蘇榮欣,陳瞇瞇,黃仁亮,齊?崴,王夢(mèng)凡,何志敏
?
木質(zhì)纖維素薄膜制備與酶解過程的QCM-D分析
蘇榮欣1, 2, 3, 4,陳瞇瞇1, 2,黃仁亮1, 2,齊?崴1, 2, 3, 4,王夢(mèng)凡1, 2,何志敏1, 2
(1. 天津大學(xué)化工學(xué)院,天津 300350;2. 化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室(天津大學(xué)),天津 300350;3. 天津化學(xué)化工協(xié)同創(chuàng)新中心,天津 300350;4. 天津市膜科學(xué)與海水淡化技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300072)
耗散型石英晶體微天平(QCM-D)是基于石英晶體的壓電效應(yīng)對(duì)其電極表面質(zhì)量變化進(jìn)行測(cè)量的儀器,已被證明是一種高靈敏的在線表界面過程分析工具.本文綜述了近年來木質(zhì)纖維素薄膜制備及應(yīng)用QCM-D研究其酶解過程的分析進(jìn)展,分別從薄膜制備、纖維素酶吸附(纖維素、木質(zhì)素、混合底物)、酶解歷程分析、動(dòng)力學(xué)建模等4個(gè)方面進(jìn)行簡(jiǎn)要介紹.上述研究成果有助于理解纖維素酶與木質(zhì)纖維素的相互作用規(guī)律,為設(shè)計(jì)新型復(fù)配酶制劑、深刻理解纖維素酶解機(jī)制提供基礎(chǔ)和指導(dǎo).
木質(zhì)纖維素;纖維素酶;石英晶體微天平;膜;吸附;水解
如何將人類經(jīng)濟(jì)社會(huì)由高度依賴化石能源逐漸轉(zhuǎn)變?yōu)檠h(huán)開發(fā)可再生能源,是建設(shè)可持續(xù)性綠色經(jīng)濟(jì)社會(huì)和減少全球溫室氣體排放的中心議題[1].利用基于酶催化的生物精煉技術(shù),將木質(zhì)纖維素(自然界含量最豐富的可再生資源)分子中的糖單元釋放出來,并進(jìn)一步合成為液態(tài)燃料和生物基化學(xué)品,逐步建立可循環(huán)綠色經(jīng)濟(jì)模式,對(duì)解決當(dāng)前全球能源危機(jī)、資源匱乏、環(huán)境污染、氣候變暖等問題均具有極為重要的意義[2].木質(zhì)纖維素是一類由纖維素、半纖維素和木質(zhì)素3種長(zhǎng)鏈高分子相互交織在一起的“類鋼筋混凝土”復(fù)雜大分子[3],結(jié)構(gòu)極為致密,性質(zhì)高度頑抗.這種特殊的復(fù)雜結(jié)構(gòu)進(jìn)一步要求:只有多種纖維素酶有效協(xié)同,逐步破解各種長(zhǎng)鏈高分子,才能高效轉(zhuǎn)化木質(zhì)纖維素[4].因此,木質(zhì)纖維素酶解轉(zhuǎn)化過程是一個(gè)高度復(fù)雜的反應(yīng)體系,具有底物結(jié)構(gòu)復(fù)雜、酶制劑種類多樣、反應(yīng)過程影響因素多等特點(diǎn).只有深入分析纖維素酶與木質(zhì)纖維素的相互作用,才能更好地設(shè)計(jì)復(fù)配酶制劑,促進(jìn)纖維素乙醇的商業(yè)化開發(fā).
目前,研究人員采用旋轉(zhuǎn)涂膜法[5-9]、自組裝單分子層法[10]、LB(Langmuir-Blodgett)膜法[11-13]等制備了表面光滑、吸附牢固且全面均勻覆蓋基底、性質(zhì)穩(wěn)定的纖維素、木質(zhì)素和木質(zhì)纖維素薄膜,再通過橢偏儀[14-17]、中子反射儀[18-19]、表面等離子共振譜儀[8, 20]、石英晶體微天平[6-7,10,21]、原子力顯微鏡[22-23]等對(duì)薄膜性質(zhì)及其表面酶吸附與酶催化過程進(jìn)行分析.橢偏儀、中子反射計(jì)、原子力顯微鏡分別可表征測(cè)量薄膜的厚度、水分含量和表面形貌.但這些方法不能定量表征纖維素酶在薄膜表面的吸附量和水解效果.表面等離子共振譜儀雖然能提供薄膜質(zhì)量與時(shí)間的關(guān)系,但是不能反映薄膜結(jié)構(gòu).QCM-D是在線表界面吸附與動(dòng)力學(xué)研究的分析工具,具有納克級(jí)的靈敏度,可同時(shí)確定薄膜質(zhì)量和結(jié)構(gòu)變化的信息.因此可實(shí)時(shí)跟蹤分析金膜表面的成膜過程、吸附行為和降解歷程,已在木質(zhì)纖維素成膜、纖維素酶吸附、酶解歷程分析等方面得到廣泛應(yīng)用.
