smads、TAK1和Tgase的表達(dá)實(shí)現(xiàn)。NF-κB通過(guò)TGF-β/smads和TGF-β/TGase信號(hào)通路或者受到TGF-β1逆向調(diào)控,進(jìn)而借助TAK1正反饋?zhàn)饔么龠M(jìn)腎臟纖維化病變的進(jìn)展。上述途徑為通過(guò)調(diào)控NF-κB及TGF-β1表達(dá)作用,為達(dá)到延緩腎臟纖維化提供了重要的理論支撐。此外,絲氨酸/蘇氨酸蛋白激酶 (Serine/threonine protein kinase, Akt)是磷脂酰肌醇-3 激酶 (phosphatidyl inositol 3 kinase,PI3K) 的一個(gè)下游靶點(diǎn)。Akt可通過(guò)增強(qiáng)IκB的磷酸化減少I(mǎi)κB蛋白合成而激活NF-κB,提示Akt的異常激活在此過(guò)程中發(fā)揮著重要作用[25]。
沉默信息調(diào)節(jié)因子2(silent information regulator 2,Sir2)的相關(guān)酶(Sir2-related enzymes,sirtuins),是近年來(lái)在酵母中發(fā)現(xiàn)的一類(lèi)依賴(lài)煙堿胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)的組蛋白去乙?;?。Sirtuins從單個(gè)細(xì)菌到人類(lèi)組織廣泛分布,是一種高度保守性的蛋白。目前人類(lèi)發(fā)現(xiàn)的sirtuin家族成員有7個(gè),分別命名為SIRT1-7,其中SIRT1是與酵母染色質(zhì)Sir2同源性最高的一個(gè)。SIRT1存在于包括人類(lèi)在內(nèi)的多種生物體體內(nèi),其通過(guò)對(duì)組蛋白和多種非組蛋白賴(lài)氨酸殘基去乙?;揎椬饔酶深A(yù)基因表達(dá),參與細(xì)胞衰老、炎癥和免疫調(diào)節(jié)等生命活動(dòng)[26]。研究發(fā)現(xiàn),SIRT1參與上述生命活動(dòng)過(guò)程并對(duì)機(jī)體的影響作用與調(diào)控NF-κB的活性密切相關(guān)[27-28]。靜息細(xì)胞中NF-κB抑制蛋白IκB與NF-κB的P65亞基結(jié)合,使NF-κB處于功能失活狀態(tài)。細(xì)胞在受到刺激后如炎癥因子、活性氧等作用時(shí)IκB發(fā)生磷酸化被降解,NF-κB恢復(fù)活性并通過(guò)核膜上的受體進(jìn)入細(xì)胞核與靶基因啟動(dòng)子相結(jié)合,迅速誘導(dǎo)靶基因的轉(zhuǎn)錄,從而影響機(jī)體的生命活動(dòng)[29-30]。SIRT1可將NF-κB的P65亞基第310位的賴(lài)氨酸去乙?;种芅F-κB,從而減輕炎癥因子和活性氧誘導(dǎo)的炎癥反應(yīng)[31-32]。SIRT1與細(xì)胞凋亡蛋白1抑制子(cellular inhibitor of apoptosis protein-1, cIAP) 基因啟動(dòng)子的結(jié)合,同樣可導(dǎo)致該區(qū)域組蛋白去乙?;? 使其不再被NF-κB激活,從而達(dá)到減輕細(xì)胞凋亡的作用[33]。而且,SIRT1陰性表達(dá)的巨噬細(xì)胞中NF-κB高度乙?;?,導(dǎo)致多種炎性因子表達(dá),從另一個(gè)側(cè)面說(shuō)明SIRT1與NF-κB之間的密切聯(lián)系[34]。
另一方面,SIRT1可調(diào)控機(jī)體和組織內(nèi)MMPs和TIMPs的表達(dá)[35-36],而MMPs 和TIMPs 正是與組織纖維化密切相關(guān)的ECM代謝最為關(guān)鍵的酶系。非感染性炎癥時(shí)NF-κB與TGF-β1在組織中異常表達(dá),從而導(dǎo)致纖維化進(jìn)展。SIRT1能抑制脂肪酸介導(dǎo)的非感染性炎癥以及炎癥相關(guān)細(xì)胞因子的表達(dá)[37]。用SIRT1激活劑resveratrol處理的細(xì)胞可以增加SIRT1與cIAP的結(jié)合,最終的效應(yīng)是使其不再被NF-κB激活,從而減輕炎癥因子等導(dǎo)致組織纖維化的程度,保護(hù)組織器官功能正常[38]。
