呂富巖,張雷紅,宮兆帥,苑愛云
青島市婦女兒童醫(yī)院神經(jīng)康復(fù)科,山東青島市266034
圍產(chǎn)期缺氧缺血性腦損傷(hypoxic-ischemic brain damage,HIBD)是由各種原因引起的腦缺氧缺血所致,常危及生命,幸存者常遺留運(yùn)動(dòng)障礙、認(rèn)知障礙、癲癇等神經(jīng)系統(tǒng)后遺癥,給家庭和社會(huì)造成極大負(fù)擔(dān)。隨著搶救技術(shù)提高,HIBD患兒存活率增加,但致殘率并未降低。
未成熟腦較成人有更高的神經(jīng)可塑性,而腦功能重塑受病理生理及環(huán)境因素的共同影響。豐富環(huán)境干預(yù)是改善腦功能重塑重要而有效的手段之一,因低風(fēng)險(xiǎn)、低成本、無創(chuàng)性,已經(jīng)成為神經(jīng)科學(xué)領(lǐng)域的研究熱點(diǎn)。
豐富環(huán)境是針對(duì)嚙齒類動(dòng)物習(xí)性制備的動(dòng)物實(shí)驗(yàn)?zāi)P铜h(huán)境,最早由Hebb提出[1]。他在研究中發(fā)現(xiàn),暴露于豐富環(huán)境中的大鼠,水迷宮實(shí)驗(yàn)成績(jī)明顯提高,提示豐富環(huán)境可顯著改善大鼠的學(xué)習(xí)記憶能力。1978年豐富環(huán)境首次被正式定義:豐富環(huán)境是指存在多個(gè)干預(yù)因子的環(huán)境,是復(fù)雜的無生命物與社會(huì)刺激的復(fù)合體,不僅提供了運(yùn)動(dòng)機(jī)會(huì)和多感官刺激,而且賦予動(dòng)物個(gè)體間社交活動(dòng)的可能[2]。
豐富環(huán)境的動(dòng)物飼養(yǎng)籠較常規(guī)飼養(yǎng)籠大,多為85×85×75 cm大籠,每籠8~12只大鼠,籠內(nèi)放置不同顏色及形狀的物體,如檸檬、樹葉、木板、斜坡、秋千、管道、轉(zhuǎn)籠和玩具等?;\中擺放的物品每日更換位置,玩具每周更換2次。常規(guī)標(biāo)準(zhǔn)飼養(yǎng)環(huán)境籠舍小,相對(duì)“貧瘠”,無特殊刺激物品,僅放置水、食物和墊料。
相比標(biāo)準(zhǔn)環(huán)境,豐富環(huán)境下動(dòng)物居住條件具有復(fù)雜性和新穎性的特征。豐富環(huán)境作為一個(gè)動(dòng)物實(shí)驗(yàn)?zāi)P?,被廣泛用于研究環(huán)境對(duì)腦發(fā)育、認(rèn)知和腦損傷后神經(jīng)修復(fù)的影響。Birch等[3]發(fā)現(xiàn),豐富環(huán)境干預(yù)的正常大鼠記憶力較未干預(yù)者高,并能抑制大鼠衰老過程中記憶力下降。對(duì)HIBD大鼠的研究發(fā)現(xiàn)[4-8],與標(biāo)準(zhǔn)環(huán)境相比,豐富環(huán)境可顯著提高HIBD大鼠的學(xué)習(xí)記憶能力、運(yùn)動(dòng)平衡協(xié)調(diào)能力及環(huán)境適應(yīng)能力。
豐富環(huán)境在動(dòng)物飼養(yǎng)環(huán)境中增加了學(xué)習(xí)經(jīng)歷、身體活動(dòng)、感覺輸入及社交活動(dòng)等,可能通過調(diào)控突觸可塑性相關(guān)蛋白、凋亡相關(guān)因子、自噬相關(guān)因子等,增強(qiáng)突觸的形態(tài)及功能,促進(jìn)HIBD后神經(jīng)功能重塑。