QCM-D作為一種檢測(cè)精度可達(dá)納克級(jí)別的表界面分析儀器,可通過測(cè)量石英壓電振子(具有壓電效應(yīng)的石英晶體)在外加電場(chǎng)下振動(dòng)頻率的變化考察晶片表面上的質(zhì)量變化.耗散因子的變化可提供表面堅(jiān)硬度的變化.
如圖1所示,QCM-D利用的是石英晶體的逆壓電效應(yīng)原理[24].QCM-D的核心部件是石英晶體傳感器.當(dāng)傳感器兩端施加電壓時(shí),石英晶體會(huì)在共振頻率處引發(fā)一個(gè)小的剪切振動(dòng).如果在晶體表面上吸附一層薄膜,晶體的振動(dòng)就會(huì)減弱,且振動(dòng)幅度或頻率與薄膜的厚度和密度息息相關(guān).
圖1?QCM-D的工作原理示意
???(1)
方程(1)即Sauerbrey方程[25].式中:Df=Df,/q,為單位面積的質(zhì)量變化,即面密度變化;q為石英晶體表面面積;q為石英晶體的密度;q為石英晶體厚度;為倍頻;0為基頻;D為頻率變化;=qq/0,當(dāng)石英晶體的厚度確定時(shí),為常數(shù).
方程(1)僅適用于足夠薄(相對(duì)于石英晶體)、足夠剛性且均勻鋪展的吸附層.對(duì)于柔軟或具有黏彈性質(zhì)的膜,由于不能完全耦合諧振晶體,根據(jù)Sauerbrey方程得到的測(cè)量值會(huì)明顯低于實(shí)際質(zhì)量,且無(wú)法提供黏彈性膜的特性.因此,定義了耗散因子,用于表示吸附在傳感器表面的膜層黏彈特性,即
???(2)
式中:dis是一個(gè)周期的能量耗散;sto是振蕩時(shí)儲(chǔ)存的能量.值越大,表明晶體上的薄膜越柔軟,吸附層黏彈性越大,即能量耗散越高說明膜的黏度系數(shù)和彈性模量越低[26].
在QCM-D傳感芯片表面吸附木質(zhì)纖維素薄膜,通入纖維素酶溶液,通過觀察和的變化,可分析酶在薄膜表面的吸附、水解、脫附等行為.此外還可運(yùn)用Sauerbrey方程定量計(jì)算薄膜表面上酶的吸附量和纖維素水解量.
圖2是用QCM-D檢測(cè)25,℃下外切纖維素酶(Cel7A,10,mg/L)在纖維素薄膜上吸附/脫附行為引起的頻率值和耗散因子變化的典型曲線[5].圖中選用第3倍頻的頻率變化值(Δ3)和耗散因子變化值(Δ3).在緩沖溶液中添加6,g/L葡萄糖來抑制纖維素酶的水解,只觀察環(huán)境條件下酶的吸附和脫附行為.圖中,Cel7A的吸附導(dǎo)致薄膜上質(zhì)量增加,頻率值下降.30,min后,通入緩沖溶液,上升,表示Cel7A被洗脫.耗散因子反映薄膜黏彈性的變化,吸附階段由于蛋白的吸附使其黏彈性增加,因而上升,而洗脫階段由于蛋白洗脫暴露出堅(jiān)硬的纖維素薄膜而剛性增加,因而下降.
圖2 外切纖維素酶Cel7A在纖維素薄膜上的吸附/脫附曲線
利用QCM-D分析木質(zhì)纖維素表面酶吸附與水解行為,首先必須在QCM傳感器表面制備一層厚度極薄(小于幾百納米)、表面光滑、吸附牢固且均勻覆蓋基底的木質(zhì)纖維素薄膜.由于木質(zhì)纖維素是一類由纖維素、半纖維素和木質(zhì)素3種長(zhǎng)鏈高分子相互交織在一起的復(fù)雜大分子,許多學(xué)者通過旋轉(zhuǎn)涂膜法、自組裝單分子層法、化學(xué)連接法等制備纖維素薄膜、木質(zhì)素薄膜、木質(zhì)纖維素薄膜或者混合膜(見表1),并分析了這些薄膜的結(jié)構(gòu)特點(diǎn).
