• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of shock interacting with well-controlled gas cylinder generated by soap film

    2014-03-29 08:01:55LuoXishengWangXianshengChenMojunZhaiZhigang
    實(shí)驗(yàn)流體力學(xué) 2014年2期
    關(guān)鍵詞:通訊地址激波力學(xué)

    Luo Xisheng, Wang Xiansheng, Chen Mojun, Zhai Zhigang

    (Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China)

    0 Introduction

    The Richtmyer-Meshkov (RM) instability[1-2]occurs on an initially perturbed interface subjecting to a sudden acceleration by a shock. Due to the deposition of baroclinic vorticity, the initial perturbation will grow with time, which generally intensifies the mixing between fluids and eventually induces turbulence in flow. Because of its academic significance in vortex dynamics and turbulent mixing as well as wide applications ranging from inertial confinement fusion[3], supernova explosions[4]to supersonic combustion[5], the hydrodynamic instability becomes increasingly attractive. Specifically,several comprehensive reviews on this topic have been made[6-8]. As a basic and simple RM instability problem, the shock-gas cylinder interaction has been extensively studied in experiments[9-14]. A great challenge to perform such experiments is to form a well-defined initial interface. Most previous experimental studies are performed in shock tube environments with a discontinuous or continuous interface. The creation of a sharp interface generally adopts a nitrocellulosic membrane[2,15]or a soap film[9,16-19]to separate the test gas from the ambient gas. The advantage of using the membrane or film is that diffusion between the test gas and surrounding gas is eliminated. However, due to the absorption of the fluid kinetic energy, the remaining membrane/film pieces are found to be influential in the late-time evolution. It is also hard to obtain the exact shape of initial perturbations in the experiment. Therefore, the approximate initial conditions were employed in the past numerical attempts, and the wire mesh supports were often simply neglected. To avoid the influences of membrane and support, the technique of gas cylinder[10,14,20]to form a continuous interface is developed. However, this technique for continuous interface has its own drawbacks. Taking the gas cylinder of SF6(sulfur hexafluoride) for example, the SF6gas falls through the test section due to gravity. Therefore, the gases in and near the cylinder column will attain a vertical velocity. Due to diffusion and mixing, the gas composition is not uniformly distributed on longitudinal and radial directions. The cross section of the gas column may deviate from the desired circular symmetry during the experiment. Therefore, the exact initial conditions such as the distribution of the gas concentration and the small vertical velocity of the gas column have to be determined afterwards, and effects of them on the instability are not fully understood as these experimental uncertainties genuinely introduce three-dimensional (3D) influences[21]. In the present study, a novel method to create a discontinuous gaseous interface is developed by the soap film technique for the RM instability study. The formed interface by the new method is free of supporting mesh and its initial shape can be accurately described in mathematics. Therefore, the initial condition can be well controlled.

    (a)

    (b)

    1 Formation and feature of the initial interface

    As sketched in Fig.1(a), two circular wires (35mm in diameter) are embedded into two quartz glasses (200mm×140mm) which are mounted in the visualizing window face-to-face. The wires with a thickness of 0.5 mm are made of acrylic sheets in a computer-aided design. In order to mount the wires, the quartz glasses are engraved on two circular channels. Firstly, the lower (for SF6) or upper (for helium) quartz glass is uniformly wetted by the soap liquid (made of 78% distilled water, 2% sodium oleate and 20% glycerine by mass). Then, a soap bubble is inflated with the test gas (SF6or helium) by a thin blowing pipe placed between the circular wires. This soap bubble firstly becomes a hemisphere bounded by the wire on the lower (for SF6) or upper (for helium) quartz glass, and then is expanding to the other quartz glass. A gaseous cylinder is formed when the bubble contacts with the wire on the other quartz glass. Based on the property of the soap film, the shape of the cylinder is closely related to the pressure inside the bubble[22]. An IC camera (Nikon D90) is used to monitor the geometry of the cylinder. Fig.1(b) shows the images of the two-dimensional (2D) and 3D gaseous cylinders and the dashed lines represent the interface boundaries. The 2D cylinder is formed with a little overpressure inside the inhomogeneity using the similar strategy adopted by Haas and Sturtevant[9]. However, the current 2D cylinder is made of soap film, which is considered to be less influential on the flow than thin plastic membranes[16-17]. The 3D cylinder is formed through making the pressure inside the inhomogeneity equal to the outside. This is realized by puncturing the soap film through a small perforation (2 mm in diameter) at the center of the circular wire in the quartz glass. Because the gas at both sides of the interface is at the ambient pressure, the formed 3D soap film interface has a zero mean curvature, i.e. two principal curvatures at every point of the interface are in opposite direction. Therefore, the formed 3D cylinder has a minimum surface feature[22-23]as depicted in Fig.2 together with its front-view and top-view. The surface can be accurately described in mathematics by

