楊厚花 ,張克強(qiáng) ,閆 雷 ,李佳佳 ,王麗娜 ,沈仕洲 ,賴(lài)睿特 ,王 風(fēng) *
三種干燥方式對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響
楊厚花1,2,張克強(qiáng)2,3,閆 雷1*,李佳佳2,王麗娜4,沈仕洲2,3,賴(lài)睿特2,王 風(fēng)2,3*
(1.東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150030;2.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;3.農(nóng)業(yè)部大理農(nóng)業(yè)環(huán)境科學(xué)觀測(cè)實(shí)驗(yàn)站,云南 大理 671004;4.天津農(nóng)學(xué)院園藝園林學(xué)院,天津 300384)
為揭示干燥方式對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響,開(kāi)展了真空冷凍干燥、風(fēng)干干燥和熱風(fēng)干燥對(duì)糞污pH值、氨氮、總氮、含鹽量、總有機(jī)碳和溶解性有機(jī)碳的影響,對(duì)客觀認(rèn)識(shí)糞污理化性質(zhì)和糞污厭氧殘余物干燥方式的優(yōu)選提供依據(jù)。研究結(jié)果顯示真空冷凍干燥處理方式各化學(xué)指標(biāo)相比于風(fēng)干干燥和熱風(fēng)干燥方式數(shù)值較大,表明真空冷凍干燥處理過(guò)程能夠維持糞污厭氧殘余物化學(xué)形態(tài)和較高的含量。在此基礎(chǔ)上,比較發(fā)現(xiàn)真空預(yù)凍3 h和預(yù)凍6 h對(duì)各化學(xué)指標(biāo)的影響差異不顯著。建議真空冷凍干燥并且預(yù)凍3 h作為糞污厭氧殘余物相對(duì)較適宜的干燥方式,不僅能夠較少地破壞糞污化學(xué)性質(zhì),同時(shí)具有操作簡(jiǎn)便、節(jié)省時(shí)間等優(yōu)點(diǎn)。
糞污厭氧殘余物;真空冷凍干燥;風(fēng)干干燥;熱風(fēng)干燥;化學(xué)性質(zhì)
糞污厭氧殘余物是沼氣發(fā)酵后剩余的半固體物質(zhì),含有豐富的有機(jī)質(zhì)、腐植酸、氨基酸、氮、磷、鉀和微量元素,還田施用能夠提高土壤肥力、改善土壤結(jié)構(gòu),增強(qiáng)土壤持續(xù)生產(chǎn)能力[1]。干燥是糞污厭氧殘余物最主要的初級(jí)處理方式,糞污厭氧殘余物干燥有利于原料的保存、深度處理和進(jìn)一步的科學(xué)研究。而不同干燥方式對(duì)糞污厭氧殘余物的理化性質(zhì)影響巨大,選擇適宜的干燥方式對(duì)于優(yōu)化資源化處理方案和科學(xué)技術(shù)研究具有一定的意義。
傳統(tǒng)的干燥方式如風(fēng)干或日曬方式能耗低、設(shè)備投入少,但干燥時(shí)間長(zhǎng),產(chǎn)品性質(zhì)變化較大[2]。近年較多采用的方式是熱風(fēng)干燥或熱泵干燥,以及熱風(fēng)或熱泵輔助其他方式干燥,這種方式干燥周期短,但能耗高、設(shè)備投入多。最近新興起的真空冷凍干燥技術(shù)被廣泛地應(yīng)用到生物、醫(yī)藥和食品領(lǐng)域。Oddone等[3]研究表明真空冷凍干燥促進(jìn)大冰晶的形成,加速了冰的升華并減緩了解吸過(guò)程。Dong等[4]發(fā)現(xiàn)真空冷凍干燥能夠很好地保存咖啡豆有機(jī)酸和單不飽和脂肪酸。
目前糞污厭氧殘余物常用干燥方式有風(fēng)干干燥、熱風(fēng)干燥、微波凍干和真空冷凍干燥等[5],綜合比較不同干燥方式對(duì)糞污厭氧殘余物理化性質(zhì)的研究還較少,而真空冷凍干燥方式對(duì)糞污厭氧殘余物干燥效果也還未見(jiàn)報(bào)道。本文擬通過(guò)比較真空冷凍干燥、風(fēng)干干燥和熱風(fēng)干燥等方式對(duì)糞污厭氧殘余物理化性質(zhì)差異,并在此基礎(chǔ)上優(yōu)化真空冷凍干燥預(yù)凍時(shí)長(zhǎng),從而提出糞污厭氧殘余物最佳干燥方式,為更加準(zhǔn)確地揭示糞污化學(xué)形態(tài)與含量,以及為科學(xué)研究開(kāi)展和干燥方式的優(yōu)選提供理論依據(jù)。
