趙方東 李麟坤 何旭升 曾會明
(北京林業(yè)大學(xué)林學(xué)院,北京 100083)
關(guān)鍵基因和相關(guān)激素在植物胚胎發(fā)生前后期的作用
趙方東 李麟坤 何旭升 曾會明
(北京林業(yè)大學(xué)林學(xué)院,北京 100083)
雖然LEAFY COTYLEDON 1-LIKE與LEAFY COTYLEDON1同為LEAFY COTYLEDON1型的AHAP3亞基,但是與主要在胚胎發(fā)育晚期發(fā)揮重要作用的LEAFY COTYLEDON1不同,LEAFY COTYLEDON 1-LIKE在體細(xì)胞胚胎發(fā)育的早期具有把營養(yǎng)階段的細(xì)胞轉(zhuǎn)化為胚胎期細(xì)胞的能力。而與LEAFY COTYLEDON類基因同樣具有特異性B3結(jié)構(gòu)域的LEAFY COTYLEDON2轉(zhuǎn)錄因子,能夠通過IPA-YUC生長素合成途徑參與在體細(xì)胞組織中創(chuàng)造胚胎發(fā)生的環(huán)境。除此之外,LEAFY COTYLEDON2還通過調(diào)節(jié)ABA/GA的比例來促進胚胎的發(fā)生及其發(fā)育。胚胎晚期的WUSCHE和SHOOTMERISTEMLESS的表達(dá)相互獨立但又協(xié)調(diào)的維持SAM的功能,獨立于WUSCHE基因表達(dá)的KNOX途徑與激素的交互作用,能夠維持胚胎莖頂端分生組織中高濃度的CK和低濃度的GA環(huán)境,有利于WUSCHE-CLAVATA途徑響應(yīng)于CK持續(xù)產(chǎn)生干細(xì)胞。綜上所述能夠提高對胚胎發(fā)生分子調(diào)控網(wǎng)絡(luò)的認(rèn)識,在未來更深入的胚胎發(fā)生研究中奠定分子基礎(chǔ)。
LEAFY COTYLEDON類基因;體細(xì)胞胚;WUSCHE;SAM;植物激素
限于合子胚難以通過正常的手段來分離,進而影響研究生長發(fā)育過程,可通過被子植物中的體細(xì)胞胚的方式來繼續(xù)研究,因為被子植物的體細(xì)胞胚在形態(tài)發(fā)生階段與合子胚存在著對應(yīng)的相似性[1],具有典型的胚胎器官,如胚根、下胚軸和子葉[2],而且較一定階段的合子胚容易獲取。盡管對體細(xì)胞胚胎發(fā)生最早階段的發(fā)育特征不甚了解,但是隨后的體細(xì)胞胚胎發(fā)育過程與合子胚的前期和后期過程具有密切的聯(lián)系[3-4],這與前人將擬南芥的不成熟合子胚進行體細(xì)胞胚誘導(dǎo)培養(yǎng)來分析影響胚胎發(fā)生發(fā)育的因素的研究一致。雖然在單子葉和雙子葉植物中胚胎的發(fā)育階段不同,但在早期和晚期相似,都具有合子期,球形胚期和成熟胚期。本文重點討論在植物胚胎發(fā)生前期和后期中關(guān)鍵基因的研究進展以及與相關(guān)激素的交互作用,有利于提高對胚胎發(fā)生分子調(diào)控網(wǎng)絡(luò)的認(rèn)識,在未來更深入的胚胎發(fā)生研究中奠定分子基礎(chǔ)。
SAM分布于胚胎頂端分生組織的中心區(qū),周圍有側(cè)分生組織和花葉原基起源的外圍區(qū)(圖1)。干細(xì)胞群主要集中在SAM的中心區(qū)(Central zone,CZ),其多層結(jié)構(gòu)主要由3個不同的克隆細(xì)胞層組成,L1和L2層為單層細(xì)胞,其平行于表面各自分開,而L3層的細(xì)胞能夠以隨機的方向展開形成肋分生組織(Rib meristem,RM)或組織中心(Organizing center,OC)的多層結(jié)構(gòu)[5]。干細(xì)胞分裂增殖的子細(xì)胞分別進入側(cè)分生組織分化為形成側(cè)部器官和進入外圍區(qū)分化為莖或葉原基等。SAM的主要功能是在CZ中維持未分化的多功能干細(xì)胞群和未分化的干細(xì)胞進入外周區(qū)(Peripheral zone,PZ)加快分裂速度分化為器官原基。
圖1 植物SAM的細(xì)胞構(gòu)造區(qū)域[6]