旋轉(zhuǎn)涂膜法具有操作簡(jiǎn)單,能快速制備均勻、牢固的薄膜等優(yōu)點(diǎn),應(yīng)用最為廣泛.LB膜法的優(yōu)點(diǎn)是制得的薄膜能夠完全覆蓋基底且具有最小的粗糙度,膜厚可通過涂布層數(shù)精確調(diào)控,但缺點(diǎn)是需要精密的儀器,且需要選擇合適的溶劑相和面下相,耗時(shí)長(zhǎng),不便于大批量生產(chǎn).因此,研究人員普遍采用旋轉(zhuǎn)涂膜法制備厚度低于100,nm的薄膜用于檢測(cè).
將纖維素溶于N-甲基氧化嗎啡(NMMO)[5, 8]、離子液體[8, 27]等非衍生化溶劑中,通過旋轉(zhuǎn)涂膜的方式,可獲得均勻的纖維素薄膜.此外,Tham等[10]在QCM-D傳感芯片表面先修飾聚乙烯亞胺(PEI),再通入微晶纖維素懸浮液,制得牢固的自組裝纖維素薄膜.Orelma等[28]則先在芯片表面旋涂一層聚苯乙烯,運(yùn)用水平方向Langmuir-Schaeffer沉積技術(shù)在芯片表面修飾三甲基硅烷基纖維素(TMSC),去甲硅基后得到纖維素薄膜.
不同來源的纖維素均可通過旋轉(zhuǎn)涂膜法制備用于QCM-D檢測(cè)的薄膜,纖維素薄膜厚度因原料不同,分布在5~50,nm.在旋轉(zhuǎn)涂膜之前,在芯片表面修飾陽(yáng)離子聚電解質(zhì),利用靜電相互作用可制得穩(wěn)定、牢固的纖維素薄膜.此外,同一種纖維素溶解在不同溶劑中可制備結(jié)晶度為15%,~85%,的薄膜[8].
木質(zhì)素薄膜的表面性質(zhì)與木質(zhì)素來源、木質(zhì)素的提取方法、溶解木質(zhì)素的溶劑和制膜方法有關(guān).
將木質(zhì)素溶于氨水[29-31]、1,4-二惡烷[9,31-33]等溶劑中,形成均一的溶液,取一定量木質(zhì)素溶液置于QCM-D傳感芯片表面,溶劑在高速離心力下連續(xù)蒸發(fā)并徑向流動(dòng),最終在芯片表面形成均一、固態(tài)的木質(zhì)素薄膜.根據(jù)旋轉(zhuǎn)涂膜法制備的薄膜,與基底有很強(qiáng)的黏附力,膜厚因木質(zhì)素提取方法不同而有明顯差異[32].
采用LB膜法可把木質(zhì)素一層一層地涂布到指定襯底上.Pasquini等[11]以從甘蔗渣中提取的木質(zhì)素為原料,將木質(zhì)素溶于DMA(N,N-二甲基乙酰胺)和氯仿的混合溶液中,制得的LB膜因木質(zhì)素提取方法不同而表現(xiàn)出不同的特性.用丙酮-氧、蘇打、乙醇-水、丙酮/水/硫酸提出的木質(zhì)素LB薄膜粗糙度分別為0.30,nm、1.25,nm、0.24,nm、3.80,nm.
木質(zhì)纖維素薄膜主要通過旋轉(zhuǎn)涂膜的方式制得.近年來,許多學(xué)者通過在QCM-D傳感器表面修飾一層PEI[10, 34-36],利用其提供的陽(yáng)離子環(huán)境,增加QCM-D傳感芯片的親水性,再采用亞氯酸鈉[36]、加壓熱水[34]、蒸汽爆破[35]等處理不同來源的木質(zhì)纖維素,采用旋轉(zhuǎn)涂膜法制得的木質(zhì)纖維素薄膜厚度可達(dá)10,nm左右[34-36].
此外,為了盡可能模擬自然界中木質(zhì)纖維素的實(shí)際存在形式,研究人員通過混配的方式制備了不同組成的混合膜.將纖維素、半纖維素、木質(zhì)素衍生化,把其中的兩種或多種成分溶于同一種溶液,旋轉(zhuǎn)涂膜,之后脫去甲硅基、乙?;妊苌鶊F(tuán),形成不同組成和比例含量的木質(zhì)纖維素混合膜.
