• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains

    2018-01-05 02:54:30ButianZhangMengLiLiliYuYimengDaiShaonanYuJinlanJiang

    Bu-tian Zhang, Meng Li, Li-li Yu, Yi-meng Dai, Shao-nan Yu, Jin-lan Jiang

    China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China

    Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains

    Bu-tian Zhang, Meng Li, Li-li Yu, Yi-meng Dai, Shao-nan Yu, Jin-lan Jiang*

    China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China

    Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains (RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence signi ficantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle (C4–6) and lower (C7–T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were signi ficantly higher in white matter than in gray matter. Our study veri fied that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.

    nerve regeneration; diffusion tensor imaging; cervical spinal cord; microstructure; gray matter; white matter; readout segmentation of long variable echo-train sequence; signal-to-noise ratio; fractional anisotropy; neural regeneration

    Introduction

    Diffusion tensor imaging (DTI) is an advanced noninvasive magnetic resonance imaging (MRI) method that can qualitatively and quantitatively analyze the diffusion of water within a voxel in three-dimensional space (S?siadek et al., 2012).Because of the sheath’s structure, water molecules tend to move along the longitudinal axis of axons in neural tissues(Beaulieu, 2002). This feature strongly favors the utility of DTI for the assessment of spinal cord diseases. A previous study has reported that DTI can detect cord damage, which is easily misdiagnosed on T2-weighted images (Banaszek et al., 2014). Most research has generally focused on clinical applications (Demir et al., 2003; Petersen et al., 2012; Ellingson et al., 2014). Only a few studies have focused on the detailed structure of the spinal cord, and most did not precisely characterize the anatomical microstructure because of the con fined spatial resolution or relatively low signal-to-noise ratio (SNR) (Rossi et al., 2008). The low SNR also affected the accuracy of DTI parameters (Jones and Basser, 2004).DTI is useful in clinical diagnosis and outcome assessment of patients with cervical cord diseases, and it is necessary to establish the baseline microstructure of the cervical spinal cord with a high spatial resolution DTI sequence.

    The readout segmentation of long variable echo-trains(RESOLVE) sequence is a novel scanning magnetic resonance (MR) technique, based on a readout segmented echo planar imaging (EPI) strategy. Our study applied RESOLVE sequences with DTI techniques to improve image quality at the technical level and to clearly distinguish gray matter and white matter funiculi of the spinal cord in a large number of healthy individuals. We collected foundation data for the further study of cervical spinal cord diseases.

    Participants and Methods

    Participants

    We studied 45 healthy, asymptomatic subjects from the physical examination center of our hospital: 19 men and 26 women with ages ranging from 20 to 63 years (average 39.15 years). Participants underwent a neurological evaluation and MRI. In this cross-sectional study, patients with neurological disorders, congenital spinal canal narrowing,central spinal canal widening, previous spinal surgery, and those with any incidental findings on plain MR images suggestive of a neurological disorder were excluded from this study. The study protocols were approved by the Ethics Committee of China-Japan Union Hospital of Jilin University of China. The research followed the international and national guidelines in accordance with the procedures of theHelsinki Declarationof 1975 as revised in 2000. All voluntary participants were fully informed about the experimental process, and provided signed consent.

    Image acquisition

    MR examinations were performed with a 3.0 Tesla (T) clinical MR scanner (MAGNETOM Skyra; Siemens Medical Systems, Berlin, Germany), using a 32-channel coil dedicated to neck and head imaging (Siemens Medical Systems). The MR protocol consisted of a sagittal T1-weighted image (T1WI;repetition time/echo time = 600/20 ms), sagittal T2-weighted image (T2WI; repetition time/echo time = 2,800/120 ms),sagittal proton density-weighted image (repetition time/echo time = 2,600/15 ms), and axial proton density-weighted image (repetition time/echo time = 2,700/20 ms), followed by an axial DTI sequence.

    The DTI sequence was acquired using the RESOLVE sequence over the entire cervical spine (C1–T1). Diffusion weighted images were obtained using the following scanning parameters: (1) axial slices were acquired to distinguish white matter and gray matter, which was perpendicular to the spinal cord with diffusion gradients in 20 equidistant directions with ab= 1,000 s/mm2; (2) phase encoding direction, anterior-posterior; (3) repetition time/echo time =2,800/89 ms; (4) slice thickness = 3 mm; (5) number of slices= 15; (6) interslice gap = 0 mm; (7) number of excitations =2; (8) matrix size = 256 × 256; field of view = 220 mm × 220 mm; (9) generalized autocalibrating partially parallel acquisitions acceleration factor = 2; and (10) readout segments =5. The total acquisition time was controlled at an appropriate level of 6 minutes and 39 seconds.

    Regions of interest (ROIs)

    DTI images were processed using Neuro 3D engine on a Siemens workstation, and three slices per cervical level were selected for analysis. Five fields of view for each slice were covered on the ventral, lateral, and dorsal funiculi as well as the central gray substance on axial T2WI images. Then the ROI information was coregistered to all maps of DTI parameters with MRIcron software (McCausland Center for Brain Imaging of University of South Carolina, Columbia, SC,USA) (Figure 1). The small ROIs were designed with at least two voxels inside the cord edge to avoid the partial volume effect of cerebrospinal fluid. The measurement results of the right and left lateral funiculi were averaged.