LEAFY COTYLEDON(LEC)類基因包括LEAFY COTYLEDON1(LEC1)、LEAFY COTYLEDON 1-LIKE(L1L)、LEAFY COTYLEDON2(LEC2)、FUSCA3(FUS3),前兩者編碼一種HAP3亞基的CCAAT結(jié)合轉(zhuǎn)錄因子,后兩者編碼與B3結(jié)構(gòu)域相關(guān)的轉(zhuǎn)錄因子。
2.1.1 L1L基因 在LEC1和FUS3基因方面蔣文婷[7]已順述其研究進展,揭示在胚胎發(fā)生早期和晚期的正常發(fā)育過程中LEC1基因是關(guān)鍵的調(diào)節(jié)物,能夠足以誘導(dǎo)在營養(yǎng)細(xì)胞中的胚胎發(fā)育。與LEC1最密切相關(guān)的亞基L1L共同組成LEC1型的AHAP3亞基,除此之外的AHAP3亞基稱之為非LEC1型。雖然在L1L與LEC1同為LEC1型的AHAP3亞基,但有研究指出LIL和LEC1在胚胎發(fā)生中的功能又有明顯的區(qū)別。lec1突變體使得胚胎發(fā)生晚期停滯,能夠擁有完整的卻畸形的子葉和胚軸,而且在胚胎干燥之前可被拯救發(fā)育為正常幼苗[8];通過RNAi技術(shù)來抑制L1L誘導(dǎo)的胚胎在早期球狀期受到阻礙,其早期胚胎不能被拯救來產(chǎn)生正常生長的植物。除此之外,在胚胎發(fā)生后的L1L RNA的累積量高于LEC1 RNA,類似于LEC1主要在發(fā)育中的種子中檢測到,并且即使在突變體種子中檢測L1L RNA,其也不能拯救lec1的表型[9]。因此在胚胎發(fā)育過程中LIL主要在早期發(fā)揮作用,具有從營養(yǎng)階段的細(xì)胞轉(zhuǎn)化為胚發(fā)生的能力[10],能夠維持早期胚胎發(fā)展的進程,LEC1也在早期和LIL功能部分冗余,但是在種子發(fā)育晚期LEC1可能發(fā)揮重要的作用。L1L可能位于LEC1的上游來共同調(diào)節(jié)胚胎的發(fā)生發(fā)育,揭示了LEC1和L1L在胚胎發(fā)生中都發(fā)揮獨特的作用。2.1.2 LEC2基因 有關(guān)學(xué)者研究[11]與LEC1、L1L同樣具有特異性B3結(jié)構(gòu)域的LEC2轉(zhuǎn)錄因子發(fā)現(xiàn),它在合子胚和體細(xì)胞胚發(fā)生中起到核心作用,lec2表型在早期胚胎形成期間出現(xiàn)胚軸形態(tài)的缺陷,而且可以在種子成熟前拯救干燥不耐受的種子進而發(fā)育完整植株[12];過表達(dá)LEC2能誘導(dǎo)體細(xì)胞胚的形成[13],而在生長素處理下的培養(yǎng)外植體的胚胎發(fā)生受到損害[11]。有關(guān)研究揭示了LEC2的活性與施用外源IAA之間關(guān)系密切,指出在無IAA條件下培養(yǎng)的外植體中,由于LEC2基因的過表達(dá)使得IAA濃度增加滿足刺激體細(xì)胞胚發(fā)生的需要[14]。這就證明了LEC2基因可能通過內(nèi)生生長素的水平來影響胚胎發(fā)生的機制。Wójcikowska等[11]認(rèn)為體細(xì)胞胚的形成與局部生長素的產(chǎn)生相關(guān),LEC2在IPA-YUC生長素合成途徑中起到關(guān)鍵作用,其可能活化該途徑中YUC(YUC1,YUC2,YUC4,YUC10)來進行信號傳導(dǎo)[11,15],YUCCA蛋白是一種依賴色氨酸的生長素合成的黃素單氧化酶,通過LEC2控制的機制能夠在體細(xì)胞組織中創(chuàng)造胚胎發(fā)生的環(huán)境[15]。除此之外,通過極性生長素轉(zhuǎn)運產(chǎn)生的生長素梯度可能也參與觸發(fā)體細(xì)胞胚胎的發(fā)生。
