• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      MicroRNA在植物抵御鹽脅迫過程中的作用

      2018-01-08 08:58:15劉曉威楊秀艷劉正祥武海雯張華新朱建峰
      生物技術(shù)通報(bào) 2017年12期
      關(guān)鍵詞:耐鹽活性氧擬南芥

      劉曉威 楊秀艷 劉正祥 武海雯 張華新 朱建峰

      (國家林業(yè)局鹽堿地研究中心,北京 100091)

      MicroRNA在植物抵御鹽脅迫過程中的作用

      劉曉威 楊秀艷 劉正祥 武海雯 張華新 朱建峰

      (國家林業(yè)局鹽堿地研究中心,北京 100091)

      鹽脅迫是植物生長發(fā)育過程中的重要限制因子,可影響植物器官發(fā)育、形態(tài)建成、信號(hào)轉(zhuǎn)導(dǎo)等各個(gè)環(huán)節(jié),嚴(yán)重時(shí)會(huì)導(dǎo)致植物死亡。MicroRNA(miRNA)是一類長約19-25 nt的非編碼單鏈RNA分子,越來越多的研究發(fā)現(xiàn),在植物抵御鹽脅迫過程中,miRNA可通過參與調(diào)控植物種子萌發(fā)、器官發(fā)育、形態(tài)建成、活性氧清除等過程發(fā)揮重要作用。對(duì)在植物抵御鹽脅迫過程中發(fā)生響應(yīng)的miRNA進(jìn)行綜述,旨在為植物耐鹽機(jī)制研究和植物耐鹽分子育種提供參考。

      miRNA;鹽脅迫;調(diào)控機(jī)制;植物

      據(jù)不完全統(tǒng)計(jì),全世界鹽堿地面積約10億hm2,中國鹽堿地總面積約1億hm2[1]。鹽脅迫已成為植物(作物)生長發(fā)育的一個(gè)重要限制因子,可通過影響植物生長發(fā)育的各類進(jìn)程對(duì)植物造成危害,嚴(yán)重時(shí)會(huì)導(dǎo)致植物死亡[2]。鹽脅迫條件下,植物種子細(xì)胞內(nèi)水勢(shì)降低,種子生理性吸水困難,導(dǎo)致種子萌發(fā)率降低[3]。鹽脅迫下,類囊體膜結(jié)構(gòu)會(huì)發(fā)生變化,碳同化減少,同時(shí)由于植株生理性吸水困難,礦物質(zhì)積累受阻,導(dǎo)致葉綠素合成降低,光合作用效率下降[4]。此外,鹽脅迫下,植物體內(nèi)的活性氧代謝紊亂,導(dǎo)致蛋白質(zhì)聚集失活,影響蛋白質(zhì)合成;同時(shí),植物為了抵御鹽脅迫會(huì)合成各類有機(jī)物質(zhì)造成耗能增加,最終導(dǎo)致植物生長緩慢[5]。鹽脅迫給農(nóng)林業(yè)生產(chǎn)帶來了極大危害,嚴(yán)重限制了鹽堿地區(qū)的生態(tài)改善和經(jīng)濟(jì)發(fā)展,因此,研究人員在闡明植物耐鹽機(jī)制、提高植物耐鹽性等方面開展了大量研究工作。研究發(fā)現(xiàn),植物自身會(huì)啟動(dòng)相應(yīng)的耐鹽機(jī)制來抵御鹽脅迫。通常情況下植物的耐鹽機(jī)制包括:滲透物質(zhì)積累、離子區(qū)域化、清除活性氧等(表1)。

      1993年,Lee和Sunkar等[15-16]從線蟲體內(nèi)發(fā)現(xiàn)了第一個(gè)MicroRNA(miRNA)基因lin-4,隨后,越來越多的miRNA在水稻、擬南芥等植物中被發(fā)現(xiàn)。miRNA是一類長度為19-25 nt 的非編碼RNA,通過對(duì)靶基因(mRNA)的降解或抑制其翻譯,在轉(zhuǎn)錄后水平對(duì)基因的表達(dá)進(jìn)行調(diào)控,在植物生長發(fā)育和環(huán)境脅迫響應(yīng)等方面發(fā)揮著重要作用[17-19]。miRNA的發(fā)現(xiàn)為研究人員理解植物耐鹽機(jī)理提供了新角度。目前,miRNA已經(jīng)成為了分子生物學(xué)研究的熱點(diǎn)領(lǐng)域。本文將在植物響應(yīng)鹽脅迫過程中發(fā)揮作用的miRNA進(jìn)行整理綜述,以期為闡明植物耐鹽機(jī)制和耐鹽植物分子育種提供參考。