突觸可塑性是未成熟腦神經(jīng)可塑性的重要表現(xiàn)[9],包括功能和形態(tài)的可塑性。海馬區(qū)突觸連接在接受一定量強(qiáng)化刺激后,有在較長(zhǎng)時(shí)間內(nèi)維持高于刺激前的突觸效能增強(qiáng)現(xiàn)象,即長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP),電生理表現(xiàn)為場(chǎng)興奮性突觸后電位(field excitatory postsynaptic potential,fEPSP)增強(qiáng)。LTP可誘導(dǎo)突觸大小、數(shù)量及功能改變。樹突棘作為突觸后形態(tài)結(jié)構(gòu),是神經(jīng)元信息交換的主要位點(diǎn),海馬錐細(xì)胞樹突棘的結(jié)構(gòu)和功能被認(rèn)為是學(xué)習(xí)記憶的細(xì)胞基礎(chǔ)。
動(dòng)物實(shí)驗(yàn)表明,豐富環(huán)境干預(yù)可通過促進(jìn)海馬區(qū)LTP,提高fEPSP,促進(jìn)神經(jīng)功能重塑,并提高腦損傷后學(xué)習(xí)及記憶能力的恢復(fù)[10-12]。Malik等[11]發(fā)現(xiàn),豐富環(huán)境干預(yù)3周后,HIBD大鼠損傷側(cè)大腦皮層厚度及樹突棘數(shù)量均顯著增加。
何種豐富環(huán)境干預(yù)強(qiáng)度效果最佳存在爭(zhēng)議。每天1 h、每周6 d、持續(xù)9周的方案可改善HIBD大鼠認(rèn)知,抑制海馬神經(jīng)元樹突棘丟失,但不能逆轉(zhuǎn)海馬萎縮[13];有學(xué)者認(rèn)為,豐富環(huán)境的數(shù)量及強(qiáng)度并非越多越好[14]。豐富環(huán)境干預(yù)的機(jī)制及干預(yù)強(qiáng)度,以及對(duì)HIBD大鼠認(rèn)知及海馬突觸形態(tài)、功能的影響及分子基礎(chǔ),均有待進(jìn)一步明確。
豐富環(huán)境對(duì)HIBD的修復(fù)作用已得到公認(rèn),并發(fā)現(xiàn)豐富環(huán)境對(duì)未成熟腦可塑性的積極影響可能與促進(jìn)突觸相關(guān)分子的表達(dá)相關(guān)[3,9,15]。
突觸素作為突觸重塑的特異性標(biāo)志物,參與突觸囊泡轉(zhuǎn)運(yùn)和神經(jīng)遞質(zhì)釋放,可準(zhǔn)確反映突觸的分布和密度。研究發(fā)現(xiàn)[3],豐富環(huán)境干預(yù)的正常大鼠記憶力及海馬突觸素表達(dá)明顯較未干預(yù)者高,且呈時(shí)間依賴性;長(zhǎng)期間歇豐富環(huán)境干預(yù)可抑制大鼠衰老過程中記憶力下降。本課題組預(yù)實(shí)驗(yàn)亦發(fā)現(xiàn),豐富環(huán)境干預(yù)(每天12 h,連續(xù)14 d)可增強(qiáng)HIBD幼鼠海馬區(qū)突觸素的表達(dá),但HIBD后不同豐富環(huán)境干預(yù)強(qiáng)度對(duì)大鼠認(rèn)知及突觸素的影響尚不清楚。
成纖維細(xì)胞生長(zhǎng)因子2(fibroblast growth factor 2,FGF-2)是一種神經(jīng)元營(yíng)養(yǎng)因子,也可調(diào)節(jié)突觸可塑性和軸突分支,受到高度關(guān)注[16]。FGF-2可通過突觸可塑性提高正常腦的學(xué)習(xí)能力及損傷腦的記憶恢復(fù)[17]。豐富環(huán)境可促進(jìn)大腦FGF-2表達(dá)[9],但干預(yù)強(qiáng)度對(duì)HIBD大鼠海馬FGF-2表達(dá)的影響目前研究較少。
腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)是腦發(fā)育的關(guān)鍵分子,通過與其特異性受體TrkB結(jié)合發(fā)揮作用,參與突觸重塑及學(xué)習(xí)記憶。BDNF受諸多因子調(diào)節(jié),最重要的是環(huán)磷腺苷反應(yīng)元件結(jié)合蛋白(cAMP responsive element binding protein,CREB)。CREB作為細(xì)胞核內(nèi)第三信使之一,在應(yīng)激刺激后可誘導(dǎo)Ser-133位磷酸化,激活轉(zhuǎn)錄,進(jìn)而調(diào)節(jié)BDNF的表達(dá)。CREB對(duì)鞏固LTP和長(zhǎng)期記憶也起重要作用。生理劑量的BDNF對(duì)記憶有促進(jìn)作用,過高或過低BDNF打破了抑制性和興奮性神經(jīng)傳遞的平衡,對(duì)學(xué)習(xí)記憶產(chǎn)生消極作用。有研究發(fā)現(xiàn)[18],過表達(dá)BDNF的轉(zhuǎn)基因小鼠在成年后出現(xiàn)空間學(xué)習(xí)障礙,內(nèi)源性BDNF慢性增加亦可促進(jìn)海馬齒狀回苔蘚纖維芽生,進(jìn)而干擾突觸重塑。豐富環(huán)境可明顯促進(jìn)HIBD大鼠海馬BDNF表達(dá)[15,19],但過度豐富環(huán)境干預(yù)是否會(huì)造成BDNF過表達(dá),從而對(duì)突觸重塑及認(rèn)知產(chǎn)生負(fù)面影響,尚未可知。
神經(jīng)元凋亡途徑參與未成熟腦的可塑性[20-21]。Bcl-2和Bax是經(jīng)典的凋亡抑制基因及凋亡促進(jìn)基因[22-23]。對(duì)成年大鼠的研究表明,豐富環(huán)境干預(yù)可下調(diào)凋亡促進(jìn)蛋白Bax表達(dá)[21],上調(diào)凋亡抑制蛋白Bcl-2表達(dá)[20],促進(jìn)衰老大鼠海馬神經(jīng)發(fā)生[21]。本課題組研究發(fā)現(xiàn),豐富環(huán)境干預(yù)可顯著提高HIBD大鼠缺血缺氧側(cè)海馬Bcl-2的表達(dá),抑制Bax表達(dá)。但豐富環(huán)境干預(yù)后未成熟腦海馬神經(jīng)元凋亡調(diào)控基因的表達(dá)變化及其確切機(jī)制尚不清楚。宮陽陽等[24]發(fā)現(xiàn),豐富環(huán)境干預(yù)后,HIBD大鼠損傷側(cè)海馬神經(jīng)細(xì)胞內(nèi)尼氏小體增多,提示豐富環(huán)境干預(yù)可以促使未死亡的神經(jīng)元通過尼氏小體重現(xiàn),逐步恢復(fù)代謝,參與軸突修復(fù)和生長(zhǎng),促進(jìn)腦功能重塑。
自噬指細(xì)胞利用溶酶體、吞噬泡降解自身受損的細(xì)胞器和大分子物質(zhì)的過程[25-26],被稱為Ⅱ型程序性死亡。自噬具有兩面性,基礎(chǔ)水平的自噬是細(xì)胞的自我保護(hù)機(jī)制,但自噬過度可導(dǎo)致代謝應(yīng)激、細(xì)胞死亡等災(zāi)難性后果。
缺氧缺血等應(yīng)激性刺激可誘導(dǎo)神經(jīng)元自噬,自噬過程受多種自噬相關(guān)蛋白調(diào)控。Beclin-1是自噬啟動(dòng)的關(guān)鍵分子,可調(diào)節(jié)其他自噬蛋白定位至前自噬體膜上,是自噬重要的正調(diào)節(jié)因子。微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1light chain 3,LC3)是自噬體膜的標(biāo)記物,LC3-Ⅰ通常存在于胞漿中,自噬激活時(shí)向LC3-Ⅱ轉(zhuǎn)化并轉(zhuǎn)移到自噬體膜;LC3-Ⅱ水平及LC3-Ⅱ/LC3-Ⅰ比值可提示自噬活性[27]。P62是自噬的底物,反映自噬潮的情況,其水平與自噬活性負(fù)相關(guān)。哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)可調(diào)節(jié)神經(jīng)系統(tǒng)生理功能,包括突觸重塑、記憶及細(xì)胞自噬等[28]。正常狀態(tài)下,mTOR1處于激活狀態(tài),直接抑制自噬,是自噬的負(fù)性調(diào)控因子。雷帕霉素作為mTOR1抑制劑,可激活自噬。