WUSCHE(WUS)編碼不同于KNOTTED1類的新類別的同源結(jié)構(gòu)域蛋白,產(chǎn)生于莖端分生組織的OC細(xì)胞中并調(diào)節(jié)參與分生組織和細(xì)胞分裂相關(guān)的許多基因轉(zhuǎn)錄的轉(zhuǎn)錄因子[16-17],在RM/OC的細(xì)胞中表達(dá)[18],并在SAM的干細(xì)胞下面的一組細(xì)胞中表達(dá),以非自發(fā)細(xì)胞的方式影響干細(xì)胞命運而且在莖頂端分生組織、花序分生組織中起到關(guān)鍵作用[19]。當(dāng)WUS功能受到抑制,SAM表現(xiàn)出嚴(yán)重缺陷[20]。由于啟動WUS的表達(dá)不依賴SHOOTMERISTEMLESS(STM)的活性,STM是一類KNOTTED1-LIKE HOMEOBOX(KNOX1)基因,在該基因突變的背景下導(dǎo)致SAM不能完整的形成[21],并且WUS基因的表達(dá)僅出現(xiàn)在SAM的小亞結(jié)構(gòu)中[22],因此STM和WUS似乎在不同的水平上調(diào)節(jié)SAM的發(fā)育。盡管STM主要作用于中心分生組織細(xì)胞使其未分化,但這些細(xì)胞的正常功能正是WUS基因所需要的,也證實了STM作用于WUS的上游[23]。由于SAM幾乎在整個植物的生命周期中都存在著干細(xì)胞群[24],因此莖端分生組織的穩(wěn)態(tài)主要通過控制分生組織中心中緩慢分裂的干細(xì)胞以及其移位到外周細(xì)胞進而經(jīng)歷細(xì)胞分化的平衡[8]。同源結(jié)構(gòu)域轉(zhuǎn)錄因子WUS從組織中心到中心區(qū)的運動需要維持干細(xì)胞穩(wěn)態(tài)[25],WUS和CLAVATA能夠以負(fù)反饋回路的組成部分來控制這種平衡[26],在這種反饋機制中,最關(guān)鍵的是維持恒定數(shù)量的干細(xì)胞,WUS轉(zhuǎn)錄限制OC細(xì)胞自身的水平主要通過在CZ的相鄰細(xì)胞中激活負(fù)調(diào)節(jié)物CLAVATA3(CLV3),CLV3編碼在細(xì)胞外空間與CLAVATA1(CLV1)/CLV2結(jié)合起作用的小肽,能夠通過阻止圍繞CZ外周區(qū)細(xì)胞分化為CZ細(xì)胞限制整體SAM的大小,CLV1指的是在RM中一種受體激酶,其富含亮氨酸[27-29],具體的過程是指在OC的細(xì)胞中合成的WUS蛋白遷移至CZ中,主要通過綁定至CLV3啟動子元件的方式能直接控制其轉(zhuǎn)錄激活[18],是WUS蛋白質(zhì)被轉(zhuǎn)運而非在其mRNA中被檢測到,以發(fā)揮其功能。與前人做過的研究類似,在玉米的SAM中能檢測KNOTTED1(KN1)mRNA,但在SAM的外周細(xì)胞和葉基上以及L1層無法積累KN1mRNA,而KN1蛋白存在于L1 中[30-31],顯示了在mRNA和蛋白質(zhì)表達(dá)結(jié)構(gòu)域之間存在明顯差異。而WUS 的RNA在CZ下方的L3層細(xì)胞形成的RM/OC中的幾個細(xì)胞被發(fā)現(xiàn)[18,22]。有關(guān)研究提出一種模型能夠理解WUS-CLV3反饋機制的重要性,其主要包括WUS蛋白直接激活CLV3的轉(zhuǎn)錄和從CZ中發(fā)出的CLV3信號負(fù)反饋WUS來維持干細(xì)胞的數(shù)量[18]。
同時過表達(dá)WUS和STM能夠形成異位芽,而其中的單獨基因過表達(dá)不能產(chǎn)生上述效果[32-33]。由此可見,在胚胎器官發(fā)生過程中WUS和STM的組合是至關(guān)重要的。又因為PINFORMED(PIN)開始啟動之后,WUS和STM表達(dá)的時刻可能標(biāo)志著器官和莖的發(fā)生。STM并不像WUS僅在小區(qū)域中表達(dá),其分布于整個分生組織。STM在SAM的作用與WUS和CLV相互獨立又互補,其抑制干細(xì)胞分化來保持不確定的細(xì)胞命運[34],而WUS在一定區(qū)域擴增干細(xì)胞[32,35],有利于平衡干細(xì)胞生長和器官原基的生長。