      表1 植物耐鹽機(jī)制

      1 植物miRNA的合成、作用機(jī)制及功能

      1.1 植物miRNA的合成

      植物miRNA的合成一般包括轉(zhuǎn)錄、加工、沉默復(fù)合體的裝配。植物內(nèi)源miRNA基因(MIR)通常位于基因間隔區(qū),少數(shù)可能存在于內(nèi)含子中。轉(zhuǎn)錄過程是由RNA聚合酶II(Pol-II)作用的。Pol-II作用于MIR產(chǎn)生具有莖環(huán)結(jié)構(gòu)(或稱發(fā)卡結(jié)構(gòu))的初級(jí)轉(zhuǎn)錄產(chǎn)物Pri-miRNA[20]。Pri-miRNA需進(jìn)行加工為成熟的RNA后才能發(fā)揮作用,Pri-miRNA的加工一般是由一種叫作DCL1的酶所進(jìn)行的,DCL1是RNaseⅢ家族中Dicer的同源物[21-23],通常作用在位于細(xì)胞核內(nèi)Pri-miRNA發(fā)卡結(jié)構(gòu)中靠近或者遠(yuǎn)離環(huán)端的位點(diǎn),產(chǎn)生大小約為70-300 bp的miRNA前體(Pre-miRNA)。隨后進(jìn)行兩次切割,該過程還需要一些輔助蛋白的參與,通常包括RNA結(jié)合蛋白(HYL1)、C2H2鋅指結(jié)合蛋白SE[24]。兩次切割后會(huì)產(chǎn)生雜合雙鏈miRNAmiRNA*(與miRNA配對(duì)的鏈),miRNA*互補(bǔ)雙鏈在甲基轉(zhuǎn)移酶HEN1的作用下使3'末端甲基化[25-26]。隨后,miRNAmiRNA*在轉(zhuǎn)運(yùn)蛋白exprotin-5(通常需要HASTY的輔助)的作用下被運(yùn)送至細(xì)胞質(zhì)中[27]。細(xì)胞質(zhì)中具有RNA誘導(dǎo)的沉默復(fù)合體(RISC),雙鏈分子與RISC中的AGO蛋白結(jié)合,在RNA解旋酶的作用下,去除miRNA*鏈,另一條也就成為了成熟的單鏈miRNA分子[28](圖1)。成熟的miRNA與其靶mRNA特異性互補(bǔ)結(jié)合,通過降解或抑制靶mRNA翻譯來調(diào)節(jié)基因的表達(dá)[29]。

      1.2 植物miRNA的作用機(jī)制

      植物miRNA與靶mRNA的作用機(jī)制一般有兩種[30],采取何種作用機(jī)制主要取決于miRNA與其靶mRNA的序列互補(bǔ)程度[31]。若miRNA與其靶mRNA的序列互補(bǔ)程度較高,則采取切割模式,降解掉靶mRNA(圖2-A);若miRNA與其靶mRNA的序列互補(bǔ)程度較低,則采取抑制其靶mRNA翻譯的模式(圖2-B)[32]。在切割的過程中,與miRNA配對(duì)的靶mRNA上第10-11位的核苷酸上的開放閱讀框(ORF)通常作為切割位點(diǎn)[33]。而在抑制翻譯的過程中,miRNA的靶mRNA上的3'末端的UTR區(qū)作為主要作用位點(diǎn),通過降解新合成的多肽來抑制翻譯[34]。剪切和抑制過程大多是協(xié)同進(jìn)行。除此之外,miRNA也可能靶向靶DNA,在轉(zhuǎn)錄水平上沉默基因的表達(dá)(圖2-C)[30,35]。詳細(xì)過程可參考圖2。

      1.3 植物miRNA的功能

      植物miRNA可參與調(diào)控植物生長發(fā)育的多個(gè)過程。若參與miRNA合成過程中的DCL1基因功能丟失,將會(huì)導(dǎo)致植物發(fā)育異常,這些異常涉及早期胚胎發(fā)育的停滯、葉形狀的改變、花期的延遲、雌性不育等[36-37]。miRNA可以控制頂端分生組織的發(fā)育,若miR164異常表達(dá),則會(huì)導(dǎo)致根、莖的發(fā)育異常[38]。除此之外,miRNA還可以通過參與信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控過程來調(diào)節(jié)植物的發(fā)育,如miR164通過調(diào)控生長因素響應(yīng)因子(ARF)(包括ARF2、ARF3、ARF4、ARF10、ARF16 和 ARF17),調(diào)控植物的發(fā)育[39]。

      圖1 植物miRNA形成機(jī)制圖[28]

      圖2 植物miRNA作用機(jī)制[30]