糞污厭氧殘余物采自天津?qū)幒臃N豬場(chǎng)規(guī)?;B(yǎng)殖能源環(huán)境工程中全混式沼氣發(fā)酵工程(CSTR),該工程有效反應(yīng)容積500 m3,以豬糞和水為原料,日消耗糞便 10 t,糞污厭氧殘余物產(chǎn)出量為 2.05 t·d-1,該沼氣發(fā)酵工程長(zhǎng)期穩(wěn)定運(yùn)行。糞污厭氧殘余物基本理化性質(zhì)為含水量88.84%,pH值8.84,銨態(tài)氮(NH+4-N)31 mg·g-1,全氮(TN)41.93 mg·g-1,溶解性有機(jī)碳(DOC)7.43 g·kg-1,總有機(jī)碳(TOC)507.68 g·kg-1,含鹽量0.05%。
FD系列冷真空冷凍干燥機(jī);2XZ-4型旋片式真空泵;DGG-9240B型電熱恒溫鼓風(fēng)干燥機(jī);DELTA 320 pH 計(jì);DDSJ-308A 電導(dǎo)率儀;KDY-9810凱氏定氮儀;VarioTOC測(cè)定儀。
1.3.1 試驗(yàn)處理
1.3.1.1 不同干燥方式對(duì)糞污厭氧殘余物理化性質(zhì)的影響
真空冷凍干燥(Vacuum Freeze Drying,VFD):真空冷凍干燥機(jī)干燥。稱(chēng)取500 g新鮮均勻糞污厭氧殘余物均勻覆蓋在物料盤(pán)中,厚度不超過(guò)10 mm,放入冷阱預(yù)凍6 h之后,將冷凍的糞污厭氧殘余物移入真空冷凍干燥室,腔內(nèi)壓強(qiáng)3~4 Pa,低溫-80℃,連續(xù)干燥24 h至恒重。
風(fēng)干干燥(Air Drying,AD):自然風(fēng)干干燥。稱(chēng)取500 g新鮮均勻糞污厭氧殘余物均勻平鋪在物料盤(pán)中,放置在空曠遮光的板房?jī)?nèi),平均室溫8℃,連續(xù)干燥一周至恒重。
熱風(fēng)干燥(Heat Air Drying,HAD):電熱干燥箱干燥。稱(chēng)取500 g新鮮均勻糞污厭氧殘余物均勻平鋪在鐵盤(pán)中,熱風(fēng)溫度80℃,連續(xù)干燥8 h至恒重。
3種不同干燥處理均設(shè)置3次重復(fù)。
1.3.1.2 VFD處理預(yù)凍時(shí)長(zhǎng)對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響
為進(jìn)一步優(yōu)化和探究VFD預(yù)凍時(shí)間對(duì)樣品各指標(biāo)的影響,根據(jù)真空冷凍干燥設(shè)備推薦參數(shù)設(shè)置了預(yù)凍 3 h(VFD3)和預(yù)凍 6 h(VFD6)。
VFD3:稱(chēng)取500 g新鮮均勻糞污厭氧殘余物均勻覆蓋在物料盤(pán)中,厚度不超過(guò)10 mm,放入冷阱預(yù)凍3 h之后,將冷凍的糞污厭氧殘余物移入真空冷凍干燥室,腔內(nèi)壓強(qiáng)3~4 Pa,低溫-80℃,連續(xù)干燥24 h至恒重。
VFD6:同上,但放入冷阱內(nèi)預(yù)凍6 h。
兩種預(yù)凍時(shí)長(zhǎng)干燥處理均設(shè)置3次重復(fù)。
1.3.2 測(cè)定方法
含水率測(cè)定應(yīng)用恒溫箱熱風(fēng)干燥法[6-7]。pH值用(水∶樣=1∶1)pH計(jì)直接測(cè)定。銨態(tài)氮的測(cè)定采用凱氏定氮法[8]。全氮在樣品消煮后采用凱氏定氮法測(cè)定[9]。鹽度應(yīng)用電導(dǎo)率儀測(cè)定[10-12]。DOC采用TOC分析儀測(cè)定[13]??傆袡C(jī)碳選用重鉻酸鉀容量法-稀釋熱法測(cè)定[14]。
用Excel 2010處理數(shù)據(jù)并作圖,采用SPSS軟件進(jìn)行方差分析,應(yīng)用Duncan方法分析各處理間數(shù)據(jù)在α=0.05水平的差異顯著性。