    Figure 1 Axial slice of the cervical spinal cord of a 28-year-old man.

    Three regions were defined in the cervical cord: upper segment (upper border of C1–lower border of C3), middle segment (upper border of C4–lower border of C6), and lower segment (upper border of C7–lower border of T1) (Figure 2).The SNR of all the cervical spinal cord regions was calculated fromb= 1,000 s/mm2images. Signal ROIs were selected at a consistent location inside the body, while noise ROIs were selected in air, and were obtained at least 10 voxels away from the borders of the image.

    Data processing

    SNR and DTI parameters of all levels were estimated and analyzed on a Siemens workstation. The median SNR of each region was calculated using the following equations:

    where SI is signal intensity and SD is standard deviation.

    Fractional anisotropy (FA), apparent diffusion coefficient and three eigenvalues (λ1, λ2, λ3) were derived from each ROI. Axial diffusivity (λ‖) and radial diffusivity (λ⊥) were calculated using the following equations:

    Axial diffusivity is correlated with axon diameter, and radial diffusivity is positively correlated with axon spacing.Both of them reflect distinct histological parameters and characterize tissue integrity beyond the general measure of anisotropic water diffusion with additional information.

    Statistical analysis

    Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA).To compare the SNR data of each region, Mann-WhitneyUtest was used. The difference was determined between left and right lateral funiculi by Student’st-test. One-way analysis of variance was used to compare DTI measures of spinal fibers,and Tukey’spost hoctest was performed to compare subgroups of each funiculus. Data were recorded as the mean ±SD. A value ofP< 0.05 was considered statistically signi ficant.

    Results

    We enrolled 50 participants in the study, 5 participants were excluded because routine neurological exam was positive.The residual participants showed signi ficant cord disease on T2WI and proton density–weighted image. All of the axial DTI parameter maps were compared with the corresponding axial T2WI in a representative subject.

    Figure 2 Axial fractional anisotropy maps and T2-weighted images at individual levels of the cervical spinal cord of a 28-year-old man.

    Table 1 Signal-to-noise ratio and fractional anisotropy values of each cervical spinal cord segment

    SNR

    The median SNR of the diffusion images was 7.3 across all levels. The median SNR of the upper, middle, and lower cervical cord segments are shown in Table 1. The SNR had no signi ficant difference in different segments of the cervical spinal cord (Mann-WhitneyUtest;P= 0.13).

    White matter and gray matter

    The mean FA, λ‖and λ⊥of all white matter tracts and gray matter are shown in Tables 1 and 2. There was no signi ficant difference between left and right lateral funiculi; therefore, we combined both lateral funiculi as one group with average data.The whole-cord FA of the upper group was higher than in other groups (P= 0.00 < 0.01) (Table 1). The λ‖of the ventral funiculi in all groups was higher than other regional funiculi(P= 0.003 < 0.01) (Table 2). The FA and λ⊥of the gray matter were signi ficantly lower than in the white matter (P= 0.004 <0.01). Table 2 shows each regional difference between DTI parameters of gray matter and individual white matter funiculi.

    Discussion

    Diffusivities of gray and white matter in the normal human spinal cord have been measured and evaluated (Onu et al.,2010). However, important limitations of DTI for the cervical spinal cord have emerged. Because of the poor spatial resolution and little data, DTI parameters of the individual white matter funiculi were found to be inaccurate (Ellingson et al.,2007). In other reports, because of an underestimation of diffusion anisotropy, the results of DTI parameters were affected by the SNR (Dietrich et al., 2001; Jones and Basser, 2004). In our study, RESOLVE sequencing was used with the preliminary DTI technique and then veri fied to improve the spatial resolution and SNR in the cervical spinal cord. Compared with other DTI sequences, the RESOLVE sequence is based on the multishot EPI, including a sampling stand readout segmental EPI and a 2D navigate echo, which could minimize phase-encode distortion artifacts and T2*blurring through fast k-space filling, while SNR efficiency increases substantially(Frost et al., 2014). This sequence could also be combined with the generalized autocalibrating partially parallel acquisitions technique, which could allow direct reduction of the acquisition time (Yamada et al., 2016). Because of these advantages,this sequence is clearly bene ficial and demonstrates FA differences; further, sequences provide better results in a short time period (Banaszek et al., 2014; Middleton et al., 2014), even though the images are not as visually impressive. The SNR of all segmental groups of the cervical spinal cord was improved in our study, especially in the lower group, which was easily affected by swallowing or body morphology. Therefore, the accuracy of all DTI parameters signi ficantly improved.

    In our study, the effect of SNR was minimized, and the trend in SNR values across the cervical spinal cord was uniform. However, the whole-cord FA value of the upper cervical group was still higher than in the middle group and the lower group. This result may involve the fiber density,which correlated with extracellular spaces (Takahashi et al.,2002; Ong et al., 2008). Because of cervical enlargement, