• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    2018-01-09 05:35:38CHATEWAGHMAREJENAGOPALAKRISHNANMURUGAVELSachinGHUDERachanaKULKARNIandDEVARA
    Advances in Atmospheric Sciences 2018年2期

    D.M.CHATE,R.T.WAGHMARE,C.K.JENA,V.GOPALAKRISHNAN,P.MURUGAVEL,Sachin D.GHUDE,Rachana KULKARNI,and P.C.S.DEVARA

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    D.M.CHATE?1,R.T.WAGHMARE1,C.K.JENA2,V.GOPALAKRISHNAN1,P.MURUGAVEL1,Sachin D.GHUDE1,Rachana KULKARNI1,and P.C.S.DEVARA3

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    The first measurements of cloud condensation nuclei(CCN)at five supersaturations were carried out onboard the research vessel“Sagar Kanya”(cruise SK-296)from the south to the head-bay of the Bay of Bengal as part of the Continental Tropical Convergence Zone(CTCZ)Project during the Indian summer monsoon of 2012.In this paper,we assess the diurnal variation in CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)and the power-law fit at supersaturation of 1%.The diurnal pattern shows peaks in CCN concentration(NCCN)at supersaturations from 0.2%to 1%between 0600 and 0700 LST(local standard time,UTC+0530),with relatively low concentrations between 1200 and 1400 LST,followed by a peak at around 1800 LST.The power-law fit for the CCN distribution at different supersaturation levels relates the empirical exponent(k)of supersaturation(%)and the NCCNat a supersaturation of 1%.The NCCNat a supersaturation of 0.4%is observed to vary from 702 cm?3to 1289 cm?3,with a mean of 961±161 cm?3(95%confidence interval),representing the CCN activity of marine air masses.Whereas,the mean NCCNof 1628±193 cm?3at a supersaturation of 1%is higher than anticipated for the marine background.When the number of CCN spectra is 1293,the value of k is 0.57±0.03(99%confidence interval)and its probability distribution shows cumulative counts significant at k≈0.55±0.25.The results are found to be better at representing the features of the marine environment(103cm?3and k≈0.5)and useful for validating CCN closure studies for Indian sea regions.

    CTCZ,Bay of Bengal,monsoon,CCN,supersaturation,power-law relationship

    1.Introduction

    Cloud condensation nuclei(CCN)are fractions of atmospheric aerosols that grow to the size of cloud droplets at a specified supersaturation level in marine,continental and in-cloud environments.Low and high CCN concentrations(NCCN)are generally observed in the marine background and polluted regions,respectively(Petters and Kreidenweis,2007;Andreae,2009;Bougiatioti et al.,2011;Leena et al.,2016).Field observation campaigns(e.g.Andreae and Rosenfeld,2008)have improved our understanding of CCN activity(Ervens et al.,2010).CCN formation is an important phenomenon in cloud physics(Fitzgerald,1973,1991)and the activation of hygroscopic aerosols to the size of CCN largely depends on the size,source,chemical composition and mixing state of particles that nucleate as CCN and grow into droplets(Su et al.,2010;Asmi et al.,2012).The aerosol hygroscopicity in CCN formation depends on the air mass that prevails over the regions of observation(Pruppacher and Klett,2010).Though the chemical composition of nuclei that activate into CCN distributions is difficult to measure in real time(Murugavel and Chate,2011;Kr¨uger et al.,2014),a power-law fit for CCN distributions,as a function of supersaturation with the exponent(k)of supersaturation and C(the NCCNin cm?3at a supersaturation of 1%),represents the hygroscopicity of particles that nucleate to CCN size(Mc-Figgans et al.,2006;Hegg et al.,2009).For inland stations in India,the CCN distributions along with power-law fits are reported as a function of specified supersaturation over short time scales(order of seconds)using commercially available CCN-100 counters(Leena et al.,2016;Varghese et al.,2015).Similar measurements of CCN distributions at various supersaturation values over Indian sea regions during the south-west summer monsoon can result in a better power-law formulation with C and k.Atmospheric measurements of CCN distributions at a wide range of supersaturation levels from the south to the head-bay region of the Bay of Bengal(BoB)have largely been neglected(CTCZ-Scientific Steering Committee,2011),except shipborne observations reported by Ramana and Devi(2016)for the southernmost tail-bay region of the BoB.

    The present work focuses on an analysis of the in-situ measurements of CCN distributions at a wide range of supersaturation over the barely explored region of the BoB from the south to the head-bay region using CCN-100 counters deployed onboard the research vessel“Sagar Kanya”(cruise SK-296)during the Indian summer monsoon of 2012.During this season,the prevailing air mass maintained a symmetrical supply of moisture over the BoB.Therefore,the measured CCN distributions at a wide range of supersaturation in the study region motivated us to quantify the power-law parameters for southwesterly clean air masses,and to compare them with other marine environments.Also,this work aims toshowcasethefirstobservationsofCCNdistributionsatvarious levels of supersaturation carried out in the marine sector spread over an area from the south to the head-bay region of the BoB during the monsoon season,and to investigate the power-law fit for the empirical parameters C and k for the monsoonal air mass.Moreover,the results from the CCN distribution measurements at a wide range of supersaturation levels are expected to improve our understanding of the CCN activity for monsoonal clouds over Indian sea regions.