2.1.1 糞污厭氧殘余物含水率和pH值變化特征
不同干燥方式下糞污厭氧殘余物含水率和pH值見(jiàn)圖1。3種干燥處理水分干燥效果總體呈現(xiàn)VFD、AD>HAD趨勢(shì),VFD處理樣品含水率能夠達(dá)到與AD處理接近的水平,處理間差異不顯著,VFD處理樣品含水率比鮮樣降低了64個(gè)百分點(diǎn);HAD處理樣品的含水率最小,與各處理相比均達(dá)到顯著差異水平,比AD和VFD處理約低了13~14個(gè)百分點(diǎn)。不同處理糞污厭氧殘余物pH值呈現(xiàn)AD、VFD>鮮樣>HAD趨勢(shì)。AD處理pH值與VFD處理間差異不顯著,分別比鮮樣pH值有所升高,維持了鮮樣較高的pH值特征。HAD處理pH值比鮮樣降低了11%,朝向中性趨勢(shì)降低,與AD和VFD處理相比差異達(dá)到顯著水平(P<0.05)。
圖1 不同干燥方式對(duì)糞污厭氧殘余物含水率和pH值的影響Figure 1 Characteristics of moisture content and pH value under different drying methods
2.1.2 糞污厭氧殘余物TN和NH+4-N含量變化特征
不同干燥方式下糞污厭氧殘余物TN和NH+4-N見(jiàn)圖2。3種干燥方式糞污厭氧殘余物TN含量依次為VFD>AD>HAD。雖然VFD處理TN含量較鮮樣降低了30%,但比AD和HAD處理分別高27%和69%,與HAD處理間差異達(dá)到顯著水平(P<0.05)??傮w來(lái)看,3種干燥處理NH+4-N含量趨勢(shì)為VFD>AD>HAD,處理之間差異分別達(dá)到顯著水平(P<0.05),VFD處理NH+4-N含量分別是AD處理和HAD處理的1.5倍和4倍。3種干燥處理NH+4-N含量均比新鮮樣品有所損失,VFD處理NH+4-N含量比鮮樣降低了35%左右,但處理間差異不顯著,HAD處理NH+4-N含量比鮮樣降低了84.44%,HAD處理和AD處理與鮮樣之間差異達(dá)到顯著水平(P<0.05)。
圖2 不同干燥方式對(duì)糞污厭氧殘余物TN和NH+4-N含量的影響Figure 2 Characteristics of TN and NH+4-N under different drying methods
2.1.3 糞污厭氧殘余物TOC和DOC含量變化特征
不同干燥方式下糞污厭氧殘余物TOC和DOC含量見(jiàn)圖3。糞污厭氧殘余物TOC含量總體變化趨勢(shì)為鮮樣>HAD、AD、VFD。3種干燥處理TOC含量都較鮮樣降低了40%,3個(gè)干燥處理之間TOC含量差異并不顯著。糞污厭氧殘余物DOC含量總體變化趨勢(shì)為鮮樣>VFD>AD>HAD。VFD和AD處理的DOC含量與鮮樣間差異不顯著,HAD處理DOC含量與其他處理間差異均達(dá)到顯著水平(P<0.05)。
圖3 不同干燥方式對(duì)糞污厭氧殘余物TOC和DOC含量的影響Figure 3 Characteristics of TOC and DOC under different drying methods
2.1.4 糞污厭氧殘余物全鹽量變化特征
不同干燥方式下糞污厭氧殘余物全鹽量見(jiàn)圖4。糞污厭氧殘余物全鹽量總體呈現(xiàn)VFD>HAD>鮮樣>AD趨勢(shì)。VFD處理全鹽量比鮮樣顯著增加,分別是AD、鮮樣和HAD的4.7、2.8倍和2.3倍,處理之間差異均達(dá)到顯著水平。AD、HAD處理與鮮樣間差異不顯著。
圖4 不同干燥方式對(duì)糞污厭氧殘余物全鹽量的影響Figure 4 Characteristics of total salinity under different drying methods
預(yù)凍時(shí)長(zhǎng)(預(yù)凍3 h和6 h)對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響見(jiàn)表1。兩個(gè)預(yù)凍時(shí)長(zhǎng)處理含水率、NH+4-N、DOC、TOC、TN、全鹽量等指標(biāo)數(shù)值非常相近,所有指標(biāo)處理之間差異均不顯著,真空凍干預(yù)凍時(shí)長(zhǎng)對(duì)糞污厭氧殘余物理化性質(zhì)的影響較小。預(yù)凍3 h既節(jié)約時(shí)間與能源,又可達(dá)到與預(yù)凍6 h相似的干燥效果和穩(wěn)定的化學(xué)性質(zhì)。
