師 煒,孫振興,王 勁,王貴懷,烏優(yōu)圖,荊林凱,郭 毅
(清華大學附屬北京清華長庚醫(yī)院,清華大學臨床醫(yī)學院,北京102218)
吲哚菁綠(indocyanine green,ICG)熒光血管造影作為一種安全、簡便和實用的術中血管成像技術,目前已逐漸成為神經外科手術中常用的血流評價手段。自2003年率先引入血管神經外科手術以來,其應用領域不斷拓展,涵蓋血管、腫瘤以及其它等神經外科多個領域。本文通過回顧已發(fā)表的ICG熒光血管造影相關文章,就其應用價值及前景進行討論。
ICG熒光血管造影最早于1956年被美國食品藥品監(jiān)督局(FDA)批準用于心血管和肝功能研究領域[1]。 2003 年,Raabe 等[2]第一次將 ICG 熒光血管造影應用于動脈瘤夾閉手術,并成為術中評估載瘤動脈及分支血管通暢,評價動脈瘤夾閉程度的新方法。自此以后,該技術逐漸在神經外科多個領域(如腦血管病、腦腫瘤及神經內鏡手術等)中推廣使用。
ICG是一種近紅外三碳氰類染料,分子式為C43H47N2NaO6S2,其最大吸收峰和發(fā)射峰分別為805 nm和835 nm(可見光波長為390~780 nm)。經快速靜脈推注后,ICG迅速與a1球蛋白結合,并始終存在于血管內。ICG經肝臟代謝通過腸道排出,平均半衰期3~4 min,10~15 min后可再次靜脈使用。ICG 的推薦用量為 0.2~0.5 mg/kg,快速靜脈推注,每日極量為5 mg/kg[3]。 ICG 臨床使用安全可靠,不良反應發(fā)生率低,文獻報道為 0.05%~0.20%,包括惡心、皮膚瘙癢、低血壓、心律失?;蚝币姷倪^敏性休克等[4]。
2.1 顱內動脈瘤手術 手術夾閉目前仍是治療顱內動脈瘤的重要手段。但據(jù)文獻報道,術者僅憑顯微鏡下直視觀察操作,術后并發(fā)癥發(fā)生率較高,包括4%~19%的患者出現(xiàn)動脈瘤夾閉不全,0.3%~12%的患者因相關血管狹窄或閉塞引發(fā)缺血性卒中[5]。術中數(shù)字減影血管造影(digital subtraction angiography,DSA)因其能有效評估動脈瘤夾閉程度,評價載瘤動脈和分支血管的血流通暢程度,目前仍是動脈瘤手術中血管檢查的金標準。但由于其費用昂貴,需要額外的設備和人員輔助,在一定程度上增加了手術時間和手術風險,且不能有效評估細小穿支血管的通暢性,目前僅常規(guī)用于顱內巨大、復雜動脈瘤手術中[6]。2003年,Raabe等[2]首先將ICG熒光血管造影應用于動脈瘤夾閉手術,成為術中評估載瘤動脈及分支血管通暢、評價動脈瘤夾閉程度的新方法。Dashti等[7]在 2009 年、Washington 等[8]在 2013 年、Roessler等[9]在2014年先后報道了190例、155例和232例ICG血管造影單中心臨床使用結果,并將其與微血管多普勒檢查、DSA造影等其它術中血流評價技術進行比較,證實了其在顱內動脈瘤手術中用于術中觀察并評價血流狀況的有效性。Hardesty等[10]在研究中將術中DSA與ICG血管造影進行分組比較,結果發(fā)現(xiàn)兩組患者術中動脈瘤夾再調整率(因殘頸或載瘤動脈狹窄等原因)、圍手術期缺血性卒中發(fā)生率均無顯著差異,且常規(guī)術中使用DSA檢查組手術相關費用明顯高于ICG組。
雖然血管痙攣是動脈瘤性蛛網膜下腔出血后缺血性卒中最常見的原因,但蛛網膜下腔出血患者中因術中血管損害導致梗死達到了22.8%,且8%是因穿通動脈閉塞引起[6]。穿通動脈均為毫米或亞毫米級的血管,常供應重要腦功能區(qū),傳統(tǒng)的影像學方法難以顯示如此細小的血管。de Oliveira等[6]進行了評價ICG血管造影(ICG angiography,ICGA)在動脈瘤夾閉術中穿通動脈血流的研究,針對60例患者的64個動脈瘤共應用93次ICGA,在術野中能見到穿通動脈的36例(56%)中ICGA均可顯影,并可用于血流評價,其中11例穿通動脈發(fā)自動脈瘤頸或鄰近的部位,因此在夾閉動脈瘤過程中存在潛在的損傷風險。ICGA結果顯示10例在動脈瘤夾閉后與穿通動脈關系密切,但未損傷,1例基底動脈瘤夾閉后ICGA發(fā)現(xiàn)起自P1的穿通動脈閉塞,重新放置動脈瘤夾后穿通動脈隨即顯影。