    (1)

    wherer0is the radius of the circle at the symmetric plane (y=0) andr0measured from the initial image is 13.7mm which agrees well with the prediction by Eq.1.

    (a) (b) (c)

    2 Experimental method

    Experiments are conducted in a horizontal shock tube, which consists of a 1.7m driver section, a 2.0m driven section and a 0.6m test-section with the cross-sectional area of 140mm×20mm. The open-end tube is employed mainly for taking photos of the initial interface by the IC. The distance between the center of the initial interface and the open-end of the shock tube is 312mm, which corresponds to a test time of 1.4ms. The height of the test section is small (2h=20mm) to minimize the gravity effect of the test gas and to ensure a 3D interface formed in the shock tube. Note that, in order to create a 3D cylinder, the height of the shock tube must satisfy Eq.1 for a fixed radius of the circular wire (In the current situation, the radius of the circular wire is 17.5mm and the resulting maximum height of the shock tube is less than 23.2mm). The schlieren photography is employed to visualize the interaction of the shock wave with the 2D and 3D gaseous cylinders as shown in Fig.3. In order to maintain the shapes of the initial interface, the visualizing windows are arranged in the vertical direction. The illumination, provided by a DC regulated light source (DCR III, SCHOTT North America, Inc., 200W), is made accessible through a pair of quartz glasses (200mm×140mm) mounted in the visualizing window. A high-speed video camera (FASTCAM SA5, Photron Limited) is equipped to record the sequences. The timing and triggering system involves a four channel delay generator (DG645, Stanford Research Systems), two piezoelectric pressure transducers, a charge amplifier, an oscilloscope and some accessories. The frame rate of the high-speed video camera is 3×104fps and the spatial resolution is 640×376 which implies 300mm/pixel. The local pressure and temperature are 101325Pa and 293K, respectively.

    Fig.3 The schematic of the schlieren system

    3 Results and discussion

    The morphologies of the shocked 2D cylinder with a diameter of 35mm and the corresponding 3D inhomogeneity with minimum surface feature are compared in Figs.4 and 5 by schlieren sequences. Helium or SF6is employed as the test gas in the cylinder, which produces a large density mismatching with the surrounding air. The incident shock wave propagates from left to right with a Mach number ofMs=1.2. All the records start when the incident shock wave collides with the gaseous cylinder. When the shock wave collides with the bubble either filled with helium or SF6, the incident shock bifurcates into a transmitted shock wave and a reflected wave whose type is either the shock, or the rarefaction due to the mismatch of acoustic impedance inside and outside the bubble. During the passage of the shock, the discrete inhomogeneity obtains the energy at a very short time and baroclinic vorticity is deposited on the interface due to the misalignment of the pressure and density gradients[8]. When the shock wave transmits away, the deposited vorticity drives the shear flow in the vicinity of the interface. The interface is then rolled up, and the vortex pairs gradually dominate the flow. Eventually, the flow becomes more turbulent and the mixing between fluids is greatly intensified. In general, the morphologies of the shocked 2D cylinders are similar with the observations in literature[9]. Therefore, a detail description of the interface evolution is skipped here. However, there are distinct improvements in our images. It can be found that there are fewer waves in the schlieren images and the evolving interface is more symmetric. These improvements can be ascribed to the new method of the interface formation. The formed interface is free of support and mesh, and, therefore, is free of disturbances caused by the support and mesh. The instability evolution on the 2D interface is found to be quite different from that in the case of continuous interfaces[14]. The main vortex and the secondary vortices are more pronounced in our results of the shocked 2D SF6cylinder, as shown in the inset of Fig.5 (at time 0.82ms). The jet is also stronger in our results. These phenomena can often be found in numerical simulations[24], but seldom seen in experiments.