      此外,miRNA在植物應(yīng)對(duì)外界脅迫中發(fā)揮著重要的作用[40]。常見的脅迫包括以病蟲害為主的生物脅迫和以溫度、水分、氧化等為主的非生物脅迫。研究發(fā)現(xiàn),在植物抵御生物脅迫過程中,miRNA 能夠通過調(diào)控靶基因等來抵御病菌的入侵。例如,植物可通過誘導(dǎo)產(chǎn)生對(duì)生長素受體基因(TIR1、AFB2和AFB3)進(jìn)行負(fù)調(diào)控的miRNA,抑制生長素信號(hào)轉(zhuǎn)導(dǎo)過程,限制假單胞桿菌(Pseudomonas syringae)生長,從而提高植物對(duì)假單胞菌的抗性[41];植物也可通過低表達(dá)miR398b,降低對(duì)其靶基因CSD1和Nod19的抑制,對(duì)病害感染做出響應(yīng)[42]。在植物抵御非生物脅迫過程中,研究發(fā)現(xiàn)擬南芥在氧化脅迫下miR398的表達(dá)量降低,導(dǎo)致CSD1和CSD2表達(dá)量上調(diào),從而減少氧化脅迫的危害[43];擬南芥在低氮條件下會(huì)使miR167a的表達(dá)量上升,抑制ARF8的表達(dá)[44];在缺磷條件下,擬南芥中的miR399表達(dá)量增加,具有在莖葉中積累磷功能的靶基因pho2和UBC24的表達(dá)受到抑制,擬南芥通過加速磷轉(zhuǎn)運(yùn)子基因的表達(dá)以及通過自身根系結(jié)構(gòu)的改變來增加對(duì)磷的吸收[45-46];通過研究擬南芥中的miR395發(fā)現(xiàn),在低硫脅迫下其表達(dá)量增加,APS1的轉(zhuǎn)錄水平下降,正常硫水平條件下,miR395的表達(dá)量下調(diào),APS1的轉(zhuǎn)錄水平上升??梢姡琺iR395參與了低硫脅迫的響應(yīng)過程[47];干旱是植物生長發(fā)育過程中的常見逆境因子,水稻在干旱條件下誘導(dǎo)miR169的表達(dá),抑制miR168、miR528、miR167的表達(dá),其靶基因MAPK、POD、PLD表達(dá)量提高,啟動(dòng)ABA(脫落酸)誘導(dǎo)的氣孔運(yùn)動(dòng)和氧化防御機(jī)制來抵御干旱脅迫[48]。低溫是限制植物生長和分布的一種常見非生物因素,研究證實(shí)低溫脅迫下,擬南芥或水稻中 miR393、miR397、miR172、miR171、miR169、miR408發(fā)生差異表達(dá)[49-50]。鹽脅迫是植物生長發(fā)育的重要限制因子[2],越來越多的研究表明miRNA在植物抵御鹽脅迫過程中發(fā)揮著重要作用[12,27],響應(yīng)鹽脅迫的miRNA及其作用機(jī)制將在下文詳細(xì)闡述。

      2 miRNA在植物抵御鹽脅迫中的作用機(jī)理

      目前已發(fā)現(xiàn)許多響應(yīng)鹽脅迫的植物miRNA。鹽脅迫會(huì)啟動(dòng)植物miRNA所參與的調(diào)控過程,不同種類的植物miRNA分別作用其靶基因,通過調(diào)控植物的種子萌發(fā)、改變植株根系生長、調(diào)控生長周期、器官形成、離子區(qū)域化、活性氧清除等過程來抵御鹽脅迫的危害(圖3)。

      2.1 響應(yīng)鹽脅迫的植物miRNA與種子萌發(fā)

      圖3 miRNA在植物抵御鹽脅迫過程中發(fā)揮的作用

      在鹽脅迫條件下,miRNA發(fā)生響應(yīng)(表1)。Liu[50]和田鑫等[72]研究發(fā)現(xiàn),在鹽脅迫條件下,擬 南 芥 中 的 miR156、miR159、miR319、miR393、miR417、miR828等表達(dá)量呈現(xiàn)出上升的趨勢(shì)。此外,過表達(dá) miR156的苜蓿種子萌發(fā)率較高[73]。Ding[51]和Xue等[74]發(fā)現(xiàn),鹽脅迫下玉米中miR159的表達(dá)量上調(diào),miR159通過與其靶基因MYB的共同作用,影響ABA信號(hào)調(diào)節(jié)過程,進(jìn)而提高種子萌發(fā)率。miR393過表達(dá)的水稻和擬南芥植株耐鹽堿能力增強(qiáng),miR393的表達(dá)受CK(細(xì)胞分裂素)調(diào)節(jié),miR393通過其靶基因TIR1參與耐鹽相關(guān)基因P5CDH和SRO5的表達(dá)來調(diào)控種子萌發(fā)過程中的激素含量,從而提高鹽堿條件下種子萌發(fā)能力[75]。Jung等[76]在轉(zhuǎn)基因擬南芥中發(fā)現(xiàn),鹽脅迫條件下,miR417過表達(dá)的擬南芥種子萌發(fā)率較低,并且萌發(fā)以后的幼苗生長受到抑制。除此之外,Yang等[53]在研究鹽生植物鹽穗木響應(yīng)鹽脅迫的過程中發(fā)現(xiàn),miR159、miR894、miR393、miR167、miR5077、miR2619、miR902、miR2867、miR5526均發(fā)生響應(yīng),其中miR5526上調(diào)的同時(shí),啟動(dòng)其靶基因PEX14參與的過氧化物酶體調(diào)控過程,參與種子萌發(fā)脂肪酸的β-氧化,進(jìn)入三羧酸循環(huán),調(diào)控鹽脅迫下鹽穗木