雖然ICG造影在顱內動脈瘤手術應用中存在一定優(yōu)勢,但其同樣存在因技術原因導致的內在缺陷[11-14]:近紅外熒光腦組織穿透性能較弱,使其成像結果易受遮擋、光線等原因干擾;熒光成像結果僅提供黑白灰度影像,動脈瘤及相關血管的血流動力學評估,特別是局部血流灌注的定量分析,目前尚無法實現(xiàn)。因此,對于復雜動脈瘤病例,特別是當載瘤動脈及其分支血管存在遮擋時,術中DSA仍是目前評價動脈瘤手術夾閉效果的金標準,ICG血管造影單獨用于術中血流評估仍需謹慎。然而值得期待的是,隨著神經內鏡技術的廣泛使用,上述問題有望得以解決。Bruneau等[15]率先將內鏡整合下ICG造影技術應用于顱內前交通動脈瘤手術夾閉治療中。該技術不受制于顯微鏡觀察視野的局限性,并可根據(jù)需要深入術野進行多角度、全方位的調整觀察。因此,傳統(tǒng)顯微鏡下ICG血管造影的部分難題(如深部區(qū)域,特別是術野后方被遮擋的動脈瘤體/頸,被動脈瘤、瘤夾或周圍結構遮擋部位血流狀態(tài)的觀察評估)有望通過內鏡整合下的ICG造影得以解決。
2.2 血管搭橋手術 術中ICG熒光血管造影同樣應用于顱內?外(或顱內?內)旁路血管搭橋手術[16-17]。Woitzik等[18]在45例顱內外旁路血管搭橋術中應用ICGA,其中35例顳淺動脈?大腦中動脈(superficial temporal artery?middle cerebral artery, STA?MCA) 搭橋,2例顳淺動脈?大腦后動脈(superficial temporal artery?posterior cerebral artery, STA?PCA)搭橋,8 例隱靜脈高流量搭橋,術中共進行51次ICGA,發(fā)現(xiàn)4例STA?MCA橋血管閉塞,2例隱靜脈高流量搭橋吻合口遠端狹窄,均經修正吻合后充盈良好,并為術后DSA或CT血管造影(CT angiography,CTA)所證實。因ICG熒光血管造影能快速識別供體和受體血管,實時評估橋血管的通暢性,有效減少搭橋手術早期失敗率,降低術后并發(fā)癥發(fā)生率,因此其在各型顱內?外(或顱內?內)旁路血管搭橋手術中均發(fā)揮著重要作用[18-20]。
但傳統(tǒng)的ICG造影技術主要用于評估顱內?外或顱內?內搭橋手術橋血管通暢性,然而,Januszewski等[21]認為橋血管的通暢性并不與其中的血流情況完全吻合,且橋血管內血流方式的改變可直接引起術后遲發(fā)性橋血管閉塞。因此,作者根據(jù)橋血管血流通過特點建立了一種新的搭橋術中血流分型評價標準:Ⅰ型(正向血流,血流強勁):強烈提示術后早期橋血管通暢性良好;Ⅱ型(正向血流,血流速度較周圍鄰近血管減慢);Ⅲ型(正向血流,無持續(xù)性血流通過):提示早期搭橋手術失敗風險,術中應及時翻修以避免術后相關并發(fā)癥。
目前已有早期研究報道使用半定量分析方法評估腦血管搭橋術中局部腦皮層灌注情況。Awano等[22]對13例煙霧病以及21例非煙霧病性缺血性卒中患者行顳淺動脈?大腦中動脈搭橋術(STA?MCA bypass),術中行ICG熒光血管造影并通過采集ICG熒光強度測量搭橋局部腦皮層灌注信息。結果顯示,煙霧病患者局部腦灌注在行STA?MCA搭橋術后較非煙霧病者明顯增加,這一發(fā)現(xiàn)提示在煙霧病患者中橋血管兩端的血流存在更大的壓力梯度,因此煙霧病患者術后需進行更為嚴苛的血壓控制以預防因腦過度灌注引起的腦出血。