    (a) (b)

    (a) (b)

    The 3D effects on the interface morphologies are significant which can be directly found from the comparison between the 2D and 3D shocked cylinders. In the helium case as shown in Fig.4, the 3D shocked cylinder presents two downstream interfaces denoted by ‘a(chǎn)’ and ‘b’ in the schlieren at time 0.21ms. The two downstream interfaces correspond to the interfaces at the symmetric (y=0) and boundary (y=±h) planes, respectively. Because of the 3D effects, the intermediate-time morphologies are also quite different in the two cases. The 3D shocked helium cylinder begins to roll up and the vortex pair forms at time 0.61 ms, which are earlier than those in the 2D case. In the SF6case as shown in Fig.5, there are also two downstream interfaces appearing in the 3D shocked cylinder at time 0.43ms. However, different from the helium case, most parts of the two interfaces coalesce to one interface as time proceeds except the central part (denoted by ‘c’). This central part belongs to the downstream interface at the boundary plane. Because of the curved shape (in vertical direction) of the downstream interface, the transmitted shock from the downstream interface (from SF6to air) will form a Mach reflection near the boundary and cause a relatively high pressure zone just outside the downstream interface. Driven by this high pressure, the central part, as shown in the inset of the schlieren image at time 0.63ms, becomes larger with time and moves more slowly than the upstream interface. Finally, the central part merges with the upstream interface.

    In order to compare the 2D and 3D cylinders quantitatively, the width and height of the interface structure are further measured, as given in Figs.6 and 7. All the quantities are normalized by the local characteristic length, which means that except that the width of the volume together with its time in the 3D helium case is normalized by the initial radius of the symmetric plane, other quantities are nondimensionalized by the initial radius of the cylinder, i.e. radius at the boundary plane. The reason is that the width in the 3D helium case is the distance between the upstream interface and the downstream interface at the symmetric plane (the interface denoted by ‘a(chǎn)’). It can be easily seen that the development of the shocked 3D cylinder is slower than that of the 2D counterpart, especially for the helium case. The pressure gradient and the baroclinic vorticity are supposed to be the driving mechanisms to account for the slowness, which is similar with the minimum surface case of 3D air/SF6interface in our previous study[23]. We shall first consider the width of the volume in the helium case. In the shock-helium in the helium case. In the shock-helium cylinder interaction, the direction of pressure gradient at pointIL/IR, induced by the reflected and transmitted waves in the horizontal (xz) plane, is to the left as depicted in Fig.8(a). However, in the cylinder with minimum surface feature, there is another pressure gradient, whose direction is to the right, induced by waves in the vertical (xy) plane. Therefore, the growth of perturbations at the symmetric plane tends to be suppressed by these opposite pressure gradients compared with the 2D counterpart. The baroclinic vorticity along the catenary line (OR-IR-OR′ orOL-IL-OL′) is also opposite to the one along the circular plane (xz), as illustrated in Fig.8(b), which also prevents the growth of the width at the symmetric plane. The slowness of the upstream height in the 3D helium case can be ascribed to these two factors. Because of the curved shape of the catenary lines of the 3D cylinder, there are ‘a(chǎn)dverse’ baroclinic vorticity and pressure gradients exerting on the upstream interface. Therefore, the height of the upstream interface in the 3D cylinder increases more slowly than that in the 2D case at the early stage. Because of the earlier formation of the vortex pair in the 3D case as indicated in the schlieren images, the height of the 3D upstream interface begins to decrease earlier than that of the 2D case. For the SF6case, the extra pressure gradients and baroclinic vorticity caused by the minimum surface feature also prevent the interface development. Therefore, the quantities of the 3D case are all smaller than the 2D counterparts. It should be noted that in the SF6case the interface height, not the height of upstream interface as used in the helium case, is used because the vortex pair in this heavy gas case stretches the upstream interface and subsequently the upstream interface connects to the vortex pair. We can find that the interface height first experiences a small decrease due to shock compression and then increases with time because of the instability.