本研究比較了VFD、AD和HAD干燥方式對(duì)糞污厭氧殘余物干燥效果與化學(xué)性質(zhì)。結(jié)果表明VFD和AD干燥所得樣品中TN和NH+4-N含量較高,HAD處理含量最低,主要因?yàn)楦邷貤l件下部分氮素以氣體形式分解擴(kuò)散,而VFD和AD干燥在相對(duì)低溫條件下有效保持了NH+4-N含量[15-16]。DOC含量變化特征與NH+4-N相似,VFD和AD干燥處理中DOC含量較高,而HAD處理DOC含量相對(duì)較低,主要因?yàn)楦邷仫@著促進(jìn)了糞污中易氧化碳和溶解性有機(jī)碳的分解[17],而VFD和AD干燥過(guò)程中抗氧化成分和性質(zhì)得到較好保護(hù)[18],張雨婷等[19]和高煒等[20]發(fā)現(xiàn)冷凍干燥能夠保持鐵皮石斛較高的多糖含量,也從側(cè)面給出了相似的研究啟示。本研究發(fā)現(xiàn)3個(gè)干燥處理TOC含量差異不顯著,表明非水溶性有機(jī)碳仍然是糞污厭氧殘余物中主要形態(tài),并且該部分成分對(duì)溫度變化不明顯。有研究發(fā)現(xiàn)與TOC相比,草地土壤DOC的變化更為迅速[21],并且土壤DOC含量在有機(jī)質(zhì)中所占的比例很小[22]。VFD處理的糞污厭氧殘余物全鹽量不僅明顯高于AD和HAD處理,甚至高于鮮樣。這可能是因?yàn)閂FD處理存在凍融過(guò)程,螯合的離子在凍融過(guò)程中被釋放,同時(shí)有機(jī)物礦化率增大,這個(gè)推論在土壤的凍融過(guò)程中被廣泛證實(shí)。常宗強(qiáng)等[23]發(fā)現(xiàn)凍融過(guò)程對(duì)土壤氮礦化有促進(jìn)作用,羅金明等[24]研究得出凍融土壤中HCO-3、CO-3等離子含量顯著增加。VFD、AD和HAD處理方式對(duì)糞污厭氧殘余物理化性質(zhì)均有較大的影響,但VFD方式與AD和HAD相比影響最小。HAD方式雖干燥時(shí)間短,但耗能高,干燥方法工業(yè)化應(yīng)用具有一定局限性,在糞污規(guī)模化生產(chǎn)中使用較少[25-27]。VFD能夠?qū)崿F(xiàn)與AD相近的水分去除效果,本研究也證實(shí)VFD處理縮短干燥時(shí)間、保持樣品化學(xué)組成等優(yōu)勢(shì)[28-34],對(duì)于了解和掌握糞污本身化學(xué)含量和形態(tài)具有一定的意義。
VFD干燥前需對(duì)樣品進(jìn)行預(yù)凍,目的是為了凍結(jié)樣品中水分以進(jìn)行真空升華[35]。預(yù)凍時(shí)間過(guò)長(zhǎng)不僅浪費(fèi)能源和時(shí)間,而且會(huì)影響樣品中化學(xué)組成。本研究表明兩組預(yù)凍時(shí)長(zhǎng)處理對(duì)糞污厭氧殘余物化學(xué)性質(zhì)影響差異不顯著,均可以獲得較好的干燥效果和穩(wěn)定的化學(xué)性質(zhì)與組成,這與干燥物體的性質(zhì)和尺寸有關(guān)。任紅兵[36]研究發(fā)現(xiàn)預(yù)凍時(shí)間控制在3 h以內(nèi)即可滿足VFD升華過(guò)程,與本研究結(jié)果高度一致。因而推薦真空冷凍干燥且預(yù)凍3 h作為糞污厭氧殘余物干燥方式。
(1)真空冷凍干燥、風(fēng)干干燥和熱風(fēng)干燥對(duì)糞污厭氧殘余物的pH、NH+4-N、TN、含鹽量、TOC和DOC均有較大的影響,但真空冷凍干燥與風(fēng)干干燥和熱風(fēng)干燥相比影響最小。
(2)真空冷凍干燥6 h或3 h預(yù)凍時(shí)長(zhǎng)對(duì)糞污厭氧殘余物化學(xué)性質(zhì)影響差異不顯著。