最近,Prinz等[23]報道采用 FLOW 800計算機整合軟件分析技術,即時彩色顯示術中ICG熒光造影結果和實時定量分析ICG熒光強度動態(tài)變化,評估搭橋手術前后局部腦灌注和血流動力學改變,該技術有效填補了當前術中高分辨率下腦皮層微循環(huán)灌注的可視化研究及定量測定方法上的空白。FLOW血流動力學參數(shù)的即時顏色標碼描繪(又稱“彩色地圖”)通過術區(qū)血管結構的高清顯示和血流動力學分析結果的即時解讀,對于搭橋術中受體血管的選取、手術效果的實時評估起到了重要作用,并有效降低了術后不良事件的發(fā)生率。然而,需要強調的是,F(xiàn)LOW 800技術目前尚無法實現(xiàn)局部血流的連續(xù)性實時動態(tài)分析,其主要用途目前仍僅限于對同一患者手術操作前后的對比分析。
2.3 動靜脈畸形/動靜脈瘺手術 ICG熒光血管造影在腦動靜脈畸形(arteriovenous malformation,AVM)手術中具有一定的應用價值[24-27]。 Takagi等[28]在一例左額頂葉AVM兒童病例中使用ICG熒光血管造影成功在術中發(fā)現(xiàn)殘余畸形血管團進而全切,這也是ICG應用于腦AVM手術中的首例報道。Zaidi等[29]將ICG熒光血管造影用于大腦表淺部位AVM手術中,用于判斷供血動脈、畸形血管團及引流靜脈等血管構筑學信息,并通過局部腦血流變化掌握供血動脈的阻斷情況。但是對位于腦深部的病變,或術中判斷AVM是否存在殘留時,傳統(tǒng)的ICG熒光血管造影效果依然有限[30]。
腦和脊髓動靜脈瘺(arteriovenous fistula,AVF)手術成功的關鍵在于術中準確判斷瘺口的位置并予以完全阻斷[31-36]。ICG血管造影技術通過觀察血管內熒光造影劑的顯影時間和流經方向,可快速、準確辨別瘺口及引流靜脈位置[37];手術后再次行ICG造影可幫助確認瘺口是否阻斷完全[38]。
2.4 其它進展 由于ICG熒光血管造影無創(chuàng)、簡便且不良反應少見,其在神經外科多種疾病研究中均有嘗試使用[39-45]。 如在 moyamoya 病研究中,通過 ICG熒光血管造影技術證實了腦皮層微血管密度和微血管直徑的明顯增加(導致微血管表面積的增加)可能是血流動力學損害的特異性動脈代償機制[46];對于行去骨瓣減壓手術的患者[47],ICG熒光血管造影用于評估腦表面血管解剖特點和軟腦膜側枝代償程度。通過術中精確測量局部皮層腦組織灌注,幫助術者實時判斷和控制顱內壓,并為腦卒中病理生理學機制的深入研究提供寶貴數(shù)據(jù);ICG熒光血管造影技術在腦海綿狀血管瘤手術中應用價值有限[48-49]?,F(xiàn)有的研究病例數(shù)不足,且由于病變多位于深部并被正常腦組織包繞,手術視野受限,因此ICG熒光血管造影的作用尚存爭議。傳統(tǒng)的術中ICG熒光血管造影可用于定性評價血流的通暢性,但無法進行局部灌注及血流動力學的定量分析[6]。新型彩色熒光造影(Carl Zeiss Surgical, Oberkochen, Germany),在原有傳統(tǒng) ICG 黑白熒光造影基礎上進行革新,通過采集術區(qū)造影劑熒光強度和通過時間等參數(shù)信息,運用整合于手術顯微鏡上的計算軟件進行實時數(shù)據(jù)分析,并最終將結果以“彩色地圖”(造影劑最早通過的部位呈紅色,最晚通過的部位呈紫色,且顏色隨延遲時間的長短呈階梯性漸變)的形式呈現(xiàn)于顯微鏡屏幕,便于術者和相關人員進行更為直觀、詳盡的形態(tài)學和血流動力學評估[30]。 Faber等[50]和 Kamp 等[51]率先報道了 FLOW 800彩色熒光造影技術在神經外科特別是神經血管外科手術中應用的早期經驗,并證實了其在腦動靜脈畸形、動靜脈瘺以及顱內外血管搭橋手術中的應用價值。Woitzik等[47]將這一技術用于大面積腦梗塞去骨瓣減壓術中評價腦血流灌注,并得到了極佳的腦動脈、皮層血流灌注及側枝循環(huán)影像,進而可精確定量檢測腦皮層血流組織灌注,對未來卒中研究極有價值。