有些單獨基因如YUC的過表達(dá)不能夠誘導(dǎo)體細(xì)胞胚的發(fā)生[36],然而植物激素ABA/GA水平的高低對體細(xì)胞胚發(fā)生的能力有著至關(guān)重要的影響,與ABA信號轉(zhuǎn)導(dǎo)機制相關(guān)的重要基因的突變抑制體細(xì)胞胚的發(fā)生[37],而抑制GA合成途徑的相關(guān)基因能夠促進形成體細(xì)胞胚胎[38],由此可知ABA能夠促進體細(xì)胞胚的發(fā)生,GA可能對其具有拮抗作用,這可以在ABA/GA對胡蘿卜體細(xì)胞胚影響的研究中[39-40]得到進一步的證明。LEC2誘導(dǎo)體細(xì)胞胚發(fā)生常與GA的合成抑制相關(guān),GA2ox6能夠編碼使GA生物活性失活的一種酶,常被AGAMOUSLIKE15(AGL15)激活,它是一種MADS盒轉(zhuǎn)錄因子,過表達(dá)該基因能夠增加體細(xì)胞胚發(fā)生的能力,而LEC2直接控制AGL15的活性[38]。然而GA生物合成酶基因的突變能夠減少體細(xì)胞胚的數(shù)量,可見在體細(xì)胞胚不同階段對GA的需求不同。與其類似,通過LEC2控制的編碼使ABA分解代謝的ABA8’-羥 化 酶(CYP707A1,CYP707A2,CYP707A3)[41]的激活來降低ABA水平進而誘導(dǎo)體細(xì)胞胚胎發(fā)生[42],而在不成熟合子胚的子葉階段,通過LEC1或LEC2來激活FUS3進而引起ABA水平的增加[41]有利于胚的成熟,這暗示著ABA的水平與其發(fā)生胚的潛力具有正調(diào)控的關(guān)系[43],在胚胎形成到胚胎成熟時ABA/GA的比例逐漸升高有利于胚胎發(fā)生及其發(fā)育,到器官發(fā)生時期其比例急劇下降來完成完整的生命周期。
除上述激素之外,過表達(dá)AGL15能夠響應(yīng)植物生長素(AUXIN)增強胚胎發(fā)生能力[41],并且LEC2具有快速增強AUXIN啟動子活性的特性[42],使得由LEC2控制表達(dá)的組織能夠響應(yīng)生長素信號進行體細(xì)胞胚的誘導(dǎo)。又或許是通過LEC2激活I(lǐng)AA30[41],IAA30可以編碼一種生長素信號蛋白,來提高游離生長素的濃度或者刺激組織中細(xì)胞對生長素的反應(yīng),在AUXIN信號轉(zhuǎn)導(dǎo)途徑中啟動體細(xì)胞胚的發(fā)生。
植物激素參與控制胚胎發(fā)生的研究表明,AUXIN和細(xì)胞分裂素(Cytokinin,CK)對植物胚胎SAM的形成和維持具有重要的調(diào)節(jié)作用。除了下調(diào)STM基因的表達(dá)之外,與其他信號與STM共同參與使得SAM外圍區(qū)域的AUXIN達(dá)到闕值的過程,并且能夠調(diào)節(jié)SAM中的外圍區(qū)域向器官發(fā)生的轉(zhuǎn)變[44-46]。前人[47]已經(jīng)探討出分裂和維持未分化的干細(xì)胞與在SAM中心區(qū)域高水平的CK的活性相關(guān)。CK在幼芽組織[48]和芽再生期間[49]誘導(dǎo)植物生長素的生物合成進而促進建立生長素梯度。相反,由于STM基因的表達(dá)能促進CK的生物合成,AUXIN通過抑制STM基因的表達(dá)來控制CK的水平[50-51]。這兩種激素相互抑制達(dá)到體內(nèi)平衡,防止任意一激素過多影響干細(xì)胞的維持發(fā)展及器官發(fā)生畸變。響應(yīng)于IAA的因子如(AUXIN RESPONSE FACTOR 3 / MONOPTEROS)ARF3、MP / ARF5 和 A 型 ARR ARR7 和 ARR15[49,52],對于CK的分布范圍由AUXIN通過異戊烯基轉(zhuǎn)移酶(IPT)來負(fù)反饋調(diào)節(jié);然而,TOPLESS(TPL)[53]由CK誘導(dǎo)的WUS基因激活,通過與IAA12 /BODENLOS(IAA12 / BDL)和 MONOPTEROS /AUXIN RESPONSE FACTOR 5(MP / ARF5)的相互 作用減少AUXIN信號傳導(dǎo)[54-55],在這生長素轉(zhuǎn)導(dǎo)途徑中TPL作為一種轉(zhuǎn)錄共抑制子來調(diào)節(jié)植物生長發(fā)育。