生理狀態(tài)下,自噬參與記憶及突觸發(fā)育的調(diào)控[25,29]。對(duì)神經(jīng)系統(tǒng)病理狀態(tài)下自噬的研究多集中于神經(jīng)系統(tǒng)退行性疾病及精神類疾病,且認(rèn)為自噬對(duì)突觸可塑性及認(rèn)知功能有保護(hù)作用[25,30]。Otabe等[31]對(duì)抑郁癥大鼠模型的研究發(fā)現(xiàn),電刺激可通過增加海馬區(qū)自噬、提高BDNF的表達(dá),改善突觸可塑性。Takahashi等[30]對(duì)創(chuàng)傷性應(yīng)激障礙大鼠的研究發(fā)現(xiàn),豐富環(huán)境干預(yù)2周后,海馬區(qū)LC3-Ⅱ、BDNF表達(dá)顯著增加,且大鼠麻木回避行為隨之改善,說明豐富環(huán)境干預(yù)可通過增加海馬區(qū)自噬改善大鼠的精神行為。
自噬在HIBD中作用卻存在矛盾的觀點(diǎn)。Lu等[32]對(duì)7日齡大鼠海馬腦片的體外研究發(fā)現(xiàn),糖氧剝奪后,海馬腦片自噬體增加、LC3-Ⅱ表達(dá)增高;加用自噬抑制劑3-甲基腺嘌呤后,自噬體形成及LC3-Ⅱ水平降低,腦損傷明顯減輕,認(rèn)為海馬區(qū)自噬上調(diào)可加重?fù)p傷。Xu等[33]發(fā)現(xiàn),抑制自噬可降低HIBD后大鼠海馬區(qū)損傷。Au等[17]亦發(fā)現(xiàn),缺氧誘導(dǎo)的自噬可加重未成熟大鼠小腦浦肯野細(xì)胞損傷,抑制自噬可促進(jìn)浦肯野細(xì)胞存活,并改善大鼠平衡功能。而Papadakis等[34]卻發(fā)現(xiàn),缺氧缺血誘導(dǎo)的自噬可通過增加神經(jīng)元對(duì)缺氧的耐受性,發(fā)揮保護(hù)作用。自噬在HIBD中的作用有待進(jìn)一步研究,而豐富環(huán)境干預(yù)是否對(duì)HIBD海馬區(qū)自噬產(chǎn)生影響,鮮有報(bào)道。
豐富環(huán)境對(duì)HIBD的修復(fù)作用已得到公認(rèn),并發(fā)現(xiàn)豐富環(huán)境可能通過調(diào)控突觸可塑性(突觸相關(guān)分子、突觸的形態(tài)及功能)、神經(jīng)元凋亡及細(xì)胞自噬過程,改善HIBD后神經(jīng)可塑性,促進(jìn)HIBD后神經(jīng)功能修復(fù)。豐富環(huán)境作為基礎(chǔ)實(shí)驗(yàn)?zāi)P?,為臨床豐富環(huán)境康復(fù)方案的制定提供了理論基礎(chǔ);豐富環(huán)境作為一種低風(fēng)險(xiǎn)、低成本、無創(chuàng)性康復(fù)手段,在臨床康復(fù)中必將擁有良好的應(yīng)用前景。但目前對(duì)豐富環(huán)境干預(yù)的時(shí)機(jī)及豐富環(huán)境干預(yù)強(qiáng)度的選擇存在爭(zhēng)議,而且自噬調(diào)控在不同病理生理狀態(tài)下存在兩面性。未來研究需進(jìn)一步闡明豐富環(huán)境干預(yù)強(qiáng)度對(duì)HIBD大鼠海馬區(qū)自噬、突觸可塑性的影響及內(nèi)在機(jī)制,探索最佳豐富環(huán)境干預(yù)強(qiáng)度,從而為臨床康復(fù)方案制定提供參考。
[參考文獻(xiàn)]
[1]Hebb DO.The effects of early experience on problem solving at maturity[J].Am Psychol,1947,2:306-307.