在神經外科新領域的不斷嘗試和突破將是ICG熒光血管造影未來研究的一個重要方向。包括在原有基礎上做出更大樣本量的系統(tǒng)論證,在定量評估腦和脊髓血流動力學變化的深入研究以及在神經腫瘤等領域的逐步探索。術中ICG熒光血管造影最近被應用于急性蛛網膜下腔出血開顱后術中評估腦皮層灌注改變。蛛網膜下腔出血急性期患者的臨床表現(xiàn)對預后判斷至關重要,而決定其癥狀輕重的因素在很大程度上取決于急性期腦血流量的改變[52-53]。但是,目前術中實時評估腦血流量的動態(tài)改變仍是一大難題,同時也給臨床治療帶來了挑戰(zhàn)。Schubert等[54]近期在研究中使用腦皮層ICG熒光造影得到急性蛛網膜下腔出血患者早期出現(xiàn)血管痙攣的證據(jù),更重要的是,它提供了一種新的、有效的術中腦血流量測定方法(采用FLOW 800軟件分析工具測量腦皮層熒光信號反射強度推測腦血流量)。而神經內鏡下的術中ICG熒光血管造影是未來研究的另一方向。在Nishiyama等[55]報道的內鏡輔助下動脈瘤手術中,內鏡可以提供傳統(tǒng)手術顯微鏡無法觀察到的深部穿支動脈的血流情況。與此同時,在內鏡輔助下三腦室底造瘺手術中,ICG熒光血管造影被用于術中動態(tài)觀察基底動脈及其穿支血管的位置和走形,降低血管損傷風險[56]。尤其在三腦室底部不透明、合并血管結構變異或是二次手術的病例之中,其優(yōu)勢更為顯著[56-57]。
近年來,術中ICG熒光血管造影在神經外科多個領域,特別是在神經血管手術中得到了廣泛應用。未來的發(fā)展方向包括局部腦血流定量分析功能的拓展和與神經內鏡技術的整合應用。在朝著更加微創(chuàng)、安全的神經外科發(fā)展大趨勢下,作為一種簡便、經濟、安全、有效的術中實時腦血流評價工具,術中ICG熒光血管造影擁有良好的應用前景。
[1]薛 敏,李 晶,高 穎,等.熒光素鈉眼底血管造影在糖尿病視網膜病變中的診斷價值[J].轉化醫(yī)學電子雜志,2017,4(3):48-50.
[2]Raabe A, Beck J, Gerlach R, et al.Near?infrared indocyanine green video angiography:a new method for intraoperative assessment of vascular flow[J].Neurosurgery,2003,52(1):132-139.
[3]Oh JK, Shin HC, Kim TY, et al.Intraoperative indocyanine green video?angiography: spinal dural arteriovenous fistula [ J].Spine(Phila Pa 1976),2011,36(24):E1578-E1580.
[4]Cochran ST,Bomyea K,Sayre JW.Trends in adverse events after IV administration of contrast media[J].AJR Am J Roentgenol,2001,176(6):1385-1388.
[5]Mohanty A.Near?infrared indocyanine green video angiography in aneurysm surgery[J].Neurol India,2009,57(4):366-367.