      的種子萌發(fā)過程。

      表2 響應(yīng)鹽脅迫的植物MicroRNAs[56]

      2.2 響應(yīng)鹽脅迫的植物miRNA與形態(tài)構(gòu)建

      Guo等[77]和 Raman等[78]發(fā)現(xiàn)鹽脅迫條件下,miR164與NAC共同作用形成更多的側(cè)根以維持鹽脅迫下植株正常的水分和營養(yǎng)需求;Ma等[79]發(fā)現(xiàn),在鹽脅迫下,擬南芥中的miR171作用于靶基因GRAS,通過改變植株根系情況來抵御鹽脅迫;鹽脅迫條件下,miR399發(fā)生響應(yīng),PHO2是miR399的靶基因,植株在PHO2的作用下延長主根,通過延長主根、形成較多的側(cè)根或分生組織以維持植株正常的水分需求[80]。miR165和miR166主要參與調(diào)控分生組織的形成[81],在鹽脅迫下,擬南芥中的miR165、miR166、miR530的表達(dá)量呈上升趨勢(shì),其轉(zhuǎn)錄因子HD-ZIP介導(dǎo)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑具有調(diào)控植物木質(zhì)部的形態(tài)建成的作用[82]。在擬南芥中,miR396通過其靶基因GRF來調(diào)控?cái)M南芥葉片的寬窄,進(jìn)而提高其抗鹽堿和抗干旱能力[83]。研究發(fā)現(xiàn),干旱和鹽脅迫可以誘導(dǎo)水稻中miR169 的表達(dá),NF-YA轉(zhuǎn)錄因子為miR169的靶基因,過表達(dá)miR169使得擬南芥抵御干旱和高鹽脅迫的能力增強(qiáng);在玉米中,miR169c的靶基因可以控制氣孔開閉,從而減少水分流失,以抵抗干旱和鹽脅迫[84-85]。Jung等[86]發(fā)現(xiàn),在鹽脅迫下,擬南芥中的miR172表達(dá)量上升,植株耐鹽能力增強(qiáng),miR172通過調(diào)節(jié)AP2類轉(zhuǎn)錄因子控制植物開花時(shí)間,影響花器官發(fā)育和花形態(tài)建成。

      2.3 響應(yīng)鹽脅迫的植物miRNA與活性氧清除

      在水稻、擬南芥和苜蓿中發(fā)現(xiàn),miR398作用于CSD基因[56,66]。鹽脅迫條件下,miR398通過靶向于細(xì)胞質(zhì)的CSD1和質(zhì)體的CSD2,清除活性氧,從而保護(hù)細(xì)胞膜結(jié)構(gòu)以抵抗鹽脅迫[43]。除此之外,Higashi等[69]在小立碗蘚中發(fā)現(xiàn)miR1073同樣作用于Cu-Zn-CSD,清除鹽脅迫條件下小立碗蘚中活性氧的累積,保護(hù)細(xì)胞膜結(jié)構(gòu),提高植株耐鹽能力。研究人員在豇豆中發(fā)現(xiàn)了與鹽脅迫相關(guān)的miR408,目前確定其靶基因?yàn)閜eptide chain release factor,推測與活性氧的清除有關(guān),但作用機(jī)制仍待進(jìn)一步研究[68]。