此外,SIRT1可以直接作用于組蛋白H4K16、H3K9和H1K26等使賴(lài)氨酸去乙?;瑥亩龠M(jìn)染色質(zhì)的靜默而抑制其轉(zhuǎn)錄活性。去乙?;饔脤?dǎo)致組蛋白乙?;潭冉档停M蛋白乙?;c甲基化過(guò)程又常常相互轉(zhuǎn)化,因此SIRT1去乙?;饔脤?dǎo)致甲基化作用改變,從而降低組蛋白H3K9的甲基化程度。組蛋白H3K9甲基化是基因轉(zhuǎn)錄沉默的標(biāo)志[39]。SIRT1作用于H3K9甲基化催化酶所在的區(qū)域,從而影響組蛋白H3K9的甲基化,進(jìn)而抑制相關(guān)基因轉(zhuǎn)錄達(dá)到影響NF-κB細(xì)胞信號(hào)的激活[40]。因此上述研究不但從多個(gè)角度證實(shí),SIRT1通過(guò)抑制NF-κB的活性達(dá)到調(diào)控NF-κB介導(dǎo)的纖維化相關(guān)效應(yīng),而且也證實(shí)SIRT1可以調(diào)控ECM代謝。提示基于SIRT1進(jìn)而調(diào)控NF-κB表達(dá),從而達(dá)到延緩纖維化病變進(jìn)程是可行的。
本研究發(fā)現(xiàn),QGYS延緩腎臟纖維化的作用與PI3K/Akt密切相關(guān)。QGYS及黃芪等藥物干預(yù)可以顯著下調(diào)TGF-β1在UUO小鼠腎組織上的表達(dá)水平。QGYS和黃芪單味藥均可以減輕UUO小鼠腎小管病變。研究表明,NF-κB及IκB在QGYS和黃芪單藥的腎組織中低表達(dá),2組效果均優(yōu)于西藥洛丁新,且QGYS優(yōu)于黃芪單藥,體現(xiàn)了中醫(yī)復(fù)方中藥物相互配合、作用全面的特點(diǎn)及優(yōu)勢(shì)。QGYS可以緩解UUO小鼠腎臟EMT的程度,減輕ECM異常積聚,從而延緩腎臟纖維化進(jìn)展,從分子生物學(xué)角度驗(yàn)證了該結(jié)論的可靠性。課題組在另一個(gè)研究證實(shí),QGYS可以明顯抑制阿霉素腎病大鼠腎臟纖維化的病變過(guò)程,其作用機(jī)制同樣是多靶點(diǎn)作用,療效與減少尿蛋白漏出,降低尿NAG酶水平,抑制腎臟ECM積聚,改變TGF-β1、TIMP-1和MMP-2在腎臟皮質(zhì)的表達(dá),從而有利于降解ECM。進(jìn)一步研究發(fā)現(xiàn),這些作用的實(shí)質(zhì)與NF-κB/TGF-β1/Smad調(diào)控密切相關(guān),因此QGYS基于NF-κB對(duì)ECM的調(diào)控具有其合理性[41-42]。結(jié)合SIRTs與NF-κB之間的密切關(guān)系,特別是SIRT1等對(duì)于NF-κB的調(diào)控作用,在研究中進(jìn)一步證實(shí)兩者之間關(guān)系密切,相關(guān)體內(nèi)外實(shí)驗(yàn)研究工作已基本完成,論文尚未發(fā)表。
綜上, NF-κB在CKD病變過(guò)程被激活并受各種因素影響下作用增強(qiáng),激活的NF-κB與TGF-β/smads等細(xì)胞信號(hào)協(xié)同作用影響腎臟纖維化的進(jìn)程[43]。借助表觀(guān)遺傳學(xué)研究認(rèn)識(shí)到,通過(guò)SIRTs蛋白的調(diào)控可以影響NF-κB表達(dá),進(jìn)而影響TGF-β/smads等細(xì)胞信號(hào)通路相關(guān)基因表達(dá)作用,為探討腎臟纖維化病變關(guān)鍵靶點(diǎn)提供了方向。因此,通過(guò)調(diào)節(jié)SIRT1的表達(dá)進(jìn)而影響NF-κB和TGF-β/smads等信號(hào)通路相關(guān)細(xì)胞因子表達(dá)、基因轉(zhuǎn)錄、基因翻譯和細(xì)胞周期蛋白表達(dá),從而減輕腎臟纖維化[9]的研究思路具有可行性。