除此之外,KONX 轉(zhuǎn)錄因子與CK和赤霉素GA交聯(lián)并對器官的發(fā)生起到平衡的作用[56],能夠刺激CK的積累維持干細(xì)胞的分裂,以及抑制SAM中的CK來阻止干細(xì)胞的分化[47]。CK的積累主要是由于在細(xì)胞分裂素合成中起重要作用的異戊烯基轉(zhuǎn)移酶(IPT)基因被分生組織CZ中的KNOX直接激活,在KNOX發(fā)生突變的表型上CK信號受到嚴(yán)重阻礙[51,57],而WUS直接抑制CK誘導(dǎo)的應(yīng)答調(diào)節(jié)劑 ARABIDOPSIS RESPONSE REGULATOR(ARR)(ARR7,ARR15),其也可通過MP介導(dǎo)的AUXIN信號轉(zhuǎn)導(dǎo)途徑來受到抑制[52],使得CK非常精確地刺激SAM中干細(xì)胞的分裂[58]。對于GA的控制是由KONXI基因直接抑制GA生物合成基因GA20氧化酶和刺激GA2氧化酶的表達(dá),能夠在SAM的頂端抑制GA20的表達(dá)并且促進葉原基基部的GA20的表達(dá)使得GA轉(zhuǎn)化為無活性的GA,僅有限的GA發(fā)揮作用[47,59-60]。由此可見KNOXI轉(zhuǎn)錄因子對于分生組織功能來說是必需的,其可以通過誘導(dǎo)局部的CK合成發(fā)揮作用,作為一種中樞調(diào)節(jié)劑調(diào)節(jié)分生組織中的激素水平[61]。
在參與有關(guān)SAM形成的基因中,如STM和CLV1基因的表達(dá)上調(diào)大約處于發(fā)芽期,而WUS稍早上調(diào),響應(yīng)于細(xì)胞分裂素,其在SAM的中心區(qū)的組織中心表達(dá)[62],繼而轉(zhuǎn)移至覆蓋的干細(xì)胞,通過WUS和CLAVATA的反饋機制維持組織和器官發(fā)展,在這其中WUS能夠直接誘導(dǎo)CLAVATA3(CLV3)表達(dá),而CLV編碼一種信號肽能夠限制WUS到組織中心細(xì)胞表達(dá),其誘導(dǎo)上調(diào)導(dǎo)致下調(diào)WUS和限制CZ結(jié)構(gòu)域的發(fā)展[63]。clv3突變體表現(xiàn)出過高的WUS表達(dá)量造成臃腫的SAM以及過表達(dá)CLV3導(dǎo)致SAM終止的現(xiàn)象[22,64-65]表明CLV3能夠抑制WUS的表達(dá),并且能形成負(fù)反饋環(huán)[18]。
對于調(diào)節(jié)SAM的信號網(wǎng)絡(luò)是由許多調(diào)節(jié)子和信號轉(zhuǎn)導(dǎo)途徑組成,獨立于WUS基因表達(dá)的KNOX途徑與激素具有交互作用,能夠維持高濃度的CK和低濃度的GA的環(huán)境來確保正確的SAM功能,而響應(yīng)于CK的WUS-CLV途徑對于維護SAM是必要的的中心反饋回路,能夠持續(xù)產(chǎn)生干細(xì)胞進而促進側(cè)向器官生長,這兩種途徑對于維持SAM中的平衡器官原基的生長和干細(xì)胞持續(xù)產(chǎn)生是不可缺少的。對于其信號轉(zhuǎn)導(dǎo)途徑可歸納為圖2。
圖2 SAM中相關(guān)基因與激素之間的相互調(diào)控
綜述以上植物胚胎發(fā)生前后期的機制,揭示了LEC類基因與植物激素在創(chuàng)造體細(xì)胞胚發(fā)生的環(huán)境中的重要作用,以及SAM的關(guān)鍵基因與植物激素相互作用共同維持和調(diào)節(jié)胚胎后期的發(fā)展,但是胚胎發(fā)生前期的一些基因及其功能還未得到驗證,其與植物激素的相互調(diào)節(jié)有待進一步的研究,啟動胚胎發(fā)生前期WUS和STM基因是否與LEC類基因交集還需考證。盡管在胚胎后期的研究較為詳細(xì),但是激素與基因之間相互作用而發(fā)揮功能的方式還需要進一步解析。
[1]Suárez MF, Suárez MF, Botanik HC. Plant embryogenesis[J].Methods in Molecular Biology, 2008, 427(1997):535-576.