[6]de Oliveira JG, Beck J, Seifert V, et al.Assessment of flow in perfo?rating arteries during intracranial aneurysm surgery using intraopera?tive near?infrared indocyanine green videoangiography[J].Neurosur?gery,2007,61(3 Suppl):63-72;discussion 72-73.
[7]Dashti R, Laakso A, Niemel? M, et al.Microscope?integrated near?infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience[J].Surg Neurol,2009,71(5):543-550.
[8]Washington CW, Zipfel GJ, Chicoine MR, et al.Comparing indocy?anine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery[J].J Neu?rosurg,2013,118(2):420-427.
[9]Roessler K, Krawagna M, D?rfler A, et al.Essentials in intraopera?tive indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutivelyclipped aneurysms and review of the literature[J].Neurosurg Focus,2014,36(2):E7.
[10]Hardesty DA, Thind H, Zabramski JM, et al.Safety, efficacy, and cost of intraoperative indocyanine green angiography compared to intraoperative catheter angiography in cerebral aneurysm surgery[J].J Clin Neurosci,2014,21(8):1377-1382.
[11]Riva M, Amin?Hanjani S, Giussani C, et al.Indocyanine green videoangiography in aneurysm surgery: systematic review and meta?analysis[J].Neurosurgery 2017.
[12]Nagai Y, Goto M, Toda H, et al.Indocyanine green videoangiogra?phy for surgery of a ruptured dissecting aneurysm in the precommuni?cating anterior cerebral artery: a technical case report[J].Oper Neurosurg (Hagerstown),2017,13(4):E14-E18.
[13]Della Puppa A,Rustemi O,Scienza R.The“ICG entrapment sign”in cerebral aneurysm surgery assisted by indocyanine green videoan?giography[J].World Neurosurg,2017,97:287-291.
[14]Rustemi O, Scienza R, Della PA.Indocyanine green videoangiogra?phy application in distal(M4) middle cerebral artery aneurysm sur?gery[J].J Neurosurg Sci,2017,61(3):351-354.
[15]Bruneau M, Appelboom G, Rynkowski M, et al.Endoscope?inte?grated ICG technology:first application during intracranial aneurysm surgery[J].Neurosurg Rev,2013,36(1):77-84;discussion 84-85.
[16]Uchino H, Nakamura T, Houkin K, et al.Semiquantitative analysis of indocyanine green videoangiography for cortical perfusion assess?ment in superficial temporal artery to middle cerebral artery anasto?mosis[J].Acta Neurochir(Wien),2013,155(4):599-605.
[17]Rodríguez?Hernández A, Lawton MT.Flash fluorescence with indo?cyanine green videoangiography to identify the recipient artery for by?pass with distal middle cerebral artery aneurysms: operative tech?nique[J].Neurosurgery,2012,70(2 Suppl Operative):209-220.
[18]Woitzik J, Horn P, Vajkoczy P, et al.Intraoperative control of ex?tracranial?intracranial bypass patency by near?infrared indocyanine green videoangiography[J].J Neurosurg,2005,102(4):692-698.
[19]Schuette AJ, Dannenbaum MJ, Cawley CM, et al.Indocyanine green videoangiography for confirmation of bypass graft patency[J].J Ko?rean Neurosurg Soc,2011,50(1):23-29.
[20]Esposito G, Durand A, Van Doormaal T, et al.Selective?targeted extra?intracranial bypass surgery in complex middle cerebral artery aneurysms: correctly identifying the recipient artery using indocya?nine green videoangiography[J].Neurosurgery,2012,71(2 Suppl Operative):ons274-284;discussion ons284-285..
[21]Januszewski J, Beecher JS, Chalif DJ, et al.Flow?based evaluation of cerebral revascularization using near?infrared indocyanine green videoangiography[J].Neurosurg Focus,2014,36(2):E14.
[22]Awano T, Sakatani K, Yokose N, et al.Intraoperative EC?IC bypass blood flow assessment with indocyanine green angiography in moy?amoya and non?moyamoya ischemic stroke[ J].World Neurosurg,2010,73(6):668-674.
[23]Prinz V, Hecht N, Kato N, et al.FLOW 800 allows visualization of hemodynamic changes after extracranial?to?intracranial bypass surgery but not assessment of quantitative perfusion or flow[J].Neurosurgery,2014,10(Suppl 2):231-238.