從中醫(yī)學(xué)角度探討CKD病變的始動(dòng)因素是腎氣虧虛,病機(jī)關(guān)鍵則是脾腎兩虛和血脈瘀阻。人體臟腑功能正常、氣血充盈流暢則外邪難以入侵,內(nèi)邪難以產(chǎn)生,就不會(huì)發(fā)生疾病。故《素問(wèn)遺篇·刺法論》說(shuō):“正氣存內(nèi),邪不可干。”而當(dāng)人體臟腑功能失調(diào)、正氣相對(duì)虛弱、衛(wèi)外不固,或人體陰陽(yáng)失衡、病邪內(nèi)生,均可使人體臟腑組織經(jīng)絡(luò)官竅功能紊亂從而發(fā)生疾病?!端貑?wèn)·評(píng)熱病論》說(shuō):“邪之所湊,其氣必虛?!薄鹅`樞·口問(wèn)》說(shuō):“故邪之所在,皆為不足。”《靈樞·百病始生》也說(shuō):“此必因虛邪之風(fēng),與其身形,兩虛相得,乃客其形?!薄端貑?wèn)·生氣通天論》所謂“陰平陽(yáng)秘,精神乃治”就是指人體陰陽(yáng)動(dòng)態(tài)平衡為關(guān)鍵,而CKD正是陰陽(yáng)失調(diào)為病。腎中陰精是一身精氣血化生的源泉,腎中陽(yáng)氣是功能活動(dòng)的原動(dòng)力。腎中陽(yáng)氣是元?dú)馑?,是生命活?dòng)的根本。CKD多表現(xiàn)為腎中陽(yáng)氣受損,腎臟不能發(fā)揮氣化溫煦作用,輕則水液代謝異常,重則水毒傷及臟腑引起變證百出而危及生命。正如《素問(wèn)·逆調(diào)論》所論“腎者水臟,主津液”“諸病水液,澄沏清冷,皆屬于寒”和“諸寒收引,皆屬于腎”的觀(guān)點(diǎn)。CKD發(fā)展到一定程度往往伴有血脈瘀阻的證候,也就是說(shuō),一方面不能閉藏精氣,脾腎俱虛導(dǎo)致精氣外泄;另一方面氣血失和導(dǎo)致氣不帥血?jiǎng)t血脈運(yùn)行不利。血脈運(yùn)行不利則引起脈絡(luò)閉阻而致病變深入,所以血脈瘀阻往往貫穿于CKD始終。
從中醫(yī)學(xué)角度而言,正氣虧虛必將導(dǎo)致血液失去動(dòng)力而瘀阻,血脈瘀阻也會(huì)導(dǎo)致臟腑功能失常影響正氣生成,兩者相互影響。從現(xiàn)代醫(yī)學(xué)而言,腎小球本身血脈豐富且細(xì)小,易于受到各種病因作用導(dǎo)致血脈瘀阻和腎小球功能下降,以致腎臟功能損傷進(jìn)行性加重。因此從中醫(yī)學(xué)角度而言,“正氣虧虛”和“血脈瘀阻”是CKD發(fā)病的核心病因。從現(xiàn)代醫(yī)學(xué)而言,腎臟纖維化導(dǎo)致CKD病變進(jìn)展是其核心病理。應(yīng)用中醫(yī)藥治療CKD的主要目的就是應(yīng)對(duì)“正氣虧虛”和“血脈瘀阻”,達(dá)到阻止CKD病變進(jìn)展的作用。前一章節(jié)的論述證實(shí),SIRTs和NF-κB水平與腎臟纖維化密切相關(guān),因此對(duì)于SIRTs和NF-κB調(diào)控必將對(duì)于CKD的防治起到重要作用。中藥及其活性成分可以有效地調(diào)控SIRTs家族在體內(nèi)的表達(dá)水平,進(jìn)而調(diào)控NF-κB表達(dá),從而達(dá)到調(diào)控ECM在組織間的積聚,發(fā)揮腎臟的保護(hù)作用[7]。
中醫(yī)藥對(duì)慢性腎病的治療是通過(guò)SIRTs/NF-κB信號(hào)通路的調(diào)控影響而發(fā)揮作用,主要是通過(guò)對(duì)SIRTs和NF-κB水平的調(diào)控,影響腎臟纖維化相關(guān)的細(xì)胞因子TGF-β和細(xì)胞外基質(zhì)相關(guān)的代謝酶,從而達(dá)到延緩腎臟纖維化達(dá)到治療CKD的目的。中醫(yī)藥對(duì)于SIRTs和NF-κB的調(diào)控發(fā)揮作用,不僅僅是由于中醫(yī)藥對(duì)相關(guān)細(xì)胞信號(hào)通路關(guān)鍵細(xì)胞因子的調(diào)控作用,同時(shí)也是對(duì)CKD多個(gè)重要分子生物學(xué)病變機(jī)制的多靶點(diǎn)治療作用,體現(xiàn)了中醫(yī)藥研究從宏觀(guān)到微觀(guān)、從整體到局部、從干預(yù)到改變的認(rèn)識(shí)方法和治療思路。
[1] KUSEK JW. Is it time to tip your glass to prevent CKD[J]? Kidney Int, 2015,87(5):877-879.