表1 不同預(yù)凍時(shí)長(zhǎng)對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響Table 1 Chemical properties of bio-slurry under different pre-freezing periods
(3)預(yù)凍3 h的真空冷凍干燥處理方式對(duì)樣品化學(xué)性質(zhì)影響最小,干燥方便快捷、操作簡(jiǎn)便,推薦作為農(nóng)業(yè)生產(chǎn)和科學(xué)研究使用的干燥處理方式。同時(shí)在生產(chǎn)上或科研上的應(yīng)用還應(yīng)綜合考慮成本和研究目標(biāo)。
[1]白瑩瑩.農(nóng)業(yè)沼氣在北方農(nóng)業(yè)源減排中的應(yīng)用淺析[J].環(huán)境科學(xué)導(dǎo)刊,2014,33(1):73-76.
BAI Ying-ying.Application of agricultural biogas in agricultural emission reduction in Northern China[J].Environmental Science Survey,2014,33(1):73-76.
[2]鄧媛元,湯 琴,張瑞芬,等.不同干燥方式對(duì)苦瓜營(yíng)養(yǎng)與品質(zhì)特性的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(2):362-371.
DENG Yuan-yuan,TANG Qin,ZHANG Rui-fen,et al.Effects of different drying methods on the nutrition and physical properties of momordicacharantia[J].Scientia Agricultura Sinica,2017,50(2):362-371.
[3]Oddone I,Antonello A B,Roberto P.Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products:The secondary drying step[J].International Journal of Pharmaceutics,2017,524(1):134-140.
[4]Dong W J,Hu R S,Chu S,et al.Effect of different drying techniques on bioactive components,fatty acid composition,and volatile profile of robusta coffee beans[J].Food Chemistry,2017,23(4):121-130.
[5]吳景貴,孟安華,張振都,等.循環(huán)農(nóng)業(yè)中畜禽糞便的資源化利用現(xiàn)狀及展望[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,33(3):237-242,259.
WU Jing-gui,MENG An-hua,ZHANG Zhen-du,et al.Present situations and prospects for resource utilization of livestock and poultry feces in recycling agriculture[J].Journal of Jilin Agricultural University,2011,33(3):237-242,259.
[6]張學(xué)禮,胡振琪,初士立.土壤含水量測(cè)定方法研究進(jìn)展[J].土壤通報(bào),2005,36(1):118-123.
ZHANG Xue-li,HU Zhen-qi,CHU Shi-li.Research advances in measuring method of soil water content[J].Chinese Journal of Soil Science,2005,36(1):118-123.