    (a)

    (b)

    (a)

    (b)

    (a)

    (b)

    4 Conclusions

    A simple method of generating gas cylinders is proposed by using the soap film technique. The formed interface is free of supporting mesh and the initial shape can be accurately described in mathematics. As a result, the schlieren images of the shocked 2D cylinder have less disturbing waves and the evolving interfaces are more symmetric comparing with the results in literature. Because of the sharp interface, the main vortex and secondary instabilities are more pronounced in our 2D results. Therefore, the quality of the experiments of the shock-cylinder interaction is improved by using the well-controlled initial condition and can provide a good benchmark for numerical codes and analytical models. Special attention is then given to the 3D effects caused by the minimum surface feature on the interface evolution. It is found that there are two downstream interfaces both in the 3D helium and SF6cases. The development of the shocked 3D cylinder is slower than that of the 2D counterpart, which can be ascribed to ‘a(chǎn)dverse’ pressure gradients and baroclinic vorticity related to the 3D initial shape. Due to the 3D characteristic, the evolving interface at eachy-plane behaves differently and may interact with each other, which cannot be resolved by the integral visualizing method used in the present work. The effects of the liquid droplets produced by the soap film breakup, cylinder diameter, and shock Mach number on the RM instability also need further investigation.

    Acknowledgements:This research was carried out with the support of the National Natural Science Foundation of China, Grant No. 10972214 and by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant No. CX2090050020. The authors would like to thank Dr. Si Ting and Mr. Wang Minghu for the valuable help during the experiments.

    References:

    [1]Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pure Appl Math,1960, 13: 297-319.

    [2]Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4: 101-104.

    [3]Lindl J D, Mccrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Phys Today, 1992, 45: 32-40.

    [4]Arnett W D, Bahcall J N, Kirshner R P, et al. Supernova 1987A[J]. Annu Rev Astron Astrophys, 1989, 27: 629-700.

    [5]Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA J, 1993, 35: 854-862.

    [6]Zabusky N J. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments[J]. Annu Rev Fluid Mech, 1999, 31: 495-536.

    [7]Brouillette M. The Richtmyer-Meshkov instability[J]. Annu Rev Fluid Mech, 2002, 34: 445-468.

    [8]Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions[J]. Annu Rev Fluid Mech, 2011, 43: 117-140.

    [9]Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181: 41-76.

    [10] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Phys Fluids, 1993, 5(9): 2239-2247.

    [11] Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Phys Fluids, 2003, 15: 986-1004.

    [12] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Phys Fluids, 2005, 17: 082107.

    [13] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D, 2007, 235: 21-28.

    [14] Tomkins C, Kumar S, Orlicz G C, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. J Fluid Mech, 2008, 611: 131-150.

    [15] Mariani C, Vanderboomgaerde M, Jourdan G, et al. Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces[J]. Phys Rev Lett, 2008, 100: 254503.

    [16] Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Phys Fluids, 2009, 21: 074102.

    [17] Zhai Z, Si T, Luo X, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave[J]. Phys Fluids, 2011, 23: 084104.

    [18] Si T, Zhai Z, Yang J, et al. Experimental investigation of reshocked spherical gas interfaces[J]. Phys Fluids, 2012, 24: 054101.

    [19] Haehn N, Ranjan D, Weber C, et al. Reacting shock bubble interaction[J]. Combustion and Flame, 2012, 159: 1339-1350.

    [20] Zou L, Liu C, Tan D, et al. On interaction of shock wave with elliptic gas cylinder[J]. J Vis, 2010, 13: 347-353.

    [21] Weirs V G, Dupont T, Plewa T. Three-dimensional effects in shock-cylinder interactions[J]. Phys Fluids, 2008, 20: 044102.

    [22] Isenberg C. The science of soap films and soap bubbles[M]. New York: Dover publications, INC., 1992.

    [23] Luo X, Wang X, Si T. The Richtmyer-Meshkov instability of a three-dimensional air/SF6interface with a minimum-surface feature[J]. J Fluid Mech, 2013, 722, R2.

    [24] Niederhaus Jhj, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. J Fluid Mech, 2008, 594: 85-124.