[24]Kato Y, Yamada Y, Sadato A, et al.Intraoperative anatomical and hemodynamic analysis of intracerebral arteriovenous malformations by semi?quantitative color?coded indocyanine green videoangiography[J].Asian J Neurosurg,2017,12(4):638-643.
[25]Fukuda K, Kataoka H, Nakajima N, et al.Efficacy of FLOW 800 with indocyanine green videoangiography for the quantitative assessment of flow dynamics in cerebral arteriovenous malformation surgery[J].World Neurosurg,2015,83(2):203-210.
[26]Feng S, Zhang Y, Sun Z, et al.Application of multimodal navigation together with fluorescein angiography in microsurgical treatment of cerebral arteriovenous malformations[J].Sci Rep,2017,7(1):14822.
[27]Rustemi O,Scienza R,Della Puppa A.Utility of indocyanine green videoangiography in subcortical arteriovenous malformation resection[J].Neurosurg Focus,2017,43(Video Suppl 1):V10.
[28]Takagi Y, Kikuta K, Nozaki K, et al.Detection of a residual nidus by surgical microscope?integrated intraoperative near?infrared indocy?anine green videoangiography in a child with a cerebral arteriovenous malformation[J].J Neurosurg,2007,107(5 Suppl):416-418.
[29]Zaidi HA, Abla AA, Nakaji P, et al.Indocyanine green angiography in the surgical management of cerebral arteriovenous malformations:lessons learned in 130 consecutive cases[J].Neurosurgery,2014,10(Suppl 2):246-251.
[30]Takagi Y, Sawamura K, Hashimoto N, et al.Evaluation of serial intraoperative surgical microscope?integrated intraoperative near?in?frared indocyanine green videoangiography in patients with cerebral arteriovenous malformations[J].Neurosurgery,2012,70(1 Suppl Operative):34-42.
[31]Fontes RB, Tan LA, O'Toole JE.Minimally invasive treatment of spinal dural arteriovenous fistula with the use of intraoperative indo?cyanine green angiography[J].Neurosurg Focus,2013,35(2 Sup?pl):Video 5.
[32]Holling M, Brokinkel B, Ewelt C, et al.Dynamic ICG fluorescence provides better intraoperative understanding of arteriovenous fistulae[J].Neurosurgery,2013,73(1 Suppl Operative):ons93-98.
[33]Simal Julián JA, Miranda Lloret P, Aparici Robles F, et al.Indocy?anine green videoangiography “in negative”: definition and useful?ness in intracranial dural arteriovenous fistulae[J].Neurosurgery,2013,73(1 Suppl Operative):ons86-92.
[34]Yamamoto S, Kim P, Kurokawa R, et al.Selective intraarterial injection of ICG for fluorescence angiography as a guide to extirpate perimedullary arteriovenous fistulas[J].Acta Neurochir (Wien),2012,154(3):457-463.
[35]Hanel RA, Nakaji P, Spetzler RF.Use of microscope?integrated near?infrared indocyanine green videoangiography in the surgical treatment of spinal dural arteriovenous fistulae[J].Neurosurgery,2010,66(5):978-984.
[36]牛 胤,蔣周陽,繆洪平,等.吲哚菁綠血管造影在硬脊膜動靜脈瘺手術中的應用價值[J].第三軍醫(yī)大學學報,2013,35(18):1998-2000.
[37]Shi W, Qiao G, Sun Z, et al.Quantitative assessment of hemody?namic changes during spinal dural arteriovenous fistula surgery[J].J Clin Neurosci,2015,22(7):1155-1159.
[38]Horie N, So G, Debata A, et al.Intra?arterial indocyanine green angiography in the management of spinal arteriovenous fistulae:technical case reports[J].Spine (Phila Pa 1976),2012,37(4):E264-E267.
[39]Sawada M, Munemitsu T,Hojo M.Intraoperative FLOW 800 analy?sis for intramedullary cystic lesion: a technical case report[J].Oper Neurosurg (Hagerstown),2017,13(5):E23-E27.