    2.Instrumentation

    AtmosphericparticlesthattransformintoCCNweremeasured with a CCN counter(model:CCN-100).This instrument is a continuous fl ow thermal gradient CCN counter proposed and designed by Roberts and Nenes(2005)and manufactured by Droplet Measurement Technologies.The working principle of this CCN counter is to expose the aerosol to a fixed supersaturation at a certain time and to measure the number of activated particles with an inbuilt optical particle counter.Aerosols continuously fl ow through the center part of a cylinder with a wetted wall.Between the aerosol fl ow and the wall there is a particle-free sheath fl ow.By controlling the temperature of the wall as well as keeping it wet(ensuring that the relative humidity is 100%just outside the cylinder wall),the movement of heat and water vapor towards the middle of the cylinder and the supersaturation value can be maintained.The supersaturation values are altered in a cycle for measurement of the activated NCCN.The working principle(thermophoresis)of the instrument depends on the water molecules that diffuse towards the center faster than the heat added across the wall(water molecules diffuse mainly via heavier nitrogen and oxygen molecules,hence giving saturation ratios above 100%).Details on the measurement uncertainties and operational error are discussed elsewhere(Rose et al.,2008;Kru¨ger et al.,2014).Full details on the operation,maintenance and calibration procedure of the CCN-100 counter can be found at http://www.dropletmeasurement.com.Also,Ramana and Devi(2016)described the deployment of CCN-100 onboard the research vessel“Sagar Nidhi”during a cruise over the BoB.

    3.Study region

    Figures 1a and b show the ORV Sagarkanya-296 track positions along with wind-rose diagrams,based on observed winds over the BoB during the cruise period from 10 July to 8 August 2012.As seen in Fig.1a,since the departure of SK-296 from Chennai port on 10 July 2012,it sailed till 13 July 2012 almost parallel to the entire coastline of the Indian peninsula and reached the head-bay region of the BoB on 19 July 2012.The research vessel“Sagar Kanya”remained stationary in the head-bay region from 19 July to 2 August 2012(Fig.1a)and thereafter started its return expedition on 2 August 2012 towards the south of the bay,parallel but relatively far away from the Indian coastline,and arrived at Chennai port on 8 August 2012.The Indian summer monsoon season generally extends from June to September when the ITCZ shifts its position over India,maintaining monsoonal cloud cover and moisture supply over the entire country.The dominant circulation pattern is southwesterly clean air masses from June to September,with strong near-surface winds over the Ocean.CCN distributions were continuously monitored at a wide range of supersaturation levels over a period that included the expedition of the SK-296 cruise from the south to the head-bay region of the BoB(10 July to 8 August 2012).A very high total NCCN(~ 7500 cm?3)was recorded on 17 July 2012 when SK-296 was at Paradeep port in the BoB,and also on 5 August 2012(due to rain).The prevailing southwesterly air mass maintains the symmetric moisture supply over the BoB,as evident from the wind-rose diagram(Fig.1b).Several rain showers were encountered during the campaign period,while typical monsoonal clouds passed over the SK-296 track positions across the BoB.The prevailing weather conditions in the marine environment of the BoB during July to August 2012 are described in Ramana and Devi(2016).Over the south to the head-bay region of the BoB,the sampling period(10 July to 7 August 2012)of the SK-296 cruise was long enough to represent the monsoonal pattern of CCN distributions at various supersaturation levels.

    Fig.1.(a)SK-296 track positions.(b)Wind-rose diagram(black shadings mark the southwest and south-southwest winds).(c)Frequency distribution of winds.

    The CCN distributions at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%(covering typical range of supersaturation of the marine to the in-cloud environment)were monitored over the region from the south to the head-bay region of the BoB,round the clock,during 10 July to 7 August 2012.The activated NCCNis given with a temporal resolution of one second and,since it takes a few minutes for the system to come to equilibrium state with the supersaturation,a measurement cycle of 30 minutes is considered for the aforementioned levels of supersaturation(Kr¨uger et al.,2014).The data obtained for CCN distributions as a function of supersaturation have been averaged on an hourly basis for the entire period of the SK-296 cruise campaign to showcase the results on the diurnal scale for the Indian summer monsoon of 2012.Figure 2 shows the diurnal pattern of the CCN distribution for the measurement period from 10 July to 7 August 2012 at each level of supersaturation from 0.2%to 1%(in steps of 0.2%).The diurnal cycle includes the peaks in CCN distributions between 0600 and 0700 LST(local standard time,UTC+0530)of about 634,1122,1425,1619 and 1857 cm?3,followed by lower concentrations of about 543,736,874,1100 and 1428 cm?3between 1200 and 1400 LST and subsequent peaks at 1800 LST of 784,1262,1587,1754 and 2027 cm?3,for supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%,respectively(Fig.2).The diurnal cycle for CCN distributions at different values of supersaturation are believed to follow the monsoonal pattern of ventilation coefficients(product of mixing height and wind speed),which diurnally modulates the nucleating particle concentrations over Indian sea regions(Murugavel and Chate,2011),including the southernmost tail-bay region of the BoB(Ramana and Devi,2016).Information on the composition of the aerosol population fraction is embedded in the empirical parameter k,which can be extracted from the power-law fit of CCN distributions at various supersaturation levels(SK-296 cruise)over the south to the head-bay region of the BoB.