    Authorbiography:

    羅喜勝(1971-),男,湖南沅江人,中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系教授、博士生導(dǎo)師。研究方向:高速流動(dòng)中的相變與多相流動(dòng)、激波管內(nèi)RM不穩(wěn)定性。通訊地址:安徽合肥中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系 (230027)。E-mail: xluo@ustc.edu.cn

    猜你喜歡
    通訊地址激波力學(xué)
    力學(xué)
    弟子規(guī)·余力學(xué)文(十)
    快樂語文(2021年11期)2021-07-20 07:41:32
    中國兵工學(xué)會(huì)第二十二屆引信學(xué)術(shù)年會(huì)征文通知
    弟子規(guī)·余力學(xué)文(四)
    快樂語文(2020年30期)2021-01-14 01:05:28
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    數(shù)字式汽車衡的實(shí)際應(yīng)用探究
    斜激波入射V形鈍前緣溢流口激波干擾研究
    適于可壓縮多尺度流動(dòng)的緊致型激波捕捉格式
    力學(xué) 等
    bbb黄色大片| 纯流量卡能插随身wifi吗| 巨乳人妻的诱惑在线观看| 成年人免费黄色播放视频| 成人毛片60女人毛片免费| av片东京热男人的天堂| 国精品久久久久久国模美| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 老司机影院毛片| 最黄视频免费看| 国产人伦9x9x在线观看| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 亚洲人成77777在线视频| 最黄视频免费看| 观看美女的网站| 麻豆乱淫一区二区| 在线观看免费视频网站a站| 黄频高清免费视频| 日韩一卡2卡3卡4卡2021年| 免费观看性生交大片5| 精品少妇一区二区三区视频日本电影 | 狂野欧美激情性bbbbbb| tube8黄色片| 伦理电影大哥的女人| 亚洲色图 男人天堂 中文字幕| 久久ye,这里只有精品| 国产精品99久久99久久久不卡 | 国产精品欧美亚洲77777| 高清欧美精品videossex| 国产在线一区二区三区精| 久久久久精品人妻al黑| 看非洲黑人一级黄片| 午夜免费鲁丝| 如何舔出高潮| 美女高潮到喷水免费观看| 黄片无遮挡物在线观看| xxxhd国产人妻xxx| 妹子高潮喷水视频| 亚洲久久久国产精品| 亚洲精品自拍成人| 成人影院久久| 超碰97精品在线观看| 考比视频在线观看| 亚洲精品,欧美精品| 成人影院久久| 国产成人欧美| 欧美人与善性xxx| 中文欧美无线码| 免费av中文字幕在线| 9热在线视频观看99| 亚洲国产看品久久| 这个男人来自地球电影免费观看 | 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 在现免费观看毛片| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 考比视频在线观看| 男女边摸边吃奶| 国产精品免费大片| 亚洲成人一二三区av| 国产成人一区二区在线| bbb黄色大片| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| av.在线天堂| 国产精品人妻久久久影院| 欧美人与性动交α欧美软件| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 日韩 亚洲 欧美在线| 考比视频在线观看| 亚洲国产精品成人久久小说| 一区福利在线观看| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 一级黄片播放器| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 99久久综合免费| 日日啪夜夜爽| 亚洲国产精品一区二区三区在线| 国产成人啪精品午夜网站| 九色亚洲精品在线播放| 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 亚洲少妇的诱惑av| 欧美日韩一区二区视频在线观看视频在线| 丰满乱子伦码专区| 激情视频va一区二区三区| 99国产精品免费福利视频| av免费观看日本| 啦啦啦视频在线资源免费观看| 男人舔女人的私密视频| av.