李亞峰, 汪明武, 朱 宇, 金菊良
(合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)
基于區(qū)間集對(duì)勢(shì)的土體脹縮性評(píng)價(jià)模型
李亞峰, 汪明武, 朱 宇, 金菊良
(合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)
文章應(yīng)用區(qū)間數(shù)和集對(duì)分析耦合理論,探討了膨脹土與石灰改良土的脹縮性區(qū)間集對(duì)勢(shì)評(píng)價(jià)模型。該模型首先基于區(qū)間數(shù)表達(dá)實(shí)測(cè)指標(biāo)和評(píng)價(jià)標(biāo)準(zhǔn),進(jìn)而轉(zhuǎn)換為聯(lián)系數(shù),以計(jì)算集對(duì)勢(shì)及構(gòu)建評(píng)價(jià)標(biāo)準(zhǔn)的區(qū)間集對(duì)勢(shì),進(jìn)而統(tǒng)一分析樣本與評(píng)價(jià)標(biāo)準(zhǔn)間的同異反關(guān)系態(tài)勢(shì)與判定樣本的脹縮性等級(jí)。結(jié)果表明,該模型應(yīng)用于膨脹土和石灰改良土脹縮性評(píng)價(jià)是有效可行的,且能充分表達(dá)評(píng)價(jià)指標(biāo)區(qū)間動(dòng)態(tài)變化特點(diǎn)和從勢(shì)角度分析脹縮性轉(zhuǎn)換態(tài)勢(shì),并解決了區(qū)間數(shù)難于對(duì)比分析的難題,也為其他類(lèi)似不確定性問(wèn)題分析提供了參考。
區(qū)間數(shù);集對(duì)勢(shì);脹縮性;評(píng)價(jià)
膨脹土具有吸水膨脹和失水收縮的顯著特性,且具有長(zhǎng)期反復(fù)的特性,對(duì)工程安全具有潛在危害性,故工程界常用摻石灰方法來(lái)改良膨脹土,但改良后的土收縮性對(duì)工程仍有影響[1-4]。因此,膨脹土和改良土的脹縮性等級(jí)評(píng)價(jià)對(duì)確定合理工程措施和確保工程安全具有重要意義。然而,膨脹土脹縮性評(píng)價(jià)受諸多不確定性因素影響,是一個(gè)復(fù)雜的不確定系統(tǒng)分析問(wèn)題,雖然以往人們針對(duì)該問(wèn)題提出了可變模糊集法[5]、聯(lián)系期望值法[6]和可拓方法[7]等方法,但這些方法大多基于實(shí)測(cè)指標(biāo)均值表達(dá),而實(shí)測(cè)樣本指標(biāo)值常表現(xiàn)為區(qū)間數(shù)特點(diǎn),因此這些方法評(píng)價(jià)結(jié)果往往同實(shí)際情況存在差異,顯然土體脹縮性等級(jí)評(píng)價(jià)問(wèn)題至今尚未得到很好的解決。為此,本文應(yīng)用更貼近實(shí)際指標(biāo)特點(diǎn)的區(qū)間數(shù)來(lái)表達(dá)脹縮性評(píng)價(jià)問(wèn)題,并應(yīng)用集對(duì)分析耦合方法統(tǒng)一分析樣本與評(píng)價(jià)標(biāo)準(zhǔn)間的同異反關(guān)系,并從勢(shì)的角度深入挖掘分析脹縮性等級(jí)轉(zhuǎn)換問(wèn)題,從而真實(shí)反映樣本所能提供的動(dòng)態(tài)多元信息,使評(píng)價(jià)結(jié)果更符合事物的客觀本質(zhì)及表征指標(biāo)的動(dòng)態(tài)不確定性,從而達(dá)到提高膨脹性等級(jí)評(píng)價(jià)的可靠性和準(zhǔn)確性。