      2.4 其他

      除了以上幾種調(diào)控類型外,植物在抵御鹽脅迫過程中發(fā)生響應(yīng)的miRNA還有其他的調(diào)控過程。miR167作用于ARF,參與信號(hào)調(diào)節(jié)過程,以應(yīng)對(duì)鹽脅迫[59],miR395與植物耐鹽有關(guān),目前僅確定其靶基因?yàn)锳PS1,關(guān)于miR395的研究主要集中在植物在硫鹽脅迫下的調(diào)控過程,發(fā)現(xiàn)植株受低硫脅迫時(shí),miR395的表達(dá)量上調(diào),導(dǎo)致APS1的轉(zhuǎn)錄水平下降,若正常硫水平條件下,miR395 表達(dá)量較低,通過調(diào)控APS1的轉(zhuǎn)錄水平來抵御硫鹽脅迫[47]。miR162通過螯合金屬離子于液泡中抵御硫鹽脅迫,但在鹽脅迫條件下,miR162也發(fā)生響應(yīng),其作用機(jī)制仍待進(jìn)一步研究[56]。另外,在鹽生植物鹽穗木響應(yīng)鹽脅迫過程中,miR159與其靶基因ATM參與鹽脅迫下的細(xì)胞凋亡調(diào)控;miR894與其靶基因UBE2H參與脅迫下蛋白質(zhì)水解,miR2867在靶基因RFC的作用下參與脅迫下的DNA修復(fù)過程,miR5077、miR2619在其靶基因PLC、PPP3C的作用下分別參與Ca2+信號(hào)通路和MAPK的信號(hào)通路調(diào)節(jié)過程[53]。除此之外,miR776、miR815、miR1218、miR1436、miR1445、miR1446、miR1447、miR1450、miR1771等這些新發(fā)現(xiàn)響應(yīng)鹽脅迫的植物miRNA的作用機(jī)制仍待進(jìn)一步研究[66,70]。

      3 展望

      與鹽脅迫下種子萌發(fā)相關(guān)的miRNA可通過影響種子滲透勢(shì)、調(diào)節(jié)激素含量、誘導(dǎo)各類信號(hào)過程等來提高種子萌發(fā)率。種子是植物生活史中抗性最強(qiáng)的階段,但種子萌發(fā)是植物生長發(fā)育過程中最為脆弱的階段[6]。因此,種子萌發(fā)過程中的miRNA作用機(jī)制應(yīng)深入研究,同時(shí)植物形態(tài)發(fā)育、器官形成等過程也應(yīng)被重視。

      目前關(guān)于植物耐鹽miRNA的研究大多集中在擬南芥和水稻等模式植物上,但在鹽脅迫條件下,同種miRNA會(huì)因物種不同其表達(dá)量有差異,發(fā)揮的作用也有所不同,如Jia等[66]發(fā)現(xiàn),在鹽脅迫條件下,歐洲山楊中miR398的含量呈上升下降再上升的變化趨勢(shì),而擬南芥中miR398的含量呈持續(xù)下降趨勢(shì)。開展鹽脅迫條件下更多植物物種miRNA表達(dá)譜研究和綜合分析,探索抵御鹽脅迫過程中植物miRNA的保守性和物種特異性,對(duì)于全面了解miRNA在植物抵御鹽脅迫過程中的作用機(jī)制,篩選植物耐鹽相關(guān)miRNA以及開展植物耐鹽分子育種尤為重要。

      在鹽生植物鹽穗木、堿蓬等植物中新發(fā)現(xiàn)的響應(yīng)鹽脅迫的miRNA的作用方式更為多樣,因此有必要進(jìn)行深入研究,以便于篩選鑒定新的耐鹽關(guān)鍵基因,揭示鹽生植物的耐鹽分子機(jī)制,為耐鹽堿植物育種提供新的基因資源,奠定更為完善的理論基礎(chǔ)。

      新發(fā)現(xiàn)的與耐鹽相關(guān)的miR1445、miR1446、miR1447、miR1450和 miR1771[70]等是如何發(fā)揮耐鹽機(jī)制的,這些miRNA都參與哪些耐鹽性調(diào)節(jié)過程,作用于哪些基因,受到哪些因素影響等,這些都是有待于繼續(xù)進(jìn)行系統(tǒng)深入研究的問題。只有全面深入的了解miRNA在植株抵御鹽脅迫過程中發(fā)揮的作用,才有可能更加高效的利用植物miRNA提高植物耐鹽性,從而降低鹽脅迫對(duì)農(nóng)林業(yè)生產(chǎn)造成的危害。

      [1] 王遵親, 祝壽泉, 俞仁培, 等. 中國鹽漬土[M]. 北京:科學(xué)出版社, 1993.

      [2]Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Res, 2013, 115(1):1-22.

      [3]Zhu JK. Abiotic stress signaling and response in plants[J]. Cell,2016, 167(2):313-324.

      [4]張娟, 姜闖道, 平吉成. 鹽脅迫對(duì)植物光合作用影響的研究進(jìn)展[J]. 農(nóng)業(yè)科學(xué)研究, 2008, 29(3):74-80.