Strasser等[37]將木質(zhì)素棕櫚酸酯(LP)與TMSC按不同比例溶于三氯甲烷溶液,旋轉(zhuǎn)涂膜,在HCl蒸氣中去甲硅基,制備不同組分含量的LP/纖維素混合膜.結(jié)果表明:降低TMSC含量、脫甲硅基后,混合膜厚均減?。换旌夏ぶ欣w維素的含量對(duì)靜態(tài)接觸角(SCA)影響很小(約為40°),但脫甲硅基后,SCA減?。@可能是因?yàn)槿ゼ坠杌?,纖維素部分解聚,鏈流動(dòng)性增加重排而形成更為致密的結(jié)構(gòu)[38].
Hoeger等[39]將乙?;举|(zhì)素(AcL)和TMSC溶于氯仿,旋涂,分別在HCl和氨氣中脫甲硅基和乙?;?,得到纖維素/木質(zhì)素混合膜.總體上,脫乙?;图坠杌?,薄膜粗糙度均增加;薄膜中木質(zhì)素含量越高,水接觸角和粗糙度越大,當(dāng)木質(zhì)素質(zhì)量分?jǐn)?shù)占50%,時(shí),水接觸角和粗糙度分別可以達(dá)55°±1°、(4.4±0.2)nm.
Martín-Sampedro等[40]用三醋酸纖維素(CTA),與AcL溶于氯仿,旋轉(zhuǎn)涂膜,室溫下在氨氣氛圍中脫乙?;?,CTA轉(zhuǎn)化為纖維素,AcL轉(zhuǎn)化為木質(zhì)素,最終形成纖維素/木質(zhì)素混合膜.隨著木質(zhì)素含量的增加,膜粗糙度增加,水接觸角增大;脫乙?;?,混合膜粗糙度也增加.用CTA代替TMSC,旋轉(zhuǎn)涂膜后,只需一步脫去乙?;纯?,操作更簡(jiǎn)便.
Kumagai等[36]結(jié)合亞氯酸鈉處理(SCT)和機(jī)械顫動(dòng)處理日本扁柏軟木粉,通過旋轉(zhuǎn)涂膜制得半纖維素和木質(zhì)素含量較高的木質(zhì)纖維素(LCNF)薄膜.結(jié)果表明,經(jīng)過8,h的SCT,LCNF薄膜厚度可降到(10.6±0.8)nm,粗糙度降到(3.34±0.13)nm.
表1?木質(zhì)纖維素薄膜制備與分析
Tab.1?Preparation and characterization of lignocellulosic thin films
在木質(zhì)纖維素酶解過程通常需要三類酶共同作用,即:①外切纖維素酶,主要水解結(jié)晶型纖維素鏈,從還原端或非還原端水解釋放纖維二糖;②內(nèi)切纖維素酶,隨機(jī)水解無(wú)定形纖維素,釋放纖維寡糖形成新的還原端;③β-葡萄糖苷酶,它主要水解纖維二糖和纖維寡糖及其他低聚糖,產(chǎn)生葡萄糖.其中,外切纖維素酶和內(nèi)切纖維素酶分子內(nèi)一般都包含吸附域CBD和催化域CD,可通過CBD結(jié)合到木質(zhì)纖維素上[41-42];而β-葡萄糖苷酶則不包含吸附域CBD[43-44].
美國(guó)加州大學(xué)伯克利分校Maurer等[5]采用QCM-D分析了外切纖維素酶(Cel7A)和內(nèi)切纖維素酶(Cel7B)在纖維素表面的競(jìng)爭(zhēng)性吸附行為.發(fā)現(xiàn)在一定的濃度范圍內(nèi),Cel7A和Cel7B酶濃度越高,用QCM-D觀察到的頻率下降越多,酶在纖維素表面吸附量越大.在相同濃度下,Cel7A在纖維素表面吸附引起頻率下降更多,說明Cel7A與纖維素之間具有更強(qiáng)的親和力.
此外,研究發(fā)現(xiàn)不同來源的纖維素酶在纖維素表面表現(xiàn)出不同的吸附-反應(yīng)特性.包含CBD的內(nèi)切酶會(huì)穿透纖維素薄膜作用,使得能量耗散減小,薄膜剛性增加[18-19];纖維素表面吸附表面活性劑后,不會(huì)影響CBH-I在其表面的水解[32].
Maurer等[5]根據(jù)一級(jí)反應(yīng)動(dòng)力學(xué)方程,做出合理的假設(shè),再用龍格-庫(kù)塔算法在有限范圍內(nèi)迭代,求出Cel7A和Cel7B的吸附、脫附、不可逆吸附速率常數(shù)(A、D、I),并以此為基礎(chǔ)構(gòu)建了Langmuir吸附動(dòng)力學(xué)模型,與用QCM-D測(cè)出的實(shí)驗(yàn)結(jié)果擬合很好.兩種酶I相似,考慮到Cel7A和Cel7B有相似的結(jié)合位點(diǎn),這可能是因?yàn)榕c纖維素羥基結(jié)合的CBD區(qū)氨基酸殘基不同導(dǎo)致的;Cel7A熵值大于Cel7B,解釋了Cel7A有更高的Langmuir平衡常數(shù)、與纖維素有更強(qiáng)的親和力.