基于區(qū)間聯(lián)系勢(shì)評(píng)價(jià)的基本原理如下:基于區(qū)間數(shù)表達(dá)實(shí)測(cè)樣本指標(biāo)值和評(píng)價(jià)標(biāo)準(zhǔn)集界限點(diǎn),并轉(zhuǎn)換為聯(lián)系數(shù)計(jì)算樣本的集對(duì)勢(shì)值和評(píng)價(jià)標(biāo)準(zhǔn)的區(qū)間集對(duì)勢(shì),以便于分析樣本和評(píng)價(jià)標(biāo)準(zhǔn)區(qū)間數(shù)間的關(guān)系;進(jìn)而判定待評(píng)樣本集對(duì)勢(shì)與評(píng)價(jià)標(biāo)準(zhǔn)區(qū)間集對(duì)勢(shì)間的同異反關(guān)系,確定待評(píng)樣本的等級(jí)。
因?yàn)椴淮_定性問(wèn)題屬性常常是一個(gè)范圍值,所以用區(qū)間數(shù)能較好描述和刻畫(huà)不確定屬性。二元區(qū)間數(shù)的定義如下:若設(shè)?xL,xU∈R,且xL≤xU,則稱(chēng)[x]為二元區(qū)間數(shù),其中xL和xU分別稱(chēng)為下極限和上極限,若xL=xU,則區(qū)間數(shù)退化為普通的實(shí)數(shù)。目前區(qū)間數(shù)理論和應(yīng)用尚不成熟,特別是2個(gè)區(qū)間數(shù)之間的關(guān)系研究,因此本文引入集對(duì)勢(shì)來(lái)分析2個(gè)區(qū)間數(shù)之間的聯(lián)系及相互轉(zhuǎn)化態(tài)勢(shì)。
基于整體思維的勢(shì)科學(xué)認(rèn)為事物差別促進(jìn)聯(lián)系,聯(lián)系擴(kuò)大差別。集對(duì)勢(shì)則是集對(duì)分析理論中一種處理同異反聯(lián)系轉(zhuǎn)化態(tài)勢(shì)的分析理論[8-10]。集對(duì)分析把不確定性與確定性統(tǒng)一在一個(gè)同異反系統(tǒng)中進(jìn)行辨證分析和數(shù)據(jù)挖掘,并用聯(lián)系數(shù)刻畫(huà)集對(duì)的同異反關(guān)系及演化態(tài)勢(shì),相應(yīng)的數(shù)學(xué)模型為:
μ=a+bi+cj
(1)
μ=γL+(γU-γL)i+(1-γU)j
(2)
其中,γL、γU為區(qū)間數(shù)的下限和上限;μ為區(qū)間數(shù)轉(zhuǎn)換后的聯(lián)系數(shù),則相應(yīng)的區(qū)間集對(duì)勢(shì)可定義如下:
(3)
其中,[SPP(H)]為區(qū)間數(shù)表達(dá)形式的聯(lián)系勢(shì),在此定義為區(qū)間集對(duì)勢(shì);SPP(H)為相應(yīng)聯(lián)系數(shù)集對(duì)勢(shì);n為樣本m的指標(biāo)數(shù)??梢?jiàn),區(qū)間集對(duì)勢(shì)是分析區(qū)間數(shù)間同異反關(guān)系的一種有效方法。
基于區(qū)間聯(lián)系勢(shì)的評(píng)價(jià)模型操作步驟如下。
(1) 基于區(qū)間數(shù)形式表達(dá)待評(píng)樣本和評(píng)價(jià)標(biāo)準(zhǔn)。若[xmn]表示第m個(gè)樣本的n指標(biāo)實(shí)測(cè)值,則它們相應(yīng)的區(qū)間數(shù)矩陣X為:
X=[xmn]M×N=