[7]時(shí)新玲,王國(guó)棟.土壤含水量測(cè)定方法研究進(jìn)展[J].中國(guó)農(nóng)村水利水電,2003,59(10):84-86.
SHIXin-ling,WANGGuo-dong.Researchadvancesinmeasuringmethod of soil water content[J].China Rural Water and Hydropower,2003,59(10):84-86.
[8]謝小玲,李海鋒,李雪瑩,等.土壤全氮半微量定氮法與自動(dòng)定氮儀定氮法的比較分析[J].生態(tài)環(huán)境學(xué)報(bào),2012,21(6):1071-1074.
XIE Xiao-ling,LI Hai-feng,LI Xue-ying,et al.Comparative analysis of nitrogen fixation method for semi-micro nitrogen fixation and automatic nitrogen fixation in soil[J].Ecology and Environmental Sciences,2012,21(6):1071-1074.
[9]胡子峰.凱氏定氮儀原理和校準(zhǔn)的方法[J].上海計(jì)量測(cè)試,2011,223(3):49-50.
HU Zi-feng.The principle and calibration method of Kjeldahl nitrogen apparatus[J].Shanghai Measurement and Testing,2011,223(3):49-50.
[10]邱桂京.電導(dǎo)率儀檢定原理的探討[J].計(jì)量與測(cè)試技術(shù),2005,32(11):14-16.
QIU Gui-jing.Electricity conductivity appraisal principle discussion[J].Measurement and Testing Techniques,2005,32(11):14-16.
[11]劉 嶧,雷玲玲,劉慧芹,等.2265FS土壤原位電導(dǎo)儀測(cè)定結(jié)果與土壤含鹽量的關(guān)系[J].湖北農(nóng)業(yè)科學(xué),2014,53(13):3167-3169.
LIU Yi,LEI Ling-ling,LIU Hui-qin,et al.Relationships between the soil in situ conductive meter measured by 2265FS and the soil salinity[J].Hubei Agricultural Sciences,2014,53(13):3167-3169.
[12]張 禎.影響土壤電導(dǎo)率的測(cè)定因素分析[C].中國(guó)環(huán)境科學(xué)學(xué)會(huì),2008:1071-1073.
ZHANG Zhen.Analysis of determinants of soil conductivity[C].Chinese Society for Environmental Sciences,2008:1071-1073.
[13]盛 浩,宋迪思,王翠紅,等.土壤溶解性有機(jī)碳四種測(cè)定方法的對(duì)比和轉(zhuǎn)換[J].土壤,2015,47(6):1049-1053.
SHENG Hao,SONG Di-si,WANG Cui-hong,et al.Comparison and conversion of four methods for determination of soil soluble organic carbon[J].Soils,2015,47(6):1049-1053.
[14]鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)科技出版社,1999:30-40.
BAO Shi-dan.Soil agricultural chemical analysis[M].Beijing:Agricultural Science and Technology Press of China,1999:30-40.
[15]鄧宇杰,羅理勇,田小軍,等.干燥方式對(duì)不同品種茶樹(shù)花主要生化成分的影響[J].食品工業(yè)科技,2017,919(7):356-364.
DENG Yu-jie,LUO Li-yong,TIAN Xiao-jun,et al.Effects of drying methods on the principal biochemical components of different cultivars of tea flower[J].Science and Technology of Food Industry,2017,919(7):356-364.
[16]Argyropoulos D,Mvller J.Kinetics of change in colourandrosmarinic acid equivalents during convective drying of lemon balm(Melissa officinalis L.)[J].Journal of Applied Research on Medicinal and Aromatic Plants,2014,1(1):e15-e22.
[17]李 琪,薛紅喜,王云龍,等.土壤溫度和水分對(duì)克氏針茅草原生態(tài)系統(tǒng)碳通量的影響初探[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(3):605-610.
LI Qi,XUE Hong-xi,WANG Yun-long,et al.The preliminary study on the impact of soil temperature and moisture on carbon flux over Stipakrylovie ecosystem[J].Journal of Agro-Environment Science,2011,30(3):605-610.