另外,Cel7A、Cel7B混合酶在纖維素表面的動(dòng)力學(xué)模型也被建立[45].該模型包括兩種酶競(jìng)爭(zhēng)性吸附、不可逆結(jié)合、絡(luò)合、協(xié)同作用.對(duì)Cel7A和Cel7B來說,限速步驟分別是絡(luò)合和吸附;在25,℃下,Cel7A與Cel7B濃度比為2∶1時(shí),纖維素膜降解速率最大.
外切和內(nèi)切纖維素酶主要通過CBD特異性吸附在纖維素薄膜上.用QCM-D可以觀察到酶的吸附引起頻率值下降,能量耗散增加.外切酶和內(nèi)切酶的結(jié)構(gòu)不同,因而引起頻率和耗散值的減小和增加量也不同[5, 40].此外,用QCM-D觀察到通入緩沖溶液,吸附的纖維素酶不能被完全洗脫下來,說明纖維素酶會(huì)由于局部變性不可逆吸附在纖維素薄膜上[5, 14].
蛋白質(zhì)主要通過疏水相互作用非特異性吸附在木質(zhì)素薄膜上[32-33].Rahikainen等[31]指出:外切纖維素酶Cel7A在木質(zhì)素表面的吸附經(jīng)歷兩個(gè)過程,先快速吸附、再緩慢連接,頻率值先快速增加之后逐漸減小,最終下降值約為18,Hz;而Cel7A催化域則只有一個(gè)緩慢吸附的過程,該吸附引起頻率值變化約為7,Hz.因此,Cel7A在木質(zhì)素上起始快速吸附主要由其吸附域(CBD)發(fā)生作用.研究發(fā)現(xiàn)CBD的3個(gè)芳香族酪氨酸殘基可通過疏水相互作用與木質(zhì)素連?接[31].此外,木質(zhì)素的組成和結(jié)構(gòu)不同,與酶的親和力也不同.蒸汽爆破(SE)處理使得木質(zhì)素中酚羥基增加,酶吸附增多[31];羧基增加使得木質(zhì)素更親水,因此酶吸附量減小[46-47];木質(zhì)素中紫丁香/愈創(chuàng)木單體比例越少,纖維素酶在木質(zhì)素上吸附越多[48];降低木質(zhì)素表面的粗糙度,增加潤(rùn)濕性,酶吸附變少[32];木質(zhì)素上離子化基團(tuán)可使酶吸附量隨著pH值增大而下降[49].
木質(zhì)素是化學(xué)多相聚合物,因此不同位點(diǎn)上的結(jié)合行為也不同.Cel7B在木質(zhì)素表面的吸附更符合兩點(diǎn)轉(zhuǎn)換模型[21],即內(nèi)切酶以兩個(gè)不同的速率吸附在木質(zhì)素薄膜上多個(gè)不同的位點(diǎn),之后蛋白會(huì)脫附或者不可逆結(jié)合在木質(zhì)素表面,兩點(diǎn)轉(zhuǎn)換模型如圖3所示.
圖3?內(nèi)切纖維素酶Cel7B的兩點(diǎn)轉(zhuǎn)換模型
木質(zhì)素由3種單體醇(松柏醇、芥子醇和對(duì)香豆醇)通過化學(xué)鍵結(jié)合形成聚酚類天然高分子物質(zhì),具有高度的疏水性.木質(zhì)素薄膜越疏水,纖維素酶在木質(zhì)素上的吸附越多.纖維素酶的CBD和CD共同影響其在木質(zhì)素上的吸附[31, 40].
在木質(zhì)纖維素薄膜中,纖維素含量越高,外切纖維素酶吸附引起頻率下降越多[40].而內(nèi)切纖維素酶則對(duì)木質(zhì)素有更強(qiáng)的親和力,因而當(dāng)木質(zhì)纖維素薄膜中木質(zhì)素含量增加,內(nèi)切纖維素酶的吸附量也增加[40].
纖維素酶在木質(zhì)纖維素上吸附行為受木質(zhì)纖維素組成結(jié)構(gòu)、各組分比例以及纖維素酶種類的影響.一般來說,外切酶在纖維素含量高的木質(zhì)纖維素薄膜上吸附較多,而內(nèi)切酶在木質(zhì)素含量高的木質(zhì)素薄膜上吸附較多.
QCM-D可用于研究纖維素酶在木質(zhì)纖維素膜上的催化過程,實(shí)時(shí)監(jiān)測(cè)纖維素酶在木質(zhì)纖維素膜上的吸附和纖維素的酶解,并可進(jìn)一步研究纖維素酶解動(dòng)力學(xué).表2總結(jié)了近年來應(yīng)用QCM-D分析木質(zhì)纖維素吸附和酶解行為的研究進(jìn)展.
表2?纖維素酶的吸附與水解行為分析
Tab.2?Analysis of adsorption and hydrolysis of cellulases
Martín-Sampedro等[40]指出,外切纖維素酶首先在纖維素薄膜表面吸附,使得薄膜黏彈性增加,質(zhì)量增加.隨后,在薄膜表面水解,薄膜逐漸變薄,黏彈性也略微下降.最后,纖維素酶擴(kuò)散到薄膜內(nèi)部,水分子浸潤(rùn),纖維素分子溶脹,薄膜黏彈性增加.與外切纖維素酶不同,內(nèi)切纖維素酶作用初期主要以水解為主,隨后才逐漸表現(xiàn)為吸附[40, 50].
在木質(zhì)素薄膜表面,外切與內(nèi)切纖維素酶主要通過疏水相互作用進(jìn)行不可逆吸附.與外切纖維素酶具有隧道形的活性位點(diǎn)相比,內(nèi)切纖維素酶含有更開放的位點(diǎn),因此表現(xiàn)出對(duì)木質(zhì)素具有更強(qiáng)的親和力[51].
在木質(zhì)纖維素薄膜表面,纖維素含量越高,外切纖維素酶吸附量越多,并在吸附過程中伴隨著水解.內(nèi)切纖維素酶作用于纖維素鏈內(nèi)部產(chǎn)生纖維糊精,而外切纖維素酶則作用于還原性末端,從鏈端切纖維二塘單元,兩者協(xié)同水解纖維素.但由于木質(zhì)素的存在,纖維素酶無(wú)效吸附,因此水解效率下降[40].
QCM-D具有操作簡(jiǎn)便、快捷、可以實(shí)時(shí)在線定量跟蹤監(jiān)測(cè)等優(yōu)點(diǎn).本文總結(jié)了近年來在QCM-D傳感芯片上纖維素、木質(zhì)素與木質(zhì)纖維素薄膜的制備方法,并采用QCM-D分析酶吸附與水解行為.
目前用于QCM-D研究的薄膜在結(jié)構(gòu)、組成等方面與木質(zhì)纖維素原始或預(yù)處理后的形態(tài)存在明顯差異,不能真實(shí)模擬各組分間相互作用.此外,纖維素酶穿過薄膜表面后會(huì)引起薄膜水含量變化,QCM-D不能單獨(dú)、準(zhǔn)確測(cè)量因纖維素酶的水解而引起的木質(zhì)纖維素薄膜質(zhì)量變化,還需耦合中子反射計(jì)等儀器測(cè)量木質(zhì)纖維素薄膜因吸水溶脹而產(chǎn)生的質(zhì)量變化.
今后,需要進(jìn)一步利用QCM-D研究化學(xué)組成更接近原生木質(zhì)纖維原料的薄膜,盡量還原自然界中真實(shí)存在或預(yù)處理后木質(zhì)纖維素的形態(tài).目前,研究人員構(gòu)建了單酶、多組分混合酶在纖維素薄膜上的吸附、水解動(dòng)力學(xué)模型,以及單酶在木質(zhì)素薄膜上的吸附動(dòng)力學(xué)模型,纖維素酶在成分更加復(fù)雜的木質(zhì)纖維素薄膜上的吸附、水解模型的構(gòu)建仍需要利用QCM-D進(jìn)行實(shí)時(shí)、定量、原位分析,發(fā)現(xiàn)并闡明纖維素酶解效率變化的演變規(guī)律,以指導(dǎo)工業(yè)生產(chǎn)中纖維素酶的復(fù)配體系設(shè)計(jì).
[1] Sheridan C. Big oil turns on biofuels[J].,2013,31(10):870-873.
[2] Liao J C,Mi L,Pontrelli S,et al. Fuelling the future:Microbial engineering for the production of sustainable biofuels[J].,2016,14(5):288-304.
[3] Somerville C,Bauer S,Brininstool G,et al. Toward a systems approach to understanding plant cell walls[J].,2004,306(5705):2206-2211.
[4] Huang R L,Su R X,Qi W,et al. Bioconversion of lignocellulose into bioethanol:Process intensification and mechanism research[J].,2011,4(4):225-245.
[5] Maurer S A,Bedbrook C N,Radke C J. Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate[J].,2012,28(41):14598-14608.