[2]Arnold SV, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture,2002, 69(3):233-249.
[3]Elhiti M, Stasolla C. Somatic embryogenesis:The molecular network regulating embryo formation[M]. New Delhi:Springer India, 2016.
[4]Hübers M, Kerp H, Schneider JW, et al. Dispersed plant mesofossils from the middle Mississippian of eastern Germany:Bryophytes,pteridophytes and gymnosperms[J]. Review of Palaeobotany &Palynology, 2013, 193(3):38-56.
[5]Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex[J]. Semin Cell Dev Biol, 2009, 20(9):1083-1088.
[6]Bowman JL, Eshed Y. Formation and maintenance of the shoot apical meristem[J]. Trends in Plant Science, 2000, 5(3):110-115.
[7]蔣文婷, 曾會明. 落地生根胎生苗發(fā)育及其相關(guān)基因研究進展[J]. 生物技術(shù)通報, 2016(7):13-20.
[8]Haecker A, Laux T. Cell-cell signaling in the shoot meristem[J].Current Opinion in Plant Biology, 2001, 4(5):441.
[9]Kwong RW, Bui AQ, Lee H, et al. Leafy cotyledon1-like defines a class of regulators essential for embryo development[J]. Plant Cell, 2003, 15(1):5-18.
[10]Zhu SP, Wang J, Ye JL, et al. Isolation and characterization of leafy cotyledon 1-like gene related to embryogenic competence in citrus sinensis[J]. Plant Cell Tissue Organ Cult, 2014, 119(1):1-13.
[11] Wójcikowska B, Jaskó?a K, G?siorek P, et al. Leafy cotyledon2(lec2)promotes embryogenic induction in somatic tissues of Arabidopsis, via yucca-mediated auxin biosynthesis[J]. Planta,2013, 238(3):425-440.
[12]Meinke DW, Franzmann LH, Nickle TC, et al. Leafy cotyledon mutants of Arabidopsis[J]. Plant Cell, 1994, 6(8):1049-1064.
[13] Stone SL, Kwong LW, Yee KM, et al. Leafy cotyledon2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci USA, 2001, 98(20):11806-11811.
[14]Ledwoń A, Gaj MD. Leafy cotyledon2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somaticcells[J]. Plant Cell Reports, 2009, 28(11):1677-1688.
[15]Stone SL, Braybrook SA, Paula SL, et al. Arabidopsis leafy cotyledon2 induces maturation traits and auxin activity:Implications for somatic embryogenesis[J]. Proceedings of the National Academy of Sciences, 2008, 105(8):3151-3156.
[16]Yadav RK, Reddy GV. WUSCHEL protein movement and stem cell homeostasis[J]. Plant Signal Behav, 2012, 7(5):592-594.
[17]Busch W, Miotk A, Ariel FD, et al. Transcriptional control of a plant stem cell niche[J]. Dev Cell, 2010, 18(5):841-853.
[18]Yadav RK, Perales M, Gruel J, et al. Wuschel protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J].Genes & Development, 2011, 25(19):2025-2030.