[18]Jiang N,Liu C Q,Li D J.Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks:Antioxidant properties,sensoryquality,andenergyconsumption[J].LWT-Food Science and Technology,2017,82(4):216-226.
[19]張雨婷,郭 賽,張 莉,等.不同干燥方法對(duì)鐵皮石斛多糖和甘露糖含量的影響[J].安徽中醫(yī)藥大學(xué)學(xué)報(bào),2017,36(2):68-71.
ZHANG Yu-ting,GUO Sai,ZHANG Li,et al.Effects of different drying methods on polysaccharides and mannose content of dendrobium candidum[J].Journal of Anhui Traditional Chinese Medical Univer-sity,2017,36(2):68-71.
[20]高 煒,丁勝華,王蓉蓉,等.不同干燥方式對(duì)檸檬片品質(zhì)的影響[J].食品科技,2017,42(2):114-119.
GAO Wei,DING Sheng-hua,WANG Rong-rong,et al.Effects of drying methods on the quality of lemon piece[J].Food Science and Technology,2017,42(2):114-119.
[21]齊玉春,彭 琴,董云社,等.溫帶典型草原土壤總有機(jī)碳及溶解性有機(jī)碳對(duì)模擬氮沉降的響應(yīng)[J].環(huán)境科學(xué),2014,35(8):3073-3082.
QI Yu-chun,PENG Qin,DONG Yun-she,et al.Reponses of soil total organic carbon and dissolved organic carbon to simulated nitrogen deposition in temperate typical steppe in Inner Mongolia,China[J].Environmental Science,2014,35(8):3073-3082.
[22]衛(wèi) 東,戴萬(wàn)宏,湯 佳.不同利用方式下土壤溶解性有機(jī)碳含量研究[J].中國(guó)農(nóng)學(xué)通報(bào),2011,27(18):121-124.
WEI Dong,DAI Wan-hong,TANG Jia.Study of soils dissolved organic carbon in different land use[J].Chinese Agricultural Science Bulletin,2011,27(18):121-124.
[23]常宗強(qiáng),馬亞麗,劉 蔚,等.土壤凍融過(guò)程對(duì)祁連山森林土壤碳氮的影響[J].冰川凍土,2014,36(1):200-206.
CHANG Zong-qiang,MA Ya-li,LIU Wei,et al.Effect of soil freezing and thawing on the carbon and nitrogen in forest soil in the Qilian Mountains[J].Journal of Glaciology and Geocryology,2014,36(1):200-206.
[24]羅金明,鄧 偉,張曉平,等.凍融季節(jié)蘇打鹽漬土的水鹽變化規(guī)律[J].水科學(xué)進(jìn)展,2008,19(4):559-566.
LUO Jin-ming,DENG Wei,ZHANG Xiao-ping,et al.Variation of water and salinity in sodic saline soil during frozen-thawing season[J].Advancesin Water Science,2008,19(4):559-566.
[25]Mghazli S,Ouhammou M,Hidar N,et al.Drying characteristics and kinetics solar drying of Moroccan rosemary leaves[J].Renewable Energy,2017,108(12):303-310.
[26]Onwude D I,Hashim N,Chen G G.Recent advances of novel thermal combined hot air drying of agricultural crops[J].Trends in Food Science&Technology,2016,57(9):132-145.
[27]Sebastiani A,Hirnet T,Antje J E.Comparison of speed-vacuum method and heat-drying method to measure brain water content of small brain samples[J].Journal of Neuroscience Methods,2017,276(11):73-78.
[28]Sette P,Salvatori D,Schebor C.Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air-and freeze-drying[J].Food and Bioproducts Processing,2016,100(7):156-171.
[29]Li Y H,Qi Y R,Wu Z F,et al.Comparative study of microwave-vacuum and vacuum drying on the drying characteristics,dissolution,physicochemical properties,and antioxidant capacity of Scutellaria extract powder[J].Powder Technology,2017,317(5):430-437.
[30]Rajkumar G,Shanmugam S,Galvao M S,et al.Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying[J].LWT-Food Science and Technology,2017,80(3):501-509.
[31]Chen Q Q,Li Z L,Bi J F,et al.Effect of hybrid drying methods on physicochemical,nutritional and antioxidant properties of dried black mulberry[J].LWT-Food Science and Technology,2017,80(2):178-184.
[32]Schulze B,Hubbermann E M,Schwarz K.Stability of quercetin derivatives in vacuum impregnated apple slices after drying(microwave vacuum drying,air drying,freeze drying)and storage[J].LWT-Food Science and Technology,2014,57(11):426-433.
[33]Park H J,Lee Y,Eun J B.Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying[J].Biocatalysis and Agricultural Biotechnology,2016,5(2):193-198.
[34]Parniakov O,Bals O,Lebovka N,et al.Pulsed electric field assisted vacuum freeze-drying of apple tissue[J].Innovative Food Science and Emerging Technologies,2016,35(4):52-57.
[35]Ma J,Sun D W,Qu J H.Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths[J].LWT-Food Science and Technology,2017,82(4):377-385.
[36]任紅兵.真空冷凍干燥技術(shù)及其在中藥領(lǐng)域的應(yīng)用[J].裝備應(yīng)用與研究,2016,482(20):12-21.
REN Hong-bing.Vacuum freeze drying technology and its application in traditional Chinese medicine[J].Equipment Application and Research,2016,482(20):12-21.
The effects of three kinds of drying methods on the chemical properties of fecal anaerobic residues
YANG Hou-hua1,2,ZHANG Ke-qiang2,3,YAN Lei1*,LI Jia-jia2,WANG Li-na4,SHEN Shi-zhou2,3,LAI Rui-te2,WANG Feng2,3*
(1.College of Resources and Environment,Northeast Agricultural University,Harbin 150030,China;2.Agro-Environmental Protection Institute,Ministry of Agriculture,Tianjin 300191,China;3.Dali Experimental Station of Agro-Environmental Science,Ministry of Agriculture,Dali 671004,China;4.College of Horticulture Landscape Architecture,Tianjin Agricultural University,Tianjin 300384,China)
This study was used to reveal the effects of different drying methods on the chemical properties of fecal anaerobic residues,which provided the theoretical basis for choosing suitable drying measures.After fecal anaerobic residues were dried by vacuum freeze-drying,airdrying,and hot air-drying,a series of evaluation indices was tested,which included pH value,ammonia nitrogen,total nitrogen,total salinity,total organic carbon(TOC),and dissolved organic carbon(DOC).The results showed that vacuum freeze-drying had the least loss of chemical components of the three methods,which indicated that the vacuum freeze-drying process could maintain high physical and chemical properties.In this study,the effects of different pre-freezing times on the chemical properties of fecal anaerobic residue were also analyzed.There was no significant difference between 3 hours of freeze-drying and 6 hours of freeze-drying in the characterizations of the fecal anaerobic residues.Thus,freeze-drying for 3 hours is suggested as the best pretreatment because of its easy operation and short time.
fecal anaerobic residue;vacuum freeze-drying;air-drying;hot air-drying;chemical property
2017-06-29 錄用日期:2017-09-08
楊厚花(1990—),女,山東人,碩士研究生,從事污染防治研究。E-mail:houhua_yang0929@163.com
*通信作者:王 風(fēng) E-mail:wangfeng_530@163.com 閆 雷 E-mail:yanlei_74@163.com
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0800403);天津市自然科學(xué)基金項(xiàng)目(16JCYBJC29700);948 項(xiàng)目(2014-S4,2016-X53);公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)基金(201503119-06-01)
Project supported:NationalKey Research and Development Program(2017YFD0800403);Natural Science Foundation of Tianjin,China(16JCYBJC29700);948Program(2014-S4,2016-X53);TheSpecial ScientificResearchFundof Agricultural PublicWelfareProfessionof China(201503119-06-01)
X713
A
1672-2043(2017)12-2515-06
10.11654/jaes.2017-0915
楊厚花,張克強(qiáng),閆 雷,等.三種干燥方式對(duì)糞污厭氧殘余物化學(xué)性質(zhì)的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(12):2515-2520.
YANG Hou-hua,ZHANG Ke-qiang,YAN Lei,et al.The effects of three kinds of drying methods on the chemical properties of fecal anaerobic residues[J].Journal of Agro-Environment Science,2017,36(12):2515-2520.