[2]Will B,Galani R,Kelche C,et al.Recovery from brain injury in animals:relative efficacy of environmental enrichment,physical exercise or formal training(1990-2002)[J].Prog Neurobiol,2004,72(3):167-182.
[3]Birch AM,McGarry NB,Kelly AM.Short-term environmental enrichment,in the absence of exercise,improves memory,and increases NGF concentration,early neuronal survival,and synaptogenesis in the dentate gyrus in a time-dependent manner[J].Hippocampus,2013,23(6):437-450.
[4]陳光福,張?zhí)N芳,龍琦,等.豐富環(huán)境干預(yù)促進(jìn)缺氧缺血性腦損傷新生大鼠神經(jīng)元細(xì)胞增殖和功能修復(fù)[J].中國當(dāng)代兒科雜志,2012,14(2):139-143.
[5]Seo JH,Yu JH,Suh H,et al.Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury[J].PLoS One,2013,8(9):e74405.
[6]Rojas JJ,Deniz BF,Schuch CP,et al.Environmental stimulation improves performance in the ox-maze task and recovers Na+,K+-ATPase activity in the hippocampus of hypoxic-ischemic rats[J].Neuroscience,2015,291:118-127.
[7]Vivinetto AL,Suárez MM,Rivarola MA.Neurobiological effects ofneonatal maternal separation and post-weaning environmental enrichment[J].Behav Brain Res,2013,240:110-118.
[8]Marques MR,Stigger F,Segabinazi E,et al.Beneficial effects of early environmental enrichment on motor development and spinal cord plasticity in a rat model of cerebral palsy[J].Behav Brain Res,2014,263:149-157.
[9]Kolb B,Mychasiuk R,Williams P,et al.Brain plasticity and recovery from early cortical injury.Developmental medicine and child neurology[J].Dev Med Child Neurol,2011,53(Suppl 4):4-8.
[10]Leggio MG,Mandolesi L,Federico F,et al.Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat[J].Behav Brain Res,2005,163(1):78-90.
[11]Malik R,Chattarji S.Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons[J].J Neurophysiol,2012,107(5):1366-1378.
[12]Hosseiny S,Pietri M,Petit-Paitel A,et al.Differential neuronal plasticity in mouse hippocampus associated with various periods of enriched environment during postnatal development[J].Brain Struct Funct,2015,220(6):3435-3448.
[13]Pereira LO,Nabinger PM,Strapasson AC,et al.Long-term effects of environmental stimulation following hypoxia-ischemiaon the oxidative state and BDNF levels in rat hippocampus and frontal cortex[J].Brain Res,2009,1247:188-195.
[14]Mazarakis NK,Mo C,Renoir T,et al.'Super-Enrichment'reveals dose-dependent therapeutic effects of environmental stimulation in a transgenic mouse model of Huntington's disease[J].J Huntingtons Dis,2014,3(3):299-309.