[19]Cao X, He Z, Guo L, et al. Epigenetic mechanisms are critical for the regulation of wuschel expression in floral meristems[J].Plant Physiology, 2015, 168(4):1189-1196.
[20]Han P, Li Q, Zhu YX. Mutation of Arabidopsis bard1 causes meristem defects by failing to confine wuschel expression to the organizing center[J]. Plant Cell, 2008, 20(6):1482-1493.
[21]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene,knotted1[J]. Development, 2000, 127(14):3161.
[22]Haecker A. Role of wuschel in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1999, 95(6):805-815.
[23]Endrizzi K, Moussian B, Haecker A, et al. The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes wuschel and zwille[J].Plant Journal, 1996, 10(6):967-979.
[24]Weigel D, Jürgens G. Stem cells that make stems[J]. Nature,2002, 415(6873):751-754.
[25]Gabor D, Anna M, Takuya S. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proc Natil Acad Sci, 2014, 111(40):14619-14624.
[26]Schoof H, Lenhard M, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the clavata and wuschel genes[J]. Cell, 2000, 100(6):635-644.
[27] Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate decisions by clavata3 in Arabidopsis shoot meristems[J]. Science,1999, 283(5409):1911-1914.
[28] Kondo T, Sawa S, Kinoshita A, et al. A plant peptide encoded by clv3 identified by in situ maldi-tof ms analysis[J]. Science,2006, 313(5788):845-848.
[29] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain[J]. Science, 2008, 319(5861):294.
[30]Lucas WJ, Bouchépillon S, Jackson DP, et al. Selective trafficking of knotted1 homeodomain protein and its mrna through plasmodesmata[J]. Science, 1995, 270(270):1980-1983.
[31]Jackson D. Double labeling of knotted1 mrna and protein reveals multiple potential sites of protein trafficking in the shoot apex[J]. Plant Physiology, 2002, 129(4):1423-1429.
[32]Lenhard M, Jürgens G, Laux T. The wuschel and shootmeristemless genes fulfil complementary roles in Arabidopsis shoot meristem regulation[J]. Development, 2002, 129(13):3195-3206.
[33]Gallois JL, Woodward C, Reddy GV, et al. Combined shoot meristemless and wuschel trigger ectopic organogenesis in Arabidopsis[J]. Development, 2002, 129(13):3207-3217.
[34]Scofield S, Murray JA. Knox gene function in plant stem cell niches[J]. Plant Molecular Biology, 2006, 60(6):929-946.
[35]Williams L, Fletcher JC. Stem cell regulation in the Arabidopsis shoot apical meristem[J]. Curr Opin Plant Biol, 2005, 8(6):582-586.
[36]Zhao Y, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502):306-309.
[37]Gaj MD, Trojanowska A, Ujczak A, et al. Hormone-response mutants of Arabidopsis thaliana(L.)heynh impaired in somatic embryogenesis[J]. Plant Growth Regulation, 2006, 49(2):183-197.
[38]Wang H, Caruso LV, Downie AB, et al. The embryo mads domain protein agamous-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism[J].Plant Cell, 2004, 16(5):1206-1219.
[39]Kikuchi A, Sanuki N, Higashi K, et al. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells[J]. Planta, 2006, 223(4):637-645.
[40]Tokuji Y, Kuriyama K. Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot(Daucus carota)[J]. J Plant Physiol, 2003, 160(2):133-141.
[41]Braybrook SA, Stone SL, Park S, et al. Genes directly regulatedby leafy cotyledon2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci U S A, 2006, 103(9):3468-3473.
[42]Wójcikowska B, Gaj MD. Leafy cotyledon2 -mediated control of the endogenous hormone content:Implications for the induction of somatic embryogenesis in Arabidopsis[J]. Plant Cell, Tissue and Organ Culture, 2015, 121(1):255-258.
[43] Braybrook SA, Harada JJ. LECs go crazy in embryo development[J]. Trends Plant Sci, 2008, 13(12):624-630.
[44]Long J, Barton MK. Initiation of axillary and floral meristems in Arabidopsis[J]. Dev Biol, 2000, 218(2):341-353.
[45]Reinhardt D, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs[J]. Plant Cell, 2000, 12(4):507-518.
[46]Benkova E, Michniewicz M, Sauer M, et al. Local, effluxdependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5):591-602.
[47]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology, 2009, 69(4):397-408.