[40]Otani N, Wada K, Toyooka T, et al.Usefulness of dural surface tracing of the cortical vessels with indocyanine green videoangiography just prior to dural opening for various cerebrovascular diseases[J].Surg Neurol Int,2017,8(1):201.
[41]Matsuzaki J, Kono K, Umesaki A, et al.[Transvenous embolization by direct puncture of the superior sagittal sinus using indocyanine green(ICG)videoangiography for treatment of dural arteriovenous fistula of the transverse?sigmoid sinus:a case report][J].No Shinkei Geka,2017,45(7):591-598.
[42]Yokota H, Yonezawa T, Yamada T, et al.Transdural indocyanine green videography for superficial temporal artery?to?middle cerebral artery bypass?technical note[J].World Neurosurg,2017,106:446-449.
[43]Kimura T, Koizumi S, Ohshima A, et al.Indocyanine green visual?ization "during"craniotomy for moyamoya disease[J].Acta Neuro?chir(Wien),2017,159(8):1493-1494.
[44]Tanabe N, Yamamoto S, Kashiwazaki D, et al.Indocyanine green visualization of middle meningeal artery before craniotomy during sur?gical revascularization for moyamoya disease[J].Acta Neurochir(Wien),2017,159(3):567-575.
[45]陳 哲,盧曉聞,許烈鵬,等.熒光顯像劑在膠質瘤熒光顯像技術中的應用概況[J].轉化醫(yī)學電子雜志,2017,4(7):86-92.
[46]Czabanka M, Pe?a?Tapia P, Schubert GA, et al.Characterization of cortical microvascularization in adult moyamoya disease[J].Stroke,2008,39(6):1703-1709.
[47]Woitzik J, Pe?a?Tapia PG, Schneider UC, et al.Cortical perfusion measurement by indocyanine?green videoangiography in patients undergoing hemicraniectomy for malignant stroke[J].Stroke,2006,37(6):1549-1551.
[48]Murakami K, Endo T, Tominaga T.An analysis of flow dynamics in cerebral cavernous malformation and orbital cavernous angioma using indocyanine green videoangiography[J].Acta Neurochir (Wien),2012,154(7):1169-1175.
[49]Murai Y, Adachi K, Koketsu K, et al.Indocyanine green videoan?giography of optic cavernous angioma ?case report[J].Neurol Med Chir(Tokyo),2011,51(4):296-298.
[50]Faber F, Thon N, Fesl G, et al.Enhanced analysis of intracerebral arterioveneous malformations by the intraoperative use of analytical indocyanine green videoangiography: technical note[J].Acta Neuro?chir(Wien),2011,153(11):2181-2187.
[51]Kamp MA, Slotty P, Turowski B, et al.Microscope?integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients[J].Neurosurgery,2012,70(1 Suppl Operative):65-73.
[52]Sabatino G, Rigante L, Minella D, et al.Transcriptional profile characterization for the identification of peripheral blood biomarkers in patients with cerebral aneurysms[J].J Biol Regul Homeost Agents,2013,27(3):729-738.
[53]Sabatino G, Della Pepa GM, Scerrati A, et al.Anatomical variants of the basal vein of Rosenthal:prevalence in idiopathic subarachnoid hemorrhage[J].Acta Neurochir(Wien),2014,156(1):45-51.
[54]Schubert GA, Seiz?Rosenhagen M, Ortler M, et al.Cortical indocya?nine green videography for quantification of acute hypoperfusion after subarachnoid hemorrhage: a feasibility study[J].Neurosurgery,2012,71(2 Suppl Operative):ons260-267.
[55]Nishiyama Y, Kinouchi H, Senbokuya N, et al.Endoscopic indocya?nine green video angiography in aneurysm surgery:an innovative method for intraoperative assessment of blood flow in vasculature hidden from microscopic view[J].J Neurosurg,2012,117(2):302-308.
[56]Kim DL, Cohen?Gadol AA.Indocyanine?green videoangiogram to assess collateral circulation before arterial sacrifice for management of complex vascular and neoplastic lesions: technical note[J].World Neurosurg,2013,79(2):404.
[57]Wachter D, Behm T, von Eckardstein K, et al.Indocyanine green angiography in endoscopic third ventriculostomy[J].Neurosurgery,2013,73(1 Suppl Operative):ons67-72.