    The power-law NCCN,S=CSkof CCN distributions at different values of supersaturation describes the CCN activation,where NCCN,Sis the concentration of CCN at a speci fied supersaturation S,C is the CCN concentration at a supersaturation of 1%,and k is the slope of the power-law fit curve.The diurnal variation of k is plotted in Fig.2b,and shows a firstpeakataround 0600LST,alowat1200LST,andanother peak at 2000 LST.Thus,the diurnal pattern of k is purely due to ventilation conditions.

    Fig.2.Diurnal patterns of(a)the CCN distributions at each supersaturation level from 0.2%to 1%(in steps of 0.2%)and(b)k,for the measurement period from 10 July to 7 August 2012.

    The variations in the CCN distribution along with the standard deviation(Fig.3)show an increase in NCCNwith the level of supersaturation from 0.2%to 1%.The variations in the slope(k)in Fig.3 seem to be synchronous with C,where k contains information about the source and mixing state of particles analogous to that of the hygroscopicity of nucleated particles.The results suggest that,during the monsoon season,there is a dominance of hygroscopic particles over the BoB.Furthermore,the average values of C and k in Fig.3areC=1659±29cm?3(atasupersaturationof1%)and k=0.57±0.03(R2=0.99)for the entire dataset(number of CCN distribution spectra≈1300).For NCCNmeasured along and offthe central Californian coast during August 2007,Hegg et al.(2009)reported the power-law fit parameters as C≈328±10 cm?3and k≈0.72±0.06(R2=0.99).For the present dataset for the SK-296 observation period between 10 July and 7 August 2012,the mean NCCNof 1628±193 cm?3(at a supersaturation of 1%)appears to be higher than the anticipatedvalueforthemarinebackground,forwhichC values are more typically of the order of a few hundred CCN cm?3and k≈0.5,as suggested by Hegg and Hobbs(1992)and Hegg et al.(2008).Many observational studies(Dinger et al.,1970;Gras,1990;Pruppacher and Klett,2010)have reported a value of k≈0.5 for the maritime environment.Hegg et al.(1991)suggested a value of k>0.5 for NCCNduring monsoon.For the marine region,offthe central Californian coast,Hudson et al.(2000)measured background C and k values of about 450 cm?3and 0.65,respectively;while in June and late July,Hudson(2007)reported a value of C≈103cm?3.Thus,our LSTCCN distribution results from the SK-296 expedition corroborate reasonably well with the C and k values reported for marine environments.

    Ramana and Devi(2016)reported NCCNat a supersaturation of 0.4%of about 1245–2225 cm?3(mean NCCN≈1801±486 cm?3),191–938 cm?3(mean NCCN≈ 418±161 cm?3)and 64–1420 cm?3(mean NCCN≈ 291±209 cm?3)for coastal(21 July 2012),clean marine(23 July to 11 August 2012)and shipping lane ranges(13–16 August 2012),respectively,in the southernmost tail-bay region of the BoB.Furthermore,for the sampling period from 21 July to 16 August 2012,they reported the NCCNas 837±285 cm?3at a supersaturation of 0.4%which is a mean of 1801,418 and 291 cm?3.Similarly,for the entire dataset of the SK-296 expedition(10 July to 7 August 2012),NCCNat a supersaturation of 0.4%variedfrom702to1289cm?3,withameanof961±151 cm?3.The mean NCCN(837±285 cm?3)at a supersaturation of 0.4%from the southernmost tail-bay region of the BoB reported by Ramana and Devi(2016)was lower,by about 15%,than the mean NCCNof the present study(961±151 cm?3at a supersaturation of 0.4%)for the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012 during the SK-296 cruise.

    Fig.3.Variations in CCN distribution along with standard deviations as a function of supersaturation(%)for the power-law fit on the entire dataset for the period 10 July to 7 August 2012.

    Fig.4.Probability distributions of k(a)cumulative counts and(b)counts.

    Figures 4a and b illustrate the probability distribution of k,with its cumulative counts in percent,for the period of observations from 10 July to 7 August 2012.Figure 4a shows the cumulative counts increase with k for the entire dataset(number of CCN distribution spectra=1293)obtained during the SK-296 cruise campaign.It is evident from Fig.4a that the probability counts are significant at k≈0.55±0.25.A clear inf l uence of marine-type air masses on the CCN distributions and power-law fit parameters C and k can be seen from the aforementioned analyses of the entire dataset obtained during the SK-296 cruise campaign.This is likely linked to increased natural sources of CCN in the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012(SK-296)due to enhanced marinederived aerosols in southwesterly air masses.The parameters C and k with a power-law fit on the entire dataset of the SK-296 cruise,and also from the probability distributions,show the best estimates for a typical marine environment in the tropics,and hence may be applicable to most cloud microphysical studies,including CCN closure studies.