[48]Jones B, Gunner?s SA, Petersson SV, et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction[J]. Plant Cell, 2010, 22(9):2956-2969.
[49]Cheng ZJ, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by auxin response factor3[J]. Plant Physiology, 2013, 161(1):240-251.
[50]Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Current Biology Cb, 2005, 15(21):1899-1911.
[51] Yanai O, Shani E, Dolezal K, et al. Arabidopsis knoxi proteins activate cytokinin biosynthesis[J]. Curr Biol, 2005, 17 :1566-1571.
[52]Zhong Z, Andersen SU, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092.
[53]Kieffer M, Stern Y, Cook H, et al. Analysis of the transcription factor wuschel and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance[J].Plant Cell, 2006, 18(3):560-573.
[54]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386.
[55]Long JA, Ohno C, Smith ZR, et al. Topless regulates apical embryonic fate in Arabidopsis[J]. Science, 2006, 312(5779):1520.
[56]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology, 2009, 336(1):1-9.
[57]Jasinski S, Piazza P, Craft J, et al. Knox action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Current Biology Cb, 2005, 15(17):1560-1565.
[58]Leibfried A, To JP, Busch W, et al. Wuschel controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071):1172-1175.
[59]Sakamoto T, Kamiya N, Ueguchi-Tanaka M, et al. Knox homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem[J]. Genes & Development, 2001, 15(5):581-590.
[60]Kyozuka J. Control of shoot and root meristem function by cytokinin[J]. Curr Opin Plant Biol, 2007, 10(5):442-446.
[61] Yanai O, Shani E, Dolezal K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis[J]. Curr Biol, 2005, 17 :1566-1571.
[62]Gordon SP, Chickarmane VS, Ohno C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences, 2009, 106(38):16529-16534.
[63]Müller R, Borghi L, Kwiatkowska D, et al. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to clv3 signaling[J]. Plant Cell, 2006, 18(5):1188-1198.
[64]Brand U, Fletcher JC, Hobe M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by clv3 activity[J].Science, 2000, 289(5479):617-619.
[65]Miwa H, Kinoshita A, Fukuda H, et al. Plant meristems:Clavata3/esr-related signaling in the shoot apical meristem and the root apical meristem[J]. J Plant Res, 2009, 122(1):31-39.
Roles of Key Genes and Relevant Plant Hormones in the Early and Late Stages of Plant Embryogenesis
ZHAO Fang-dong LI Lin-kun HE Xu-sheng ZENG Hui-ming
(College of Forestry,Beijing Forestry University,Beijing 100083)
Both LEAFY COTYLEDON 1-LIKE and LEAFY COTYLEDON1 are AHAP3 subunit of the LEAFY COTYLEDON1 type,but LEAFY COTYLEDON 1-LIKE is capable of converting the cells of vegetable stage into the cells of embryo periods in the early stages of somatic embryogenesis,differing from the LEAFY COTYLEDON1 that plays an important role in the early stages of embryonic development. LEAFY COTYLEDON2,which has the same specific B3 domain as the LEAFY COTYLEDON gene,can participate in creating the environment of embryogenesis in somatic tissue by IPA-YUC auxin synthesis pathway. Besides,LEAFY COTYLEDON2 promotes the occurrence and development of embryos by regulating the ratio of ABA/GA. The expression of WUSCHE and SHOOTMERISTEMLESS is independent but coordinated to maintain the function of shoot apical meristem(SAM). The KNOX pathway that is independent from the WUSCHE expression but interacts with plant hormone can maintain the environment of high-concentration CK and low-concentration GA for embryonic SAM,which is beneficial to the pathway of WUSCHE -CLAVATA responding to CK and continuously produce stem cells. In summary,it is feasible to improve the understanding of the molecular regulation network of embryogenesis,and to lay the molecular basis for further studying embryogenesis.
LEAFY COTYLEDON-like gene;somatic embryos;WUSCHE;SAM;plant hormone
2017-06-14
國家“863計劃”項目(2013AA102607)
趙方東,男,碩士研究生,研究方向:草地植物遺傳育種;E-mail:fangdongzhao2012@163.com
曾會明,男,博士,副教授,研究方向:草地植物遺傳育種;E-mail:sciinfo@bjfu.edu.cn
10.13560/j.cnki.biotech.bull.1985.2017-0502
(責(zé)任編輯 狄艷紅)