相應(yīng)n指標(biāo)p等級(jí)的區(qū)間數(shù)表達(dá)形式為基于界限點(diǎn)的區(qū)間數(shù),則基于等級(jí)[qpn]的上、下限點(diǎn)可構(gòu)造成區(qū)間數(shù)形式Q:
(6)
其中,qpn為n指標(biāo)p等級(jí)標(biāo)準(zhǔn)的下限或上限。
(2) 區(qū)間數(shù)矩陣規(guī)范化。因不同指標(biāo)或者屬性之間一般存在不可公度性和矛盾性,為消除量綱、數(shù)量級(jí)和類(lèi)型對(duì)決策或者評(píng)價(jià)結(jié)果的影響,需進(jìn)行指標(biāo)規(guī)范化處理。本文采用極差變化法,將集合X和Q轉(zhuǎn)化為規(guī)范化矩陣Y和Z,具體方法為:
(3) 加權(quán)規(guī)范化矩陣構(gòu)建。若評(píng)價(jià)指標(biāo)的權(quán)重為W={ω1,ω2,…,ωN},則加權(quán)后Y和Z可表示為L(zhǎng)和K,即
(11)
(4) 區(qū)間數(shù)矩陣元素轉(zhuǎn)化為聯(lián)系數(shù),并計(jì)算樣本集對(duì)勢(shì)和構(gòu)建評(píng)價(jià)標(biāo)準(zhǔn)區(qū)間集對(duì)勢(shì)以判定等級(jí)。經(jīng)加權(quán)規(guī)范化后區(qū)間數(shù)實(shí)質(zhì)上是一種差別與距離相比較的勢(shì),表達(dá)了樣本脹縮性趨向等級(jí)高的態(tài)勢(shì),則樣本的聯(lián)系數(shù)μm、區(qū)間集對(duì)勢(shì)SPP(H)m、評(píng)價(jià)標(biāo)準(zhǔn)的集成聯(lián)系數(shù)μp和區(qū)間集對(duì)勢(shì)SPP(H)p可依據(jù)(2)~(4)式分別求出,并通過(guò)比較待評(píng)樣本的集對(duì)勢(shì)和區(qū)間數(shù)形式表達(dá)評(píng)價(jià)標(biāo)準(zhǔn)集對(duì)勢(shì),即可確定待評(píng)樣本的等級(jí)。
實(shí)例采用文獻(xiàn)[6]中的合肥新橋機(jī)場(chǎng)膨脹土現(xiàn)場(chǎng)實(shí)測(cè)和室內(nèi)實(shí)測(cè)資料,應(yīng)用區(qū)間數(shù)集對(duì)勢(shì)評(píng)價(jià)模型進(jìn)行等級(jí)評(píng)價(jià)并與其他分析方法的結(jié)果進(jìn)行對(duì)比研究,以驗(yàn)證討論模型的可行性和可靠性。實(shí)例中選取了液限、脹縮總率、塑性指數(shù)、天然含水率和自由脹縮率等5個(gè)指標(biāo),脹縮性等級(jí)劃分為Ⅰ(極高)、Ⅱ(高)、Ⅲ(中)和Ⅳ(低)4個(gè)等級(jí)[12]。脹縮性等級(jí)評(píng)價(jià)指標(biāo)標(biāo)準(zhǔn)見(jiàn)表1所列,取評(píng)價(jià)指標(biāo)標(biāo)準(zhǔn)的界限點(diǎn)值用區(qū)間數(shù)的形式表達(dá),見(jiàn)表2所列。樣本的實(shí)測(cè)值見(jiàn)表3所列,權(quán)重直接采用文獻(xiàn)[6]中數(shù)據(jù),即ωj={0.23,0.22,0.20,0.19,0.16},∑ωj=1。依據(jù)(2)式、(4)式、(7)式、(11)式可得區(qū)間界限點(diǎn)和樣本的集成聯(lián)系數(shù)和區(qū)間集對(duì)勢(shì),結(jié)果見(jiàn)表4所列。按評(píng)價(jià)準(zhǔn)則可得樣本的脹縮性等級(jí),實(shí)例評(píng)價(jià)結(jié)果及與其他方法對(duì)比結(jié)果見(jiàn)表5所列。