    5.Summary and conclusions

    As part of the CTCZ programme,CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)were continuously monitored onboard the research vessel“Sagar Kanya”(SK-296 expedition)during the Indian summer monsoon of 2012.The results of the hourly mean CCN distributions at supersaturations of 0.2%to 1%for the entire dataset on the diurnal scale,and the power-law fit with empirical constants C and k,are discussed in a comparative analysis.The peaks in NCCNappear during morning and evening hours,with lower NCCNduring noon hours,at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%.For the entire dataset from the SK-296 cruise campaign(number of CCN distribution spectra=1293),the mean CCN concentrations are 1628±193 cm?3and 961±151 cm?3at supersaturations of 1%and 0.4%,respectively;while from the powerlaw fit,k=0.57±0.03(R2=0.99),and probability distributions,cumulative and probability counts show significance at k=0.55±0.25.Though the mean NCCNat a supersaturation of 1%is higher than expected for the marine background,the mean NCCNat a supersaturation of 0.4%,as well as theC and k,broadly corroborate the results of marine environments.Knowledge of the parameter k is routinely considered to be sufficient for many cloud microphysical applications,while for the SK-296 dataset,k≈0.57±0.03 represents the CCN distributions in the marine environments of Indian sea regions.The values of C and k in the present study suggest that the track positions of SK-296 may be impacted by sources other than the sea surface in the case of a few events during the campaign.The quantitative evaluation of the contributing sources to the CCN distributions for Indian sea regions is beyond the scope of this study and can be addressed separately.Also,no significant trend in the monthly(July and August)arithmetic mean NCCNwas found for the sampling period,and the conclusion is that more shipborne CCN distribution data are expected to enable a more robust analysis of possible trends.The availability of shipborne data should facilitate an increase in our understanding of the processes linking NCCN,aerosol concentrations and cloud droplet number concentrations(and cloud albedo)for the BoB region.

    Acknowledgements.The Indian Institute of Tropical Meteorology(IITM),Pune,is supported by the Ministry of Earth Sciences,Government of India,New Delhi.The authors thank Prof.Ravi S.NANJUNDIAH,Director,IITM.Special thanks go to Prof.G.S.BHAT,a CTCZ science expert,for his guidance and encouragement as well as providing us the onboard SK-296 weather data.Also,the authors thank Dr.R.HATWAR and Dr.A.ALMEIDA for their support in conducting the SK-296 cruise campaign.The authors would like to acknowledge the crew members of“Sagar Kanya”(SK-296)for their cooperation and support during the field campaign.One of the authors(PCSD)would also like to thank the authorities at Amity University Gurgaon for their support.

    Andreae,M.O.,and D.Rosenfeld,2008: Aerosol-cloudprecipitation interactions.Part 1.The nature and sources of cloud-active aerosols.Earth-Science Reviews,89,13–41,doi:10.1016/j.earscirev.2008.03.001.

    Andreae,M.O.,2009:Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions.Atmos.Chem.Phys.9,543–556,doi:10.5194/acp-9-543-2009.

    Asmi,E.,E.Freney,M.Hervo,D.Picard,C.Rose,A.Colomb,and K.Sellegri,2012:Aerosol cloud activation in summer and winter at puy-de-Do?me high aLSTitude site in France.Atmos.Chem.Phys.,12,11 589–11 607,doi:10.5194/acp-12115892012.

    Bougiatioti,A.,A.Nenes,C.Fountoukis,N.Kalivitis,S.N.Pandis,and N.Mihalopoulos,2011:Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol.Atmos.Chem.Phys,11,8791–8808,10.5194/acp-11-8791-2011.

    CTCZ-Scienti fic Steering Committee,2011:Proposal for Continental Tropical Convergence Zone(CTCZ)programme.CTCZ-Scienti fic Steering Committee,66 pp.

    Dinger,J.E.,H.B.Howell,and T.A.Wojciechowski,1970:On the source and composition of cloud nuclei in a subsident air massovertheNorthAtlantic.J.Atmos.Sci.,27,791–797,doi:10.1175/1520-0469(1970)027<0791:OTSACO>2.0.CO;2.

    Ervens,B.,and Coauthors,2010:CCN predictions using simplified assumptions of organic aerosol composition and mixing state:A synthesis from six different locations.Atmos.Chem.Phys.,10,4795–4807,doi:10.5194/acp-1047952010.

    Fitzgerald,J.W.,1973:Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition.J.Atmos.Sci.,30(4),628–634,doi:10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    Fitzgerald,J.W.,1991:Marine aerosols:A review.Atmospheric Environment.Part A.General Topics,25(3–4),533–545,doi:10.1016/0960-1686(91)90050-H.