在线天堂| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 国产精品 国内视频| 日韩av免费高清视频| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 天天躁日日躁夜夜躁夜夜| tube8黄色片| 欧美精品一区二区大全| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 一级片免费观看大全| 欧美另类一区| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 国产成人欧美| 性高湖久久久久久久久免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 成年人午夜在线观看视频| avwww免费| 这个男人来自地球电影免费观看 | 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 黄网站色视频无遮挡免费观看| 捣出白浆h1v1| 亚洲av福利一区| 水蜜桃什么品种好| 黄色一级大片看看| 国产激情久久老熟女| 亚洲欧美激情在线| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久 | 亚洲 欧美一区二区三区| 亚洲伊人色综图| 成年美女黄网站色视频大全免费| 国产精品女同一区二区软件| 天天躁夜夜躁狠狠躁躁| 美女大奶头黄色视频| 两个人看的免费小视频| 伊人久久国产一区二区| 丝袜人妻中文字幕| 日韩欧美精品免费久久| 亚洲男人天堂网一区| 日韩不卡一区二区三区视频在线| 不卡av一区二区三区| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 国产日韩欧美视频二区| 99精国产麻豆久久婷婷| 两个人看的免费小视频| 日日啪夜夜爽| 91国产中文字幕| 日日爽夜夜爽网站| 国产精品久久久av美女十八| 丝袜人妻中文字幕| 最近手机中文字幕大全| 国产不卡av网站在线观看| 美女主播在线视频| av女优亚洲男人天堂| 国产成人一区二区在线| 国产男人的电影天堂91| 丰满饥渴人妻一区二区三| videosex国产| 在线观看国产h片| 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 日本猛色少妇xxxxx猛交久久| 亚洲精品在线美女| 99精国产麻豆久久婷婷| 日本爱情动作片www.在线观看| 乱人伦中国视频| 母亲3免费完整高清在线观看| 黄片播放在线免费| 国产xxxxx性猛交| 国产一区二区三区av在线| 久久精品国产综合久久久| 日韩 欧美 亚洲 中文字幕| 国产精品成人在线| 人妻人人澡人人爽人人| 欧美黄色片欧美黄色片| 成人三级做爰电影| 国产爽快片一区二区三区| 男女免费视频国产| 最近中文字幕高清免费大全6| 丁香六月天网| 观看av在线不卡| 高清欧美精品videossex| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 午夜福利在线免费观看网站| 伦理电影免费视频| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 狠狠精品人妻久久久久久综合| 国产伦人伦偷精品视频| 毛片一级片免费看久久久久| a级片在线免费高清观看视频| 日韩精品有码人妻一区| 亚洲熟女毛片儿| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| 亚洲一卡2卡3卡4卡5卡精品中文| 在线免费观看不下载黄p国产| 国产一区二区激情短视频 | 亚洲免费av在线视频| 精品少妇一区二区三区视频日本电影 | 少妇被粗大猛烈的视频| 国产亚洲av高清不卡| 久久精品国产亚洲av涩爱| 桃花免费在线播放| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| 国产在视频线精品| 国产一区二区激情短视频 | 婷婷色综合大香蕉| 精品少妇一区二区三区视频日本电影 | 视频区图区小说| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| 免费久久久久久久精品成人欧美视频| 在线观看人妻少妇| 人人妻人人澡人人看| 在线免费观看不下载黄p国产| 波野结衣二区三区在线| 成人影院久久| 精品视频人人做人人爽| 成人国语在线视频| www.自偷自拍.com| 日本色播在线视频| 一级黄片播放器| 狠狠婷婷综合久久久久久88av| 天堂8中文在线网| 国产又爽黄色视频| 99久久精品国产亚洲精品| 国产精品国产三级国产专区5o| 免费观看人在逋| 日韩成人av中文字幕在线观看| 欧美在线黄色| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 国产成人精品久久二区二区91 | 一本一本久久a久久精品综合妖精| 一本—道久久a久久精品蜜桃钙片| 婷婷成人精品国产| 午夜福利网站1000一区二区三区| 国产在视频线精品| 黄色一级大片看看| 亚洲情色 制服丝袜| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人看| 欧美成人午夜精品| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 99re6热这里在线精品视频| 各种免费的搞黄视频| 黄色 视频免费看| 老鸭窝网址在线观看| 精品少妇内射三级| 1024香蕉在线观看| 国产片内射在线| 少妇精品久久久久久久| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 亚洲,一卡二卡三卡| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 亚洲精品一区蜜桃| 