[2] APAZOVA DA, OOSTERHUIS NR, GREMMELS H, et al. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis[J]. Dis Model Mech, 2015,8(3):281-293.
[3] ISOBE K1, ADACHI K, HAYASHI S, et al. Spontaneous glomerular and tubulointerstitial lesions in common marmosets (Callithrix jacchus)[J]. Vet Pathol, 2012,49(5):839-845.
[4] WATATANI H, MAESHIMA Y, HINAMOTO N, et al. Vasohibin-1 deficiency enhances renal fibrosis and inflammation after unilateral ureteral obstruction[J]. Physiol Rep, 2014,2(6):e12054.
[5] ROEDER SS, STEFANSKA A, ENG DG, et al. Changes In Glomerular Parietal Epithelial Cells In Mouse Kidneys With Advanced Age[J]. Am J Physiol Renal Physiol, 2015,309(2):F164-178.
[6] PERCY CJ, BROWN L, POWER DA, et al. Obesity and hypertension have differing oxidant handling molecular pathways in age-related chronic kidney disease[J]. Mech Ageing Dev, 2009,130(3):129-138.
[7] PONNUSAMY M, ZHUANG MA, ZHOU X, et al. Activation of SIRT1 Promotes Renal Fibroblast Activation and Aggravates Renal Fibrogenesis[J]. Pharmacol Exp Ther, 2015 May 28.
[8] SHEPPARD D. Epithelial-mesenchymal interactions in fibrosis and repair. Transforming growth factor-β activation by epithelial cells and fibroblasts[J]. Ann Am Thorac Soc, 2015,12:S21-23.
[9] LIN CH, SHEN ML, KAO ST, et al. The effect of sesamin on airway fibrosis in vitro and in vivo[J]. Int Immunopharmacol, 2014,22(1):141-150.
[10] LI A, WANG J, ZHU D, et al.Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial-mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells[J]. Free Radic Res, 2015,12:1-68.
[11] YOUHUA LIU. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic signficance, molecular mechanism, and therapeutic intervention[J]. J Am Nephrol, 2004,15(1):1-12.
[12] LIU FY, LI XZ, PENG YM, et al. Arkadia regulates TGF-β signaling during renal tubular epithelial to mesenchymal cell transition[J]. Kidney Int, 2008,73(5): 588-594.
[13] LENZ O, ELLIOT SJ, STETLER-STEVENSON WG. Matrix Metalloproteinases in renal development and disease[J]. J Am Soc Nephrol, 2000,11(3):574-581.
[14] YAMAGUCHI Y, IWANO M, TOYODA M, et al. Epithelial-mesenchymal transition as an explanation for podocyte depletion in diabetic nephropathy[J]. Am J Kidney Dis, 2009,54(4): 653-664.
[15] WEI MG, SUN W, XIONG PH, SHAO JD. Antifibrotic effect of the Chinese herbs Modified Danggui Buxue Decoction on adriamycin-induced nephropathy in rats[J]. Chinese journal of integrative medicine, 2012,18(8):591-598.
[16] SEN R, BALTIMORE D. Inducibility of the immunuglobulin en-hancerbinding protein NF-κB by a posttranslational mechanism [J].Cell, 1986, 47:921- 928.
[17] MANUCHA W. Mitochondria and oxidative stress participation in renal inflammatory process[J]. Medicina, 2014,74(3):254-8.
[18] MARINO S, CILFONE NA, MATTILA JT, et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection[J]. Infect Immun, 2015, 83(1):324-338.
[19] B?TTINGER EP. TGF-beta in renal injury and disease[J].Semin Nephrol, 2007,27(3):309-20.