[15]Sheikhzadeh F,Etemad A,Khoshghadam S,et al.Hippocampal BDNF content in response to short-and long-term exercise[J].Neurol Sci,2015,36(7):1163-1166.
[16]Woodbury ME,Ikezu T.Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration[J].J Neuroimmune Pharmacol,2014,9(2):92-101.
[17]Au AK,Chen Y,Du L,et al.Ischemia-induced autophagy contributes to neurodegeneration in cerebellar Purkinje cells in the developing rat brain and in primary cortical neurons in vitro[J].Biochim BiophysActa,2015,1852(9):1902-1911.
[18]Isgor C,Pare C,McDole B,et al.Expansion of the dentate mossy fiber-CA3 projection in the brain-derived neurotrophic factor-enriched mouse hippocampus[J].Neuroscience,2015,288:10-23.
[19]Venna VR,Xu Y,Doran SJ,et al.Social interaction plays a critical role in neurogenesis and recovery after stroke[J].Transl Psychiatry,2014,4:e351.
[20]Bayod S,Mennella I,Sanchez-Roige S,et al.Wnt pathway regulation by long-term moderate exercise in rat hippocampus[J].Brain Res,2014,1543:38-48.
[21]Gri?an-Ferré C,Pérez-Cáceres D,Gutiérrez-Zetina SM,et al.Environmental enrichment improves behavior,cognition,and brain functional markers in young senescence-accelerated prone mice(SAMP8)[J].Mol Neurobiol,2016,53(4):2435-2450.
[22]Takahashi T,Shimizu K,Shimazaki K,et al.Environmental enrichment enhances autophagy signaling in the rat hippocampus[J].Brain Res,2014,1592:113-123.
[23]Otabe H,Nibuya M,Shimazaki K,et al.Electroconvulsive seizures enhance autophagy signaling in rat hippocampus[J].Prog Neuropsychopharmacol Biol Psychiatry,2014,50:37-43.
[24]宮陽陽,侯梅,苑愛云,等.早期運(yùn)動(dòng)干預(yù)對(duì)腦缺血缺氧幼鼠海馬區(qū)突觸素蛋白表達(dá)的影響[J].中華物理醫(yī)學(xué)與康復(fù)雜志,2016,38(5):325-328.
[25]Navone F,Genevini P,Borgese N.Autophagy and neurodegeneration:insights from a cultured cell model of ALS[J].Cells,2015,4(3):354-386.
[26]López-Lluch G.Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity[J].Mech Ageing Dev,2017,162:108-121.
[27]Kwon I,Jang Y,Cho JY,et al.Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats[J].J Physiol Sci,2018,68(3):269-280.
[28]Bockaert J,Marin P.mTOR in brain physiology and pathologies[J].Physiol Rev,2015,95(4):1157-1187.
[29]Shehata M,Inokuchi K.Does autophagy work in synaptic plasticity and memory?[J].Rev Neurosci,2014,25(4):543-557.
[30]Takahashi T,Shimizu K,Shimazaki K,et al.Environmental enrichment enhances autophagy signaling in the rat hippocampus[J].Brain Res,2014,1592:113-123.
[31]Otabe H,Nibuya M,Shimazaki K,et al.Electroconvulsive seizures enhance autophagy signaling in rat hippocampus[J].Prog Neuropsychopharmacol Biol Psychiatry,2014,50:37-43.
[32]Lu Q,Harris VA,Kumar S,et al.Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress[J].Redox Biol,2015,6:516-523.
[33]Xu LX,Tang XJ,Yang YY,et al.Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxia-ischemia-induced brain damage in newborn rats[J].Neural Regen Res,2017,12(3):417-424.
[34]Papadakis M,Hadley G,Xilouri M,et al.Tsc1(hamartin)confers neuroprotection against ischemia by inducing autophagy[J].Nat Med,2013,19(3):351-357.