      [5]韓志平, 張海霞, 周鳳. 鹽脅迫對(duì)植物的影響及植物對(duì)鹽脅迫的適應(yīng)性[J]. 山西大同大學(xué)學(xué)報(bào):自然科學(xué)版, 2015, 31(3):59-64.

      [6]Moez H, Chantal E, Mariama N, et al. Insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Front Plant Sci, 2016, 29(7):1787-1789.

      [7]Niramaya S, Muchate Ganesh C, Nikalje Nilima S, et al. Plant salt stress:adaptive responses, tolerance mechanism and bioengineering for salt tolerance[J]. Botanical Review, 2016, 82(4):371-406.

      [8] Dietz KJ, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. Exp Bot,2001, 52(363):1969-1980.

      [9]張楠楠, 徐香玲. 植物抗鹽機(jī)理的研究[J]. 哈爾濱師范大學(xué):自然科學(xué)學(xué)報(bào), 2005, 21:65-68.

      [10]Ulrich D, Aaron B, Julian I. Plant salt-tolerance mechanisms[J].Science Direct, 2014, 19(6):371-379.

      [11] Jia HS, Lu CM. Effects of abscisic acid on photoinhibition in maize plants[J]. Plant Sci, 2003, 165(6):1403-1410.

      [12] 代鄒,孫永健,徐徽, 等. 多胺對(duì)鹽脅迫下植物的作用[J].農(nóng)業(yè)科學(xué)與技術(shù), 2014, 3:344-351.

      [13] Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsi[J]. Plant Physion, 2000, 124:941-948.

      [14] 景昕, 張旸, 李玉花. 植物耐鹽研究進(jìn)展[J]. 生物技術(shù)通訊,2010, 21(2):290-294.

      [15]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.

      [16]Sunkar R, Girke T, Zhu JK. Cloning and characterization of microRNAs from rice[J]. Plant Cell, 2005, 17(5):1397-1411.

      [17]Ambros V. microRNAs:tiny regulators with great potential[J].Cell, 2001, 107:823-826.

      [18]Dolata J, Bajczyk M, Bielewicz D, et al. Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels[J]. Plant Physiol, 2016, 172(1):297-312.

      [19] Zhang B, Pan X, Cobb GP, et al. Plant microRNA :a small regulatory molecule with big impact[J]. Dev Biol, 2006, 289 :3-16.

      [20] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. The EMBO Journal, 2004, 23(20):4051-4060.

      [21]Wu G. Plant MicroRNAs and development[J]. J Genet Genomics, 2013, 40:217-230.

      [22]Millar AA, Waterhouse PM. Plant and animal microRNAs:similarities and differences[J]. Funct Integr Genomics, 2005, 5(3):129-135.

      [23]Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow like miRNA targets directed by a class of Arabidopsis miRNA[J].Science, 2002, 297(5589):2053-2056.

      [24]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.

      [25]Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4):513-520.

      [26]Fujioka Y, Utsumi M, Ohba Y, et al. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis[J].Plant and Cell Physiol, 2007, 48(9):1243-1253.

      [27]Alejandra C, Jose LR. Post transcriptional gene regulation of salinity and drought responses by plant microRNAs[J]. Plant Cell & Environment, 2009, 339(4):381-389.

      [28] Olivier V. Origin, biogenesis, and activity of Plant MicroRNAs[J].Cell, 2009, 136(4):669-687.

      [29]Kong W, Zhao JJ, He LL, et al. Strategies for profiling microRNA expression[J]. Cell Physiol, 2009, 218(1):22-25.

      [30]Bartel DP. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.

      [31]Tang GL, Reinhart BJ, Zamore PD. A biochemical framework for RNA silencing in plants[J]. Genes Dev, 2003, 17 :49-63.

      [32] Bartel B, Bartel DP. MicroRNAs:at the root of plant development[J]. Plant Physiol, 2003, 132(2):709-717.

      [33]Llave C, Xie ZX, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science,2002, 297(5589):2053-2056.

      [34]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8):2001-2019.

      [35] Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662.

      [36] Liu B, Cao S. Loss of function OsDCL1 affects microRNAs accumulation and causes developmental defects in rice[J]. Plant Physiol, 2005, 139:296-305.

      [37]Park W, Chen X. Carpel F. CARPEL FACTORY, a Dicer homolog,and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Bio, 2002, 12:84-95.

      [38]Lu X, Dun H, Lian C, et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiol Biochem, 2017, 115:418-438.

      [39]Laufs P, eaucelle A, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristem[J]. Development, 2004, 1:4311-4322.

      [40] Zhu JK. Plant salt tolerance[J]. Trends in Plant Sci, 2001, 6(2):66-71.

      [41]Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J].Science, 2006, 312(5772):436-439.

