韓成云
“數(shù)(代數(shù))”與“形(幾何)”是中學(xué)數(shù)學(xué)的兩個(gè)主要研究對(duì)象,而這兩個(gè)方面是緊密聯(lián)系的.體現(xiàn)在數(shù)學(xué)解題中,包括“以數(shù)助形”和“以形助數(shù)”兩個(gè)方面.數(shù)形結(jié)合的思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖像結(jié)合起來,關(guān)鍵是代數(shù)問題與圖形之間的相互轉(zhuǎn)化,它可以使代數(shù)問題幾何化,幾何問題代數(shù)化.數(shù)學(xué)中的知識(shí),有的本身就可以看作是數(shù)形的結(jié)合.如:銳角三角函數(shù)的定義是借助于直角三角形來定義的.下面我們就網(wǎng)格線中銳角三角函數(shù)的問題來體會(huì)這種數(shù)學(xué)思想方法.
一、運(yùn)用定義,以形助數(shù)
一些問題中的代數(shù)式,如方程或不等式,若以圖形的形式直觀地給出,問題的結(jié)果便可一目了然.
恩格斯曾說過:“數(shù)學(xué)是研究現(xiàn)實(shí)世界的量的關(guān)系與空間形式的科學(xué).”數(shù)形結(jié)合就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義,又揭示其幾何直觀,使數(shù)量關(guān)系的精確刻畫與空間形式的直觀形象巧妙、和諧地結(jié)合在一起.充分利用這種結(jié)合,尋找解題思路,使問題化難為易、化繁為簡(jiǎn),從而得到解決.endprint