• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于C8⊕C8中極小零和子列的一個性質(zhì)

    2018-01-09 23:21:24張海燕劉庚

    張海燕+劉庚

    摘 要:如果在群CnCn中,每個含有2n-1個元素的極小零和序列中都包含一些階數(shù)為n-1的元素,那么我們稱正整數(shù)n具有性質(zhì)B。在二維阿貝爾群的零和理論中,性質(zhì)B是一個中心議題。關(guān)于性質(zhì)B這一問題最早是由高維東教授和A.Geroldinger提出并進(jìn)行研究[1-3]。之后,他們證明了如果n具有性質(zhì)B[4-6],當(dāng)n大于等于6時,2n也具有性質(zhì);還證明了如果n∈{2,3,4,5,6,7},n具有性質(zhì)B。在文[7]中,我們證明了n=10時,n具有性質(zhì)B。本文證明n=8時,n也具有性質(zhì)B。

    關(guān)鍵詞:阿貝爾群;零和子列;性質(zhì)B

    DOI:10.15938/j.jhust.2017.06.021

    中圖分類號: O156.1

    文獻(xiàn)標(biāo)志碼: A

    文章編號: 1007-2683(2017)06-0113-03

    Abstract:We say a positive integer n has Property B if every minimal zerosum subsequence of 2n-1 elements in CnCn contains some elements n-1 times. Property B is a central topic in zerosum theory on abelian group G with rank two. Property B has been first formulated and investigated by professer W.D.Gao and A.Geroldinger in [1-3]. It has been proved that if n≥6 and if n has Property B, then 2n has Property B. It has been also proved that if n∈{2,3,4,5,6,7}, then n has property B[4-6]. In [7], we proved that n=10 has Property B. In this paper, we will verify that n=8 has Property B.

    Keywords:abelian group; zerosum subsequence; Property B

    Similar to the proof of case 1, we can verify that there are at most two distinct elements in Tof case2 and case 3.

    Theorem is true.

    References:

    [1] GAO W D, GEROLDINGER A. On Long Minimal Zero Sequences in Finite Abelian Groups[J]. Period Math. Hungar, 1999(38):179-211.

    [2] GAO W D, GEROLDINGER A. On Zerosum Sequences in Z/nZ Z/nZ[J]. Integers, 2003(3) (Paper A08).

    [3] GAO W D, ZHUANG J J. Sequences not Containing Long Zerosum Subsequences[J]. European J. Combin, 2006(27): 777-787.

    [4] GAO W D, GEROLDINGER A. Zerosum Probiems in Finite Abelian Groups: a survey[J]. Expo.Math, 2006(24): 337-369.

    [5] CHANG G J, CHEN S H, WANG G Q, et al. On the Number of Subsequences with a Given Sum in a Finite Abelian Group[J]. Electron. J. Combin, 2011(18): 133-157.

    [6] CHINTAMANI M N, MORIYA B K, GAO W D, et al. New Upper Bounds for the Davenport and for the ErdosGinzburgZiv Constants[J]. Arch. Math., 2012(98):133-142.

    [7] ZANG H Y, LIU W H. A Property on Minimal Zerosum Subsequence inC10C10[J]. Advanced Materials Research ICEEIS2016981,2014:255-257.

    [8] 韓冬春. ErdosGinzburgZiv Theorem for Finite Nilpotent Groups[J]. Arch. Math, 2015(104): 325-332.

    [9] GAO W D,LI Y L, YUAN P Z,et al. On the Structure of Long Zerosum Free Sequences and Nzerosum Free Sequences Over Finite Cyclic Groups[J]. Arch. Math, 2015(105): 361-370.

    [10]高維東,韓冬春,PENG J T, et al. On Zerosum Subsequences of Length k*exp(G)[J]. J. Combin. Theory Ser. 2014(A125):240-253.

    [11]ADHIKARIA S D,高維東,WANG G Q. ErdosGinzburgZiv Theorem for Finite Commutative Semigroups[J]. J. Pure Appl. Algebra, 2014(218):1838-1844.

    [12]高維東,路在平. The ErdsGinzburgZiv Theorem for Dihedral Groups[J]. J. Pure Appl. Algebra, 2008(212): 311-319.

    [13]高維東,侯慶虎,SCHMID W, et al. On Short Zerosum Subsequences II[J]. Integers,2007(7):21-56.

    [14]GAO W D, Alfred Geroldinger. On a Property of Minimal Zerosum Sequences and Restricted Sumsets[J]. Bull. London Math. Soc, 2005(37):321-334.

    [15]高維東,PENG J T,鐘慶海. A Quantitative Aspect of Nonunique Factorizations: the Narkiewicz Constants III[J]. Acta Arith., 2013(158):271-285.

    (編輯:溫澤宇)endprint

    义乌市| 灵璧县| 高阳县| 黄浦区| 石林| 彭水| 建德市| 淄博市| 海门市| 靖江市| 安龙县| 栾川县| 钟山县| 北川| 海丰县| 泾阳县| 仁布县| 甘肃省| 玉龙| 江华| 榕江县| 大冶市| 鹤山市| 垫江县| 苍南县| 永靖县| 新丰县| 蓝山县| 大方县| 鹿邑县| 长葛市| 济宁市| 莱芜市| 铜山县| 横山县| 即墨市| 丰顺县| 三亚市| 南昌市| 锦屏县| 玉溪市|