由表5結(jié)果可知,實(shí)例應(yīng)用中基于區(qū)間集對(duì)勢(shì)評(píng)價(jià)模型的分析結(jié)果與其他方法結(jié)果基本吻合,表明該方法應(yīng)用于膨脹土等級(jí)評(píng)價(jià)是有效可行的。同時(shí),可變模糊集方法中隸屬函數(shù)的確定具有一定的主觀性,且對(duì)區(qū)間數(shù)提供的不確定性信息沒(méi)有充分利用。而聯(lián)系期望法則側(cè)重于實(shí)測(cè)指標(biāo)的均值,對(duì)樣本向其他等級(jí)的轉(zhuǎn)化態(tài)勢(shì)沒(méi)有很好地刻畫(huà)。而本文模型通過(guò)引入?yún)^(qū)間集對(duì)勢(shì)的概念,不僅有效表達(dá)了樣本實(shí)測(cè)值的區(qū)間變化特征,而且可定量表達(dá)與分類(lèi)標(biāo)準(zhǔn)之間的同異反關(guān)系以及向其他等級(jí)轉(zhuǎn)化的態(tài)勢(shì),顯然避免了基于實(shí)測(cè)指標(biāo)均值的缺陷,有利于表達(dá)和挖掘樣本指標(biāo)的確定性與不確定性,達(dá)到簡(jiǎn)潔有效地刻畫(huà)指標(biāo)所包含的各類(lèi)有用信息的目的。
表1 脹縮性等級(jí)評(píng)價(jià)指標(biāo)標(biāo)準(zhǔn)
表2 脹縮性等級(jí)評(píng)價(jià)指標(biāo)界限點(diǎn)的區(qū)間數(shù)表達(dá)
基于區(qū)間數(shù)轉(zhuǎn)化為聯(lián)系數(shù),以集對(duì)勢(shì)分析樣本的確定性與不確定性轉(zhuǎn)換態(tài)勢(shì),有利于分析樣本脹縮性發(fā)展趨勢(shì),從而真實(shí)地反映樣本的脹縮特性與確定等級(jí)。因此,區(qū)間集對(duì)勢(shì)評(píng)價(jià)模型能充分表達(dá)評(píng)價(jià)指標(biāo)區(qū)間動(dòng)態(tài)變化特性,且克服了傳統(tǒng)區(qū)間數(shù)分析方法難于對(duì)比的缺陷。
表3 區(qū)間數(shù)表達(dá)的實(shí)測(cè)評(píng)價(jià)指標(biāo)
表4 脹縮性等級(jí)評(píng)價(jià)標(biāo)準(zhǔn)的區(qū)間集對(duì)勢(shì)表達(dá)
表5 實(shí)例樣本聯(lián)系數(shù)與結(jié)果對(duì)比
土體脹縮性等級(jí)評(píng)價(jià)涉及多類(lèi)型的動(dòng)態(tài)復(fù)雜信息,是一個(gè)極為復(fù)雜的不確定性難題。本文基于區(qū)間集對(duì)勢(shì)概念,探討了脹縮性等級(jí)的區(qū)間集對(duì)勢(shì)評(píng)價(jià)模型,實(shí)例應(yīng)用和與其他方法對(duì)比結(jié)果表明,該模型不僅克服了傳統(tǒng)方法基于均值表征樣本指標(biāo)與實(shí)際指標(biāo)分布不符的缺陷,解決了以往區(qū)間數(shù)分析過(guò)程繁瑣的難題,而且能反映樣本脹縮性等級(jí)的轉(zhuǎn)化態(tài)勢(shì),為土體脹縮性動(dòng)態(tài)分析提供了新的方法。
[1] 劉松玉,季鵬,方磊.擊實(shí)膨脹土的循環(huán)膨脹特性研究[J].巖土工程學(xué)報(bào),1999,21(1):9-13.