[20] BECHTEL W, ZEISBERG M. Twist: a new link from hypoxia to fibrosis[J].Kidney Int, 2009,75(12):1255-1256.
[21] LAN HY, CHUNG AC. TGF-β/Smad signaling in kidney disease[J]. Semin Nephrol, 2012,32(3):236-243.
[22] DAI L, AYE THU C, LIU XY,et al. TAK1, more than just innate immunity[J]. UBMB Life, 2012,64(10):825-834.
[23] RICARDO S D, LERINSON M E, DEJOSEPH M R, et al. Expression of adhesion molecules in rat renal cortex during experimental h-ydronephrosis[J]. Kidney Int,1996,50(7):2002-2010.
[24] ACIKGOZ Y1, CAN B, BEK K, et al. The effect of simvastatin and erythropoietin on renal fibrosis in rats with unilateral ureteral obstruction[J].Ren Fail, 2014,36(2):252-257.
[25] LAN A, ZHANG J, XIAO Z, et al. Akt2 is involved in loss of epithelial cells and renal fibrosis following unilateral ureteral obstruction[J]. PLoS One, 2014,22,9(8):e105451.
[26] MARCIA CH, LEONARD PG. Mammalian sirtuins2 emerging role s in physiology, aging, and calorie restriction[J]. Gen Dev, 2008, 20 (21): 2913-2921.
[27] LIM JH, LEE YM, CHUN YS, et al. Sirtuin l modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 alpha[J]. Mol Cell, 2010,38(6):864-878.
[28] CHEN J, ZHOU Y, MUELER-STEINER S, et al. Sirtl protects against micmglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling[J]. J Bid Chem, 2005, 280:40364-4037.
[29] GAO F, CHENG J, SHI T, et al. Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NF kappaB-dependent transcription[J]. Nat Cell Biol, 2006,8(10):1171.
[30] YANG SR, WRIGHT J, BAUTER M, et al. Sirtuin regulates cigarette smoke-induced proinflammatory mediator releasevia RelA/p65 NFkappaB in macrophages in vitro and in rat lungs in vivo:implications for chronic inflammation and aging[J]. Am J Physiol, 2007,292:L567.
[31] MOTTA MC, DIVECHA M, LEMIEUX M, et al. Mammalian SIRT1 represses forkhead transcription factors[J].Cell, 2004, 116 (4):558-563.
[32] YEUNG F, HOBERG JE, RAMSEY CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRTI deacetylase [J]. EMBO J, 2004,23(12):2369-2380.
[33] COHEN HY1, LAVU S, BITTERMAN KJ,et al. Acetylation of the cterminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis[J]. Mol Ce ll, 2004, 13 (5):627-638.
[34] YOSHIZAKI T, SCHENK S, IMAMURA T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity[J]. Am J Physiol Endocrinol Metab,2010, 298: E419-E428
[35] GABAY O1, ZAAL KJ, SANCHEZ C, et al. Sirt1-deficient mice exhibit an altered cartilage phenotype[J]. Joint Bone Spine, 2013,80(6):613-20.
[36] OHGUCHI K, ITOH T, AKAO Y, et al. SIRT1 modulates expression of matrix metalloproteinases in human dermal fibroblasts[J]. Br J Dermatol, 2010,163(4):689-94.
[37] TILIJA PUN N, SUBEDI A, KIM MJ, et al. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis[J]. PLoS One, 2015,10(5):e0124636.
[38] KASDALLAH-GRISSA A, MORNAGUI B, AOUANI E, et al. Resveratrol, a red wine polyphenol,attenuates ethanol-induced oxidative stress[J].Life Sci, 2007, 80(11):1033.
[39] WEINBERG M S, VILLENEUVE L M, EHSANI A, et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells[J]. RNA,2006,12(2):256-262.
[40] VAQUERO A, SCHER M, ERDJUMENT-BROMAGE H, et al. SIRT1 regulates the histone methyltransferase SUV39H1 during heretochromatin formation[J]. Nature, 2007,450(7168):440-444.
[41] JIANG C, LIN X. Analysis of epidermal growth factor-induced NF-κB signaling[J]. Methods Mol Biol, 2015,1280:75-102.
[42] CABALLO C1, PALOMO M, CASES A, et al. NF-κB in the development of endothelial activation and damage in uremia: an in vitro approach[J]. PLoS One, 2012,7(8):e43374.
中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志2018年2期