一区二区av电影网| 亚洲精品在线美女| 亚洲av国产av综合av卡| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91 | 日本黄色日本黄色录像| 国产日韩一区二区三区精品不卡| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 久久久久精品性色| 男女下面插进去视频免费观看| 久久精品国产综合久久久| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 久久久国产欧美日韩av| av片东京热男人的天堂| 亚洲伊人色综图| 日本午夜av视频| 精品少妇一区二区三区视频日本电影 | 狂野欧美激情性xxxx| 免费黄网站久久成人精品| 一级,二级,三级黄色视频| 欧美 亚洲 国产 日韩一| 久久久久久久久久久免费av| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 日韩 欧美 亚洲 中文字幕| 桃花免费在线播放| videos熟女内射| 日韩精品有码人妻一区| 成年av动漫网址| 欧美日韩视频精品一区| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 中文乱码字字幕精品一区二区三区| 欧美日韩综合久久久久久| av在线播放精品| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久 | 最近的中文字幕免费完整| 亚洲国产精品一区二区三区在线| 不卡av一区二区三区| 99国产综合亚洲精品| 在线观看免费高清a一片| 在线精品无人区一区二区三| av天堂久久9| 欧美变态另类bdsm刘玥| 久久久久精品国产欧美久久久 | 丝袜脚勾引网站| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 久久久久久久久久久免费av| 丝袜美足系列| 黑丝袜美女国产一区| 美女福利国产在线| 久久精品人人爽人人爽视色| 中文字幕高清在线视频| 老司机影院毛片| 久久韩国三级中文字幕| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 国产av码专区亚洲av| 色播在线永久视频| 亚洲成人av在线免费| 色播在线永久视频| 精品国产露脸久久av麻豆| 精品国产国语对白av| 久久精品人人爽人人爽视色| 这个男人来自地球电影免费观看 | 国产成人精品无人区| 中文字幕精品免费在线观看视频| 久久精品人人爽人人爽视色| 好男人视频免费观看在线| 伦理电影大哥的女人| 高清不卡的av网站| 90打野战视频偷拍视频| 欧美日韩国产mv在线观看视频| videosex国产| 欧美乱码精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人| 国产精品久久久久久精品电影小说| 满18在线观看网站| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 2021少妇久久久久久久久久久| 免费观看人在逋| 最近手机中文字幕大全| 国产成人精品久久久久久| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 在现免费观看毛片| 老鸭窝网址在线观看| 国产精品一区二区精品视频观看| 最新的欧美精品一区二区| 99热全是精品| 国产一区二区三区av在线| 婷婷色av中文字幕| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 亚洲国产av新网站| 在线观看人妻少妇| 欧美日韩亚洲国产一区二区在线观看 | 一级爰片在线观看| 中文精品一卡2卡3卡4更新| 国产又爽黄色视频| 欧美国产精品一级二级三级| 久久毛片免费看一区二区三区| 亚洲精品国产色婷婷电影| 亚洲精品一二三| 久久热在线av| 九草在线视频观看| 午夜91福利影院| 黑丝袜美女国产一区| 美国免费a级毛片| 肉色欧美久久久久久久蜜桃| 咕卡用的链子| 高清视频免费观看一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 18禁观看日本| 婷婷色av中文字幕| 悠悠久久av| 婷婷色麻豆天堂久久| 久久久久国产精品人妻一区二区| 满18在线观看网站| netflix在线观看网站| 久久久欧美国产精品| 国产精品亚洲av一区麻豆 | 国产精品.久久久| 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| 欧美中文综合在线视频| 天天影视国产精品| 操美女的视频在线观看| 国产亚洲av高清不卡| 亚洲成人av在线免费| 久久ye,这里只有精品| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 九草在线视频观看| 日韩免费高清中文字幕av| 亚洲国产欧美日韩在线播放| 免费女性裸体啪啪无遮挡网站| 精品少妇内射三级| 亚洲一码二码三码区别大吗| 天堂俺去俺来也www色官网| 哪个播放器可以免费观看大片| 亚洲美女搞黄在线观看| 色综合欧美亚洲国产小说| 午夜免费男女啪啪视频观看| 亚洲,一卡二卡三卡| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| av免费观看日本| 