[6] Mohan T,Niegelhell K,Zarth C S P,et al. Triggering protein adsorption on tailored cationic cellulose surfaces [J].,2014,15(11):3931-3941.
[7] Zhang Y X,Rojas O J. Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils[J].,2017,18(2):526-534.
[8] Benselfelt T,Cranston E D,Ondaral S,et al. Adsorption of xyloglucan onto cellulose surfaces of different morphologies:An entropy-driven process[J].,2016,17(9):2801-2811.
[9] Salas C,Rojas O J,Lucia L A,et al. On the surface interactions of proteins with lignin[J].,2013,5(1):199-206.
[10] Tham Y Y,Molino P J,Higgins M J,et al. The study of deposition of wood extractives and model compound colloids onto chromium and cellulose surfaces using quartz crystal microbalance with dissipation(QCM-D)[J].:,2016,491:1-11.
[11] Pasquini D,Balogh D T,Oliveira O N,et al. Lignin molecular arrangements in Langmuir and Langmuir-Blodgett films:The influence of extraction processes [J].:,2005,252(2/3):193-200.
[12] Raegen A N,Reiter K,Dion A,et al. Advances in surface plasmon resonance imaging enable quantitative tracking of nanoscale changes in thickness and roughness [J].,2014,86(7):3346-3354.
[13] Quirk A,Lipkowski J,Vandenende C,et al. Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy[J].,2010,26(7):5007-5013.
[14] Maurer S A,Bedbrook C N,Radke C J. Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry[J].,2012,51(35):11389-11400.
[15] Eriksson J,Malmsten M,Tiberg F,et al. Enzymatic degradation of model cellulose films[J].,2005,284(1):99-106.
[16] Falt S,W?gberg L,Vesterlind E L,et al. Model films of cellulose ID—Improved preparation method and characterization of the cellulose film[J].,2004,11(2):151-162.
[17] Gunnars S,W?gberg L,Stuart M A C. Model ?lms of cellulose:I. Method development and initial results[J].,2002,9(3):239-249.
[18] Cheng G,Liu Z L,Murton J K,et al. Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose[J].,2011,12(6):2216-2224.
[19] Cheng G,Datta S,Liu Z L,et al. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and QCM-D[J].,2012,28(22):8348-8358.
[20] Vuoriluoto M,Orelma H,Zhu B,et al. Control of protein affinity of bioactive nanocellulose and passivation using engineered block and random copolymers[J].,2016,8(8):5668-5678.
[21] Pfeiffer K A,Sorek H,Roche C M,et al. Evaluating endoglucanase Cel7B-lignin interaction mechanisms and kinetics using quartz crystal microgravimetry[J].,2015,112(11):2256-2266.
[22] Ganner T,Rosker S,Eibinger M,et al. Tunable semicrystalline thin film cellulose substrate for high-resolution,in-situ AFM characterization of enzymatic cellulose degradation[J].,2015,7(50):27900-27909.
[23] Qin C R,Clarke K,Li K C. Interactive forces between lignin and cellulase as determined by atomic force microscopy[J].,2014,7(1):65-74.
[24] Chen Q,Xu S M,Liu Q X,et al. QCM-D study of nanoparticle interactions[J].,2016,233:94-114.
[25] Sauerbrey G. Verwendung von schwingquarzen zur w?gung dünner schichten und zur mikrow?gung[J].,1959,155(2):206-222.
[26] Rodahl M,Jonson M. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces:Continuum mechanics approach[J].,1999,59(9):391-396.
[27] Zhou S S,Li H F,Garlapalli R,et al. Hydrolysis of model cellulose films by cellulosomes:Extension of quartz crystal microbalance technique to multienzymatic complexes[J].,2017,241:42-49.
[28] Orelma H,F(xiàn)ilpponen I,Johansson L S,et al. Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules [J].,2011,12(12):4311-4318.
[29] Lou H M,Wang M X,Lai H R,et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J].,2013,146(10):478-484.
[30] Norgren M,Notley S M,Majtnerova A,et al. Smooth model surfaces from lignin derivatives. I. Preparation and characterization[J].,2006,22(3):1209-1214.
[31] Rahikainen J L,Martin-Sampedro R,Heikkinen H,et al. Inhibitory effect of lignin during cellulose bioconversion:The effect of lignin chemistry on non-productive enzyme adsorption[J].,2013,133(2):270-278.
[32] Fritz C,F(xiàn)errer A,Salas C,et al. Interactions between cellulolytic enzymes with native,autohydrolysis,and technical lignins and the effect of a polysorbate amphiphile in reducing nonproductive binding[J].,2015,16(12):3878-3888.