      [42]Naya L, Paul S, Valdes-Lopez O, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean[J]. PLoS One, 2014, 9(1):e84416.

      [43]Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18:2051-2065.

      [44]Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proc Natl Acad Sci USA, 2008, 105(2):803-808.

      [45]Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphatestarvation response in Arabidopsis[J]. Curr Biol, 2005, 15(22):2038-2043.

      [46]Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006,18(2):412-421.

      [47]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress induced miRNA[J]. Mol Cell, 2004, 14(6):787-799.

      [48]Zhao BT, Liang RQ, Ge LF, et al. Identification of drought-induced microRNAs in rice[J]. Biochem Biophys Res Commun, 2007,354(2):585-590.

      [49] Wang ST, Sun XL, Yoichiro H, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.)[J]. PLoS One, 2014, 9(3):e91357.

      [50]Liu HH, Tian X, Li YJ. Microarray based analysis of stressregulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008,14(5):836-843.

      [51]Ding D, Zhang LF, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Bot, 2009, 103(1):29-38.

      [52] Xie FL, JR Stewart CN, Taki FA, et al. High-throughput deep sequencing shows that microRNAs play important roles in switch grass responses to drought and salinity stress[J]. Plant Biotechnol J, 2014, 12(3):354-366.

      [53] Yang R, Zeng Y, Yi X, et al. reveals the important role of microRNAs in the halophyte Halostachys caspica[J]. Plant Biotechnol J, 2015, 13(3):395-408.

      [54]Sachin AG, Birendra Prasad S. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants[J]. BMC Plant Biol, 2015, 15(1):1-18.

      [55]Xie FL, Wang QL, Sun RR, et al. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804.

      [56]馬風(fēng)勇, 朱永興, 石曉霞, 等. 植物microRNA抗逆性研究進(jìn)展[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版, 2012, 40(5):218-222.

      [57]Zhang BH, Pan XP. Identification and characteristic of new plant microRNAs using EST analysis[J]. Cell Eesearch, 2005, 15 :336-360.

      [58] Singh A, Roy S, Singh S, et al. Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana[J].Sci Rep, 2017, 7(1):3408-3412.

      [59]Zhu JF, Li WF, Yang WH, et al. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Rep, 2013, 32(9):1339-1349.

      [60]Qin Z, Chen J, Jin L, et al. Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues[J]. J Nanosci Nanotechnol, 2015, 15(2):1554-1561.

      [61] Shen JQ, Xie KB, Xiong LZ. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress response[J]. Mol Genet Genomics, 2010, 10 :3-34.

      [62]Jian X, Zhang L, Li G, et al. Identification of novel stress-regulated microRNAs from Oryza sativa L.[J]. Genomics, 2010, 95 :47-55.

      [63]Tian YH, Tian YM, Luo XJ, et al. Identification and characterization of microRNAs related to salt stress in broccoli, using highthroughput sequencing and bioinformatics analysis[J]. BMC Plant Bio, 2014, 14:226.

      [64]Frazier TP, Sun G, Burklew CE, et al. Salt and drought stresses induce the aberrant expression of microRNA genes in Tobacco[J]. Mol Bio, 2011, 49(2):159-165.

      [65]Kazan K. Auxin and the integration of environmental signals into plant root development[J]. Annals of Bot, 2013, 112(9):1655-1665.

      [66]Jia XY, Wang WX, Ren LG, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J]. Plant Mol Bio, 2009, 71(1/2):51-59.

      [67]Dongwon B, Hyun JC, Songhwa K. A role for Arabidopsis miR399f in salt, drought, and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118.

      [68]Paul S, Kundu A, Pal A. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress[J]. Plant Cell Tissue and Organ Culture, 2011, 105(2):233-242.

      [69]Higashi Y, Takechi K, Takano H, et al. Involvement of microRNA in copper deficiency-induced repression of chloroplastic Cu-Zn-superoxide dismutase genes in the moss Physcomitrella patens[J]. Plant Cell Physiol, 2013, 54(8):1345-1355.

      [70] Lu S, Sun YH, Chiang VL. Stress responsive microRNAs in Populous[J]. Plant, 2008, 55(1):131-151.

      [71]Gharat SA, Shaw BP. Computational prediction and experimental validation of a novel miRNA in Suaeda maritima, a halophyte[J]. Genetics & Mole Res GMR, 2016, 15(1):1-12.

      [72] 田鑫. 擬南芥脅迫誘導(dǎo)microRNA的分離和功能研究及microRNA啟動(dòng)子分析[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2009.

      [73]Muhammad A, Margaret YG, Ken W, et al. An insight into microRNA-156 role in salinity stress responses of Alfalfa[J].Front Plant Sci, 2017, 8:356-359.