    Gras,J.L.,1990:Cloud condensation nuclei over the Southern Ocean.Geophys.Res.Lett.,17,1565–1567,doi:10.1029/GL017i010p01565.

    Hegg,D.A.,and P.V.Hobbs,1992:Cloud condensation nuclei in the marine atmosphere:A Review,Proceedings of the Thirteenth International Conference on Nucleation and Atmospheric Aerosols,Hampton,VA,Deepak Publishing,181–192.

    Hegg,D.A.,D.S.Covert,andH.H.Jonsson,2008:Measurements of size-resolved hygroscopicity in the California coastal zone.Atmos.Chem.Phys.,8,7193–7203,doi:10.5194/acp-8-7193-2008.

    Hegg,D.A.,D.S.Covert,D.S.,H.H.Jonsson,H.H.,and R.Woods,R.,2009:Differentiating natural and anthropogenic cloud condensation nuclei in the California coastal zone.Tellus,61B,669–676,http://dx.doi.org/10.1111/j.1600-0889.2009.00435.x.

    Hegg,D.A.,L.F.Radke,L.F.,and P.V.Hobbs,1991:Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloudclimate hypothesis.J.Geophys.Res.,96,18 727–18 733,doi:10.1029/91JD01870.

    Hudson,J.G.,2007:Variability of the relationship between particle size and cloud-nucleating ability.Geophys.Res.Lett.,34,L08801,doi:10.1029/2006GL028850.

    Hudson,J.G.,T.J.Garrett,P.V.Hobbs,S.R.Strader,Y.H.Xie,and S.S.Yum,2000:Cloud condensation nuclei and ship tracks.J.Atmos.Sci.,57,2696–2706,doi:10.1175/1520-0469(2000)057<2696:CCNAST>2.0.CO;2.

    Kr¨uger,M.L.,and Coauthors,2014:Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei(CCN)measurements.Atmospheric Measurement Techniques,7,2615–2629,doi:10.5194/amt-7-2615-2014.

    Leena,P.P.,G.Pandithurai,V.Anilkumar,P.Murugavel,S.M.Sonbawne,and K.K.Dani,2016:Seasonal variability in aerosol,CCN and their relationship observed at a high aLSTitude site in Western Ghats.Meteor.Atmos.Phys.,128,143–153,doi:10.1007/s00703-015-0406-0-.

    McFiggans,G.,and Coauthors,LST2006:The effect of physical and chemical aerosol properties on warm cloud droplet activation.Atmos.Chem.Phys.,6,2593–2649,doi:10.5194/acp-62593-2006.

    Murugavel,P.,and D.M.Chate,2011:Volatile properties of atmospheric aerosols during nucleation events at Pune,India.Journal of Earth System Science,120,1–17,doi:10.1007/s12040-011-0072-7.

    Petters,M.D.,and S.M.Kreidenweis,2007:A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos.Chem.Phys.,7,1961–1971,doi:10.5194/acp-7-1961-2007.

    Pruppacher,H.R.,and J.D.Klett,2010:Microphysics of Clouds and Precipitation:Atmospheric and Oceanographic Sciences Library.Springer,954 pp.

    Ramana,M.V.,and A.Devi,2016:CCN concentrations and BC warming inf l uenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.Sci.Rep.,6,30416,doi:10.1038/srep30416.

    Roberts,G.C.,and A.Nenes,2005:A continuous-f l ow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Science and Technology,39,206–221,doi:10.1080/027868290913988.

    Rose,D.,S.S.Gunthe,E.Mikhailov,G.P.Frank,U.Dusek,M.O.Andreae,and U.P¨oschl,2008:Calibration and measurement uncertainties of a continuous-f l ow cloud condensation nuclei counter(DMT-CCNC):CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment.Atmos.Chem.Phys.,8,1153–1179,doi:10.5194/acp-8-1153-2008.

    Su,H.,and Coauthors,2010:Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation.Atmos.Chem.Phys.,10,7489–7503,doi:10.5194/acp-10-7489-2010.

    Varghese,M.,and Coauthors,2015:Airborne and ground based CCN spectral characteristics:Inferences from CAIPEEX-2011.Atmos.Environ.,125,324–336,doi:10.1016/j.atmosenv.2015.06.041.

    28 December 2016;revised 30 March 2017;accepted 10 April 2017)

    :Chate,D.M.,and Coauthors,2018:Cloud condensation nuclei over the Bay of Bengal during the Indian summer monsoon.Adv.Atmos.Sci.,35(2),218–223,https://doi.org/10.1007/s00376-017-6331-z.