[33] Sammond D W,Yarbrough J M,Mansfield E,et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J].,2014,289(30):20960-20969.
[34] Kumagai A,Lee S H,Endo T. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance[J].,2016,113(7):1441-1447.
[35] Kumagai A,Iwamoto S,Lee S H,et al. Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils[J].,2014,21(4):2433-2444.
[36] Kumagai A,Lee S H,Endo T. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study[J].,2013,14(7):2420-2426.
[37] Strasser S,Niegelhell K,Kaschowitz M,et al. Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films[J].,2016,17(3):1083-1092.
[38] Ehmann H M A,Werzer O,Pachmajer S,et al. Surface-sensitive approach to interpreting supramolecular rearrangements in cellulose by synchrotron grazing incidence small-angle X-ray scattering[J].,2015,4(7):713-716.
[39] Hoeger I C,F(xiàn)ilpponen I,Martin-Sampedro R,et al. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions[J].,2012,13(10):3228-3240.
[40] Martín-Sampedro R,Rahikainen J L,Johansson L S,et al. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content[J].,2013,14(4):1231-1239.
[41] Huang R L,Guo H,Su R X,et al. Enhanced cellulase recovery without beta-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant[J].,2017,114(3):543-551.
[42] Guo H,Zou S L,Liu B S,et al. Reducing beta-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion[J].,2015,187:362-368.
[43] 蘇榮欣楊仁俊,齊?崴,等. 聚多巴胺輔助磁微球固定β-葡萄糖苷酶的制備與應(yīng)用[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(5):471-476.
Su Rongxin,Yang Renjun,Qi Wei,et al. Polydopamine-assisted preparation and application of magnetic immobilized β-Glucosidase[J].:,2017,50(5):471-476(in Chinese).
[44] Su R X,Yang R J,Yang J F,et al. Oscillating cellulase adsorption and enhanced lignocellulose
hydrolysis upon ultrasound treatment[J].,2016,23(1):11-19.
[45] Maurer S A,Brady N W,F(xiàn)ajardo N P,et al. Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry[J].,2013,394(1):498-508.
[46] Nakagame S,Chandra R P,Kadla J F,et al. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J].,2011,108(3):538-548.
[47] Li M,Pu Y Q,Ragauskas A J. Current understanding of the correlation of lignin structure with biomass recalcitrance[J].,2016,4:1-8.
[48] Guo F F,Shi W J,Sun W,et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J].,2014,7(1):1-10.
[49] Rahikainen J L,Evans J D,Mikander S,et al. Cellulase-lignin interactions:The role of carbohydrate-binding module and pH in non-productive binding[J].,2013,53(5):315-321.
[50] Suchy M,Linder M B,Tammelin T,et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring[J].,2011,27(14):8819-8828.
[51] Palonen H,Tjerneld F,Zacchi G,et al. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin[J].,2004,107(1):65-72.
(責(zé)任編輯:田?軍)
QCM-D Analysis of Film Formation and Enzymatic Hydrolysis of Lignocellulose
Su Rongxin1, 2, 3, 4,Chen Mimi1, 2,Huang Renliang1, 2,Qi Wei1, 2, 3, 4,Wang Mengfan1, 2,He Zhimin1, 2
(1.School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China;2.State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300350,China;3.Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300350,China;4.Tianjin Key Laboratory of Membrane Science and Desalination Technology,Tianjin 300072,China)
Quartz crystal microbalance with dissipation(QCM-D)is an instrument used to measure the mass change of the electrode surface based on the piezoelectric effect of quartz crystal and has proved to be a highly sensitive online interface process analysis tool.This review summarizes the lignocellulose film preparation and the analysis progress of QCM-D in enzymatic hydrolysis in recent years.Four aspects,which include thin film preparation,cellulase adsorption onto cellulose,lignin,and lignocellulosic substrates,enzymatic hydrolysis analysis and dynamics modeling,are briefly introduced.The above research results help to understand the interaction characteristics between lignocellulose and cellulase,providing foundation and guidance for designing a new compounded enzyme system and a profound understanding of the mechanism of cellulose enzymatic hydrolysis.
lignocellulose;cellulase;QCM-D;film;adsorption;hydrolysis
10.11784/tdxbz201702030
Q64
A
0493-2137(2018)01-0001-08
2017-02-16;
2017-04-27.
蘇榮欣(1980—??),男,博士,教授.
蘇榮欣,surx@tju.edu.cn.
2017-05-27.
http://kns.cnki.net/kcms/detail/12.1127.N.20170527.0940.006.html.
國(guó)家自然科學(xué)基金資助項(xiàng)目(51473115,21276192).
the National Natural Science Foundation of China (No.,51473115 and No.,21276192).