97在线人人人人妻| 国产精品三级大全| 日韩,欧美,国产一区二区三区| av卡一久久| 欧美xxⅹ黑人| 天堂俺去俺来也www色官网| 久久精品久久久久久噜噜老黄| 91成人精品电影| 国产精品三级大全| 日本黄色日本黄色录像| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 热re99久久精品国产66热6| 午夜老司机福利片| 国产精品香港三级国产av潘金莲 | 热re99久久精品国产66热6| 久久久久精品久久久久真实原创| 国产又爽黄色视频| 欧美久久黑人一区二区| 老司机影院毛片| 男人爽女人下面视频在线观看| 欧美日韩成人在线一区二区| av线在线观看网站| 夫妻午夜视频| 日本黄色日本黄色录像| 2021少妇久久久久久久久久久| 亚洲精品视频女| 亚洲国产成人一精品久久久| 国产精品人妻久久久影院| 久久天堂一区二区三区四区| 少妇猛男粗大的猛烈进出视频| 免费观看av网站的网址| 亚洲精品第二区| 日本一区二区免费在线视频| 国产色婷婷99| 国产精品女同一区二区软件| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| av福利片在线| 日韩 欧美 亚洲 中文字幕| 欧美久久黑人一区二区| 人体艺术视频欧美日本| 亚洲精品第二区| 国产极品粉嫩免费观看在线| 精品国产一区二区三区四区第35| 我的亚洲天堂| 国产伦人伦偷精品视频| 丰满饥渴人妻一区二区三| 亚洲国产av影院在线观看| 国产精品香港三级国产av潘金莲 | 午夜精品国产一区二区电影| 成人三级做爰电影| 国产一区二区三区综合在线观看| 99久国产av精品国产电影| 十八禁人妻一区二区| 国产深夜福利视频在线观看| 国产精品欧美亚洲77777| 看免费成人av毛片| www日本在线高清视频| 青草久久国产| av在线老鸭窝| 五月天丁香电影| 国产精品国产三级专区第一集| 韩国精品一区二区三区| 免费av中文字幕在线| 伦理电影大哥的女人| 一边摸一边抽搐一进一出视频| 欧美日韩视频精品一区| 在线观看一区二区三区激情| 国产成人av激情在线播放| 一级毛片黄色毛片免费观看视频| 天堂俺去俺来也www色官网| 免费不卡黄色视频| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 久久天躁狠狠躁夜夜2o2o | 色网站视频免费| 亚洲精品第二区| 日韩制服骚丝袜av| 国产成人午夜福利电影在线观看| netflix在线观看网站| 亚洲av国产av综合av卡| 97在线人人人人妻| 成人漫画全彩无遮挡| 国产av精品麻豆| 亚洲熟女毛片儿| 国产97色在线日韩免费| 午夜福利,免费看| 高清欧美精品videossex| 成人手机av| 国产亚洲精品第一综合不卡| 黑人欧美特级aaaaaa片| 一级毛片黄色毛片免费观看视频| 啦啦啦啦在线视频资源| 成年女人毛片免费观看观看9 | 亚洲av日韩在线播放| 老司机靠b影院| 一级片'在线观看视频| 黄色视频不卡| 水蜜桃什么品种好| 国产麻豆69| 亚洲视频免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久99精品国语久久久| 国产一区有黄有色的免费视频| 日本av手机在线免费观看| 亚洲av日韩在线播放| 中文字幕制服av| svipshipincom国产片| 老司机影院毛片| 黄网站色视频无遮挡免费观看| 女人精品久久久久毛片| 午夜福利,免费看| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 欧美av亚洲av综合av国产av | 国产av码专区亚洲av| 黄网站色视频无遮挡免费观看| 女人精品久久久久毛片| 高清视频免费观看一区二区| 中文乱码字字幕精品一区二区三区| 观看av在线不卡| 国产精品香港三级国产av潘金莲 | 伊人久久国产一区二区| 青春草亚洲视频在线观看| 丝袜美腿诱惑在线| 超碰97精品在线观看| 在线观看三级黄色| 欧美激情极品国产一区二区三区| 老司机在亚洲福利影院| 亚洲av成人精品一二三区| 考比视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品久久久久久婷婷小说| 十八禁高潮呻吟视频| 成人漫画全彩无遮挡| 欧美xxⅹ黑人| 亚洲国产成人一精品久久久| 国产精品三级大全| 免费高清在线观看日韩| 天堂俺去俺来也www色官网| 狂野欧美激情性xxxx| 欧美日本中文国产一区发布| 成年人午夜在线观看视频| 99热国产这里只有精品6| 少妇被粗大的猛进出69影院| 咕卡用的链子| 国产一区二区三区av在线| 无遮挡黄片免费观看| xxxhd国产人妻xxx| 欧美精品人与动牲交sv欧美| 亚洲av成人不卡在线观看播放网 | 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 一级黄片播放器| 各种免费的搞黄视频| 国产精品.久久久| 国产日韩欧美视频二区| 啦啦啦在线观看免费高清www| 人人妻人人澡人人爽人人夜夜| 妹子高潮喷水视频| 夫妻午夜视频| 国产伦人伦偷精品视频| 久久人人97超碰香蕉20202| 欧美久久黑人一区二区| 国产精品久久久久久人妻精品电影 |