    ?Corresponding author:D.M.CHATE

    Email:chate@tropmet.res.in

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    新久久久久国产一级毛片| 欧美黄色片欧美黄色片| 变态另类成人亚洲欧美熟女 | 久久亚洲真实| 91麻豆精品激情在线观看国产 | 久久九九热精品免费| 黄色视频,在线免费观看| 亚洲精品一区av在线观看| 一二三四在线观看免费中文在| 久久国产亚洲av麻豆专区| 国产av一区在线观看免费| 日本撒尿小便嘘嘘汇集6| 在线观看午夜福利视频| 日本wwww免费看| 最新美女视频免费是黄的| 真人做人爱边吃奶动态| 成人特级黄色片久久久久久久| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 亚洲av第一区精品v没综合| 国产精品美女特级片免费视频播放器 | 精品一区二区三区四区五区乱码| 午夜免费鲁丝| 又黄又爽又免费观看的视频| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 在线观看舔阴道视频| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| 亚洲av第一区精品v没综合| 一进一出抽搐动态| 中文字幕av电影在线播放| 欧美成人午夜精品| 黄色女人牲交| 久久中文字幕人妻熟女| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 亚洲欧美激情在线| 在线永久观看黄色视频| 亚洲av熟女| 日本vs欧美在线观看视频| 亚洲欧美日韩高清在线视频| 国产乱人伦免费视频| 国产av在哪里看| 国产精品一区二区三区四区久久 | 亚洲 国产 在线| 丰满的人妻完整版| 亚洲国产精品一区二区三区在线| 国产成人欧美在线观看| 亚洲国产精品合色在线| 丁香欧美五月| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 国产1区2区3区精品| 精品国产亚洲在线| 中文字幕人妻丝袜一区二区| 青草久久国产| 中文字幕最新亚洲高清| 亚洲精品在线美女| 亚洲av成人av| 亚洲av五月六月丁香网| 亚洲成人免费av在线播放| 亚洲人成77777在线视频| 三级毛片av免费| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 日韩欧美三级三区| 波多野结衣一区麻豆| 久久人妻av系列| 欧美精品亚洲一区二区| 黄色女人牲交| tocl精华| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 国产99白浆流出| 亚洲第一青青草原| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| www.999成人在线观看| 久久性视频一级片| 最新美女视频免费是黄的| 黄网站色视频无遮挡免费观看| 黄片小视频在线播放| 一级,二级,三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩另类电影网站| 99在线人妻在线中文字幕| 亚洲人成电影免费在线| 国产亚洲精品综合一区在线观看 | 人妻久久中文字幕网| 中文字幕高清在线视频| 不卡av一区二区三区| 日韩欧美国产一区二区入口| 桃色一区二区三区在线观看| av片东京热男人的天堂| 黄色丝袜av网址大全| 麻豆一二三区av精品| 91在线观看av| 亚洲午夜理论影院| 国产成人av教育| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av在线| av在线播放免费不卡| 80岁老熟妇乱子伦牲交| 90打野战视频偷拍视频| 久久亚洲真实| 成年人黄色毛片网站| 黑丝袜美女国产一区| cao死你这个sao货| 日韩一卡2卡3卡4卡2021年| 欧洲精品卡2卡3卡4卡5卡区| 久久午夜综合久久蜜桃| 黄色毛片三级朝国网站| 久久人人精品亚洲av| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 老司机靠b影院| 久久久精品欧美日韩精品| 成人黄色视频免费在线看| 久久久久国产一级毛片高清牌| 欧美激情久久久久久爽电影 | 女性生殖器流出的白浆| 大码成人一级视频| 中文亚洲av片在线观看爽| www.999成人在线观看| 日本wwww免费看| 欧美性长视频在线观看| 一进一出好大好爽视频| 一区在线观看完整版| 黑人操中国人逼视频| 在线观看一区二区三区激情| 1024视频免费在线观看| 91精品国产国语对白视频| 亚洲成人免费av在线播放| 日韩av在线大香蕉| 黄色怎么调成土黄色| 精品电影一区二区在线| 亚洲七黄色美女视频| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 日本a在线网址| 国产高清videossex| 欧美日韩黄片免| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 国产精品99久久99久久久不卡| 91精品三级在线观看| 日本一区二区免费在线视频| 欧美不卡视频在线免费观看 | 丝袜美腿诱惑在线| 亚洲久久久国产精品| 亚洲国产精品一区二区三区在线| aaaaa片日本免费| 夜夜躁狠狠躁天天躁| 欧美精品亚洲一区二区| 免费av毛片视频| 久久久久久久精品吃奶| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 日日夜夜操网爽| 亚洲人成网站在线播放欧美日韩| 欧美午夜高清在线| 亚洲欧美激情综合另类| 看片在线看免费视频| 欧美日韩黄片免| 免费av毛片视频| 国产黄a三级三级三级人| 人人妻人人澡人人看| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 免费不卡黄色视频| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区不卡视频| av欧美777| 亚洲aⅴ乱码一区二区在线播放 | 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 女警被强在线播放| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| av有码第一页| 成熟少妇高潮喷水视频| 日韩国内少妇激情av| 丁香欧美五月| 18禁美女被吸乳视频| 桃色一区二区三区在线观看| 午夜两性在线视频| 深夜精品福利| 电影成人av| 多毛熟女@视频| 色哟哟哟哟哟哟| 18禁国产床啪视频网站| 黄片大片在线免费观看| 级片在线观看| 日本免费一区二区三区高清不卡 | 亚洲九九香蕉| 亚洲成国产人片在线观看| 国产精品1区2区在线观看.