[2] 唐朝生,施斌.干濕循環(huán)過(guò)程中膨脹土的脹縮變形特征[J].巖土力學(xué),2011,33(9):1376-1384.
[3] 查甫生,崔可銳,劉松玉,等.膨脹土的循環(huán)脹縮特性試驗(yàn)研究[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,32(3):399-402.
[4] WANG M,LI J,GE S,et al.Moisture migration tests on unsaturated expansive clays in Hefei,China[J].Applied Clay Science,2013,79:30-35.
[5] 羅文柯,楊果林.模糊數(shù)學(xué)對(duì)湖南膨脹土分類(lèi)與判別實(shí)際工程應(yīng)用研究[J].南華大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,20(2):12-16.
[6] 汪明武,趙奎元,張立彪.基于聯(lián)系期望的膨脹土和改良土脹縮性評(píng)價(jià)模型[J].巖土工程學(xué)報(bào),2014,36(8):1553-1557.
[7] 汪明武,金菊良,李麗.可拓學(xué)在膨脹土脹縮等級(jí)評(píng)判中的應(yīng)用[J].巖土工程學(xué)報(bào),2003,25(6):754-757.
[8] 趙克勤.集對(duì)分析及其初步應(yīng)用[M].杭州:浙江科學(xué)技術(shù)出版社,2000.
[9] 張清河.多元聯(lián)系數(shù)在地基處理方案模糊選優(yōu)中的應(yīng)用[J].水文地質(zhì)工程地質(zhì),2005(6):112-115.
[10] 童英偉,劉志斌,常歡,等.集對(duì)分析法在河流水質(zhì)評(píng)價(jià)中的應(yīng)用[J].安全與環(huán)境學(xué)報(bào),2008,8(6):84-86.
[11] 汪明武,金菊良,周玉良.集對(duì)分析耦合方法與應(yīng)用[M].北京:科學(xué)出版社,2014.
[12] 王廣月,馬華月,劉健.路基膨脹土脹縮等級(jí)的物元可拓識(shí)別模型[J].公路交通科技,2005,22(11):30-33.
Anovelevaluationmodelforswelling-shrinkagegradeofsoilmassbasedonintervalpotentialofsetpair
LI Yafeng, WANG Mingwu, ZHU Yu, JIN Juliang
(School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China)
Based on the interval number theory and set pair analysis, the evaluation model for the swelling-shrinkage behaviors of expansive soil and lime improved soil using interval potential of set pair was discussed. Firstly, interval numbers were utilized to express the variable evaluation indicators and classification standard, and were transferred into connection numbers in order to calculate the interval potential of set pair consisting of the measured indicators and boundary points of classification standard. Then the identity-discrepancy-contrary state relationship between the sample and standard as well as the swelling-shrinkage grade of the sample was determined. The results show that the proposed model, which overcomes the defect of the traditional methods which have difficulty with the comparison among interval numbers, is effective and feasible, and can fully express the changes in the evaluation indicators and depict the transformation of swelling-shrinkage grade from a perspective of connection potential. It also provides a reference for other similar uncertainty problems.
interval number; set pair potential; swelling-shrinkage behavior; evaluation
2016-05-03;
2016-06-12
國(guó)家自然科學(xué)基金資助項(xiàng)目 (41172274;51579059)
李亞峰(1992-),男,安徽滁州人,合肥工業(yè)大學(xué)碩士生;
汪明武(1972-),男,安徽歙縣人,博士,合肥工業(yè)大學(xué)教授,博士生導(dǎo)師;
金菊良(1966-),男,江蘇蘇州人,博士,合肥工業(yè)大學(xué)教授,博士生導(dǎo)師.
10.3969/j.issn.1003-5060.2017.12.018
TU443
A
1003-5060(2017)12-1675-04
(責(zé)任編輯馬國(guó)鋒)