      [74] Xue T, Liu Z, Dai X, et al. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101[J]. Plant Sci, 2017, 262:182-189.

      [75]Gao P, Bai X, Yang L, et al. Osa-miR393:A salinity and alkaline stress-related microRNA gene[J]. Mol Biol Rep, 2010, 12 :345-363.

      [76] Jung HJ, Kang H. Expression and functional analyses of micro-RNA417 in Arabidopsis thaliana under stress conditions[J].Plant Physiol Biochem, 2007, 45:805-811.

      [77]Guo HS, Xie Q, Fei JF, et al. MicroRNA directs mRNA cleavage of the transcription factor NaCl to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17 :1376-1386.

      [78]Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUPSHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J].Plant, 2008, 55:65-76.

      [79]Ma HS, Liang D, Shuai P, et al. The salt and drought inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61(14):4011-4019.

      [80]Liu TY, Huang TK, Tseng CY, et al. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis[J].Plant Cell, 2012, 24:2168-2183.

      [81]Carlsbecker A, Lee JY, Roberts CJ, et al. Cell signal ling by microRNA165/6 directs gene does dependent root cell fate[J].Nature, 2010, 465:316-321.

      [82]Sakaguchi J, Watanabe Y. miR165/166 and the development of land plants[J]. Dev Growth Differ, 2012, 54 :93-99

      [83]Debernardi JM, Mecchia MA, Vercruyssen L, et al. Posttranscriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J].Plant J, 2014, 79(3):419-426

      [84]Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol, 2009, 10 :29-38.

      [85]Luan M, Xu M, Lu Y, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 55 :178-185.

      [86]Jung JH, Seo YH, Seo PJ, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. Plant Cell, 2007, 19 :2736-2748.

      Role of MicroRNA in Plant Resistance to Salt Stress

      LIU Xiao-wei YANG Xiu-yan LIU Zheng-xiang WU Hai-wen ZHANG Hua-xin ZHU Jian-feng
      (Research Center of Saline and Alkali Land of State Forestry Administration,Beijing 100091)

      Salt stress is a major limiting factor in the process of plant growth and development,which can affect the process of plant organ development,morphogenesis,signal transduction,and so on. MicroRNA(miRNA)is a class of non-coding single stranded RNA about 19-25 nt long,and more and more studies have found that plant miRNAs play an important roles in salt resistance by participating in the regulation of plant seed germination,organ development,morphogenesis and active oxygen scavenging. In this paper,plant miRNAs,which respond to salt stress,are reviewed in order to provide references for the study of salt tolerance mechanism and molecular breeding of plant salt tolerance.

      miRNA;salt stress;regulation mechanism;plant

      10.13560/j.cnki.biotech.bull.1985.2017-0538

      2017-06-26

      國家自然科學(xué)基金項(xiàng)目(31600542),國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0501303)

      劉曉威,男,碩士研究生,研究方向:生物化學(xué)與分子生物學(xué);E-mail:liuxiaoweicaf@163.com

      張華新,男,博士,研究員,研究方向:耐鹽堿植物選育與鹽堿地生物治理;E-mail:zhanghx1998@126.com;朱建峰,男,博士,助理研究員,研究方向:耐鹽堿植物遺傳改良與鹽堿地生物治理;E-mail:jianfengzhu666@163.com

      (責(zé)任編輯 朱琳峰)

      猜你喜歡
      耐鹽活性氧擬南芥
      擬南芥:活得粗糙,才讓我有了上太空的資格
      有了這種合成酶 水稻可以耐鹽了
      尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
      兩種LED光源作為擬南芥生長光源的應(yīng)用探究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
      TLR3活化對(duì)正常人表皮黑素細(xì)胞內(nèi)活性氧簇表達(dá)的影響
      耐鹽保水劑的合成及其性能
      耐鹽高降解蛋白菌株的分離鑒定及其降解條件的研究
      硅酸鈉處理對(duì)杏果實(shí)活性氧和苯丙烷代謝的影響
      O2聯(lián)合CO2氣調(diào)對(duì)西蘭花活性氧代謝及保鮮效果的影響
      乌鲁木齐县| 仁布县| 吐鲁番市| 张家界市| 康马县| 自治县| 平安县| 桓仁| 西乡县| 廉江市| 台北市| 福清市| 凤阳县| 洞头县| 南和县| 冕宁县| 罗山县| 开鲁县| 蚌埠市| 崇文区| 城固县| 临江市| 台北县| 左云县| 府谷县| 乐亭县| 沙湾县| 顺平县| 万年县| 长宁县| 贵定县| 津市市| 江油市| 额尔古纳市| 苍山县| 故城县| 南川市| 屏山县| 剑川县| 岚皋县| 林周县|