| av天堂在线播放| 一个人免费在线观看的高清视频| 国产欧美日韩综合在线一区二区| 久久国产精品影院| 国产有黄有色有爽视频| 久久草成人影院| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| 国产av精品麻豆| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 亚洲国产精品sss在线观看 | 级片在线观看| 国产1区2区3区精品| 国产成+人综合+亚洲专区| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 午夜福利欧美成人| 叶爱在线成人免费视频播放| 久久久久久亚洲精品国产蜜桃av| 欧美乱码精品一区二区三区| 日本欧美视频一区| 亚洲黑人精品在线| svipshipincom国产片| 亚洲伊人色综图| 国产黄a三级三级三级人| 久9热在线精品视频| 国产精品 欧美亚洲| 久久精品亚洲精品国产色婷小说| av在线播放免费不卡| 人人妻人人澡人人看| 国产成人精品久久二区二区免费| 国产精品影院久久| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久成人av| 日本五十路高清| 国产精品爽爽va在线观看网站 | 日本欧美视频一区| 久久久久九九精品影院| 搡老乐熟女国产| 村上凉子中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| av天堂在线播放| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 两性夫妻黄色片| 曰老女人黄片| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| www国产在线视频色| 亚洲中文日韩欧美视频| av天堂在线播放| 欧美日韩视频精品一区| 可以在线观看毛片的网站| 欧美午夜高清在线| 欧美激情久久久久久爽电影 | 老熟妇乱子伦视频在线观看| 老汉色∧v一级毛片| 久久精品国产亚洲av高清一级| bbb黄色大片| 一边摸一边抽搐一进一出视频| 亚洲专区中文字幕在线| 亚洲欧美日韩无卡精品| 亚洲精品在线观看二区| 午夜免费成人在线视频| 男女午夜视频在线观看| 成人18禁在线播放| 两个人看的免费小视频| 女人爽到高潮嗷嗷叫在线视频| 一级毛片精品| 精品福利观看| 欧美日韩黄片免| 亚洲一区中文字幕在线| 丝袜在线中文字幕| av天堂在线播放| 欧美黑人精品巨大| av视频免费观看在线观看| 亚洲成av片中文字幕在线观看| 国产成年人精品一区二区 | 一夜夜www| 黄频高清免费视频| 又大又爽又粗| 精品久久久久久成人av| 精品国内亚洲2022精品成人| 亚洲成人久久性| 淫秽高清视频在线观看| 老司机福利观看| 在线观看免费视频日本深夜| 深夜精品福利| 成人影院久久| 亚洲精品在线观看二区| 午夜老司机福利片| 九色亚洲精品在线播放| 五月开心婷婷网| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 久久草成人影院| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| xxxhd国产人妻xxx| 无遮挡黄片免费观看| 久久久久久久精品吃奶| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 国产精品av久久久久免费| 中出人妻视频一区二区| 夜夜看夜夜爽夜夜摸 | 免费人成视频x8x8入口观看| 国产伦一二天堂av在线观看| 国产免费av片在线观看野外av| 国产精品成人在线| 精品国产国语对白av| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| 日韩高清综合在线| 午夜91福利影院| 国产成年人精品一区二区 | ponron亚洲| 久热爱精品视频在线9| 午夜免费观看网址| 日本wwww免费看| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 人人妻人人澡人人看| ponron亚洲| 久久人妻熟女aⅴ| 91大片在线观看| 韩国精品一区二区三区| 午夜精品久久久久久毛片777| 久久精品亚洲熟妇少妇任你| 1024香蕉在线观看| 黄色片一级片一级黄色片| 亚洲av成人一区二区三| 国产精品爽爽va在线观看网站 | 大型黄色视频在线免费观看| 久久久精品欧美日韩精品| 午夜久久久在线观看| 免费在线观看影片大全网站| 欧美激情高清一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲成av片中文字幕在线观看| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 国产精品免费一区二区三区在线| 最新美女视频免费是黄的| 大型黄色视频在线免费观看| 久久久久久久精品吃奶| 成人精品一区二区免费| 一区二区日韩欧美中文字幕| 国产精品永久免费网站| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 欧美在线黄色| 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 五月开心婷婷网| 99久久综合精品五月天人人| 中文亚洲av片在线观看爽| 欧美激情高清一区二区三区| 欧美日韩国产mv在线观看视频| 在线观看免费视频网站a站| 亚洲国产欧美一区二区综合| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 欧美久久黑人一区二区| 亚洲成人精品中文字幕电影 | 一级毛片精品| 国产欧美日韩一区二区三| 黄色丝袜av网址大全| 国产三级在线视频| 久久午夜亚洲精品久久| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| xxx96com| 久久亚洲精品不卡| xxx96com| 80岁老熟妇乱子伦牲交| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 精品久久久久久久久久免费视频 | 国产一卡二卡三卡精品| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 怎么达到女性高潮| 日本精品一区二区三区蜜桃| 高清av免费在线| 久久婷婷成人综合色麻豆| 成人黄色视频免费在线看| 中文字幕色久视频| 国产激情欧美一区二区| 伊人久久大香线蕉亚洲五| av有码第一页| 色精品久久人妻99蜜桃| 免费在线观看亚洲国产| 可以免费在线观看a视频的电影网站| 国产1区2区3区精品| 国产亚洲av高清不卡| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 成人国语在线视频| 欧美日韩av久久| 宅男免费午夜| cao死你这个sao货| 久久久久精品国产欧美久久久| 亚洲欧美一区二区三区久久| 免费看a级黄色片| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 女人爽到高潮嗷嗷叫在线视频| 久久国产乱子伦精品免费另类| 一夜夜www| 亚洲av成人一区二区三| 亚洲,欧美精品.| 精品欧美一区二区三区在线| 最好的美女福利视频网| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 日韩一卡2卡3卡4卡2021年| 精品久久久久久,| 国产成人影院久久av| 超碰成人久久| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区字幕在线| 99热只有精品国产| 国产精品久久电影中文字幕| 国产av在哪里看| 久久久国产一区二区| 日韩精品青青久久久久久| 一区二区三区精品91| 日本免费一区二区三区高清不卡 | 欧美色视频一区免费| 欧美不卡视频在线免费观看 | 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 日日干狠狠操夜夜爽| 不卡av一区二区三区| 国内毛片毛片毛片毛片毛片| 国产精品电影一区二区三区| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 男女下面插进去视频免费观看| 国产av一区在线观看免费| 一a级毛片在线观看| 国产成人av教育| 精品久久久久久电影网| av国产精品久久久久影院| 搡老岳熟女国产| 精品无人区乱码1区二区| 国产精品国产高清国产av| 国产不卡一卡二| 欧美丝袜亚洲另类 | 黄色视频不卡| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 国产成人系列免费观看| 亚洲人成伊人成综合网2020| 久久国产精品影院| 国产精品二区激情视频| 两人在一起打扑克的视频| 999久久久国产精品视频| 91av网站免费观看| 搡老乐熟女国产| 18禁观看日本| 亚洲精华国产精华精| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 久久伊人香网站| 黄色视频不卡| 91大片在线观看| 国产成人精品在线电影| 丝袜美足系列| 久久精品91无色码中文字幕| 国产免费男女视频| 十八禁人妻一区二区| 精品福利观看| 久99久视频精品免费| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 国产一区二区三区视频了| 国产成人一区二区三区免费视频网站| 神马国产精品三级电影在线观看 | 日韩国内少妇激情av| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 五月开心婷婷网| 亚洲 欧美一区二区三区| 久久精品影院6| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 天堂√8在线中文| 91老司机精品| 精品国产美女av久久久久小说| 亚洲精品久久午夜乱码| 99热只有精品国产| 法律面前人人平等表现在哪些方面| 亚洲第一青青草原| 黑人猛操日本美女一级片| av在线播放免费不卡| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 级片在线观看| 极品教师在线免费播放| 久久久久久久久中文| 成年人免费黄色播放视频| 色播在线永久视频| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 69av精品久久久久久| 激情在线观看视频在线高清| 51午夜福利影视在线观看| 久久精品91蜜桃| 很黄的视频免费| 久久欧美精品欧美久久欧美| 搡老乐熟女国产| 欧美在线黄色| 国产精品野战在线观看 | 欧美日韩国产mv在线观看视频| 女生性感内裤真人,穿戴方法视频| 成人精品一区二区免费| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 国产精品成人在线| 国产亚洲精品综合一区在线观看 | 亚洲 欧美一区二区三区| 一a级毛片在线观看| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影 | 国产高清国产精品国产三级| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| 午夜两性在线视频| 国产成人精品久久二区二区91| 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 桃色一区二区三区在线观看| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 日韩欧美三级三区| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| 国产精品野战在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| av欧美777| 国产成人啪精品午夜网站| 亚洲狠狠婷婷综合久久图片| 亚洲午夜理论影院| 免费高清在线观看日韩| 热re99久久精品国产66热6| 99精品久久久久人妻精品| 欧美日韩黄片免| 亚洲男人的天堂狠狠| 久久天堂一区二区三区四区| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 一本综合久久免费| 性色av乱码一区二区三区2| 国产成人精品久久二区二区免费| 天堂中文最新版在线下载| 久久精品亚洲精品国产色婷小说| 久久久精品欧美日韩精品| 欧美日韩黄片免| 在线观看日韩欧美| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址 | 视频区欧美日本亚洲| 9191精品国产免费久久| 淫秽高清视频在线观看| 国产99白浆流出| 国产av又大| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区| 韩国av一区二区三区四区| 国产av精品麻豆| 日日爽夜夜爽网站| 高清毛片免费观看视频网站 | 亚洲第一av免费看| 成人亚洲精品av一区二区 | 日韩欧美在线二视频| 80岁老熟妇乱子伦牲交| 老司机福利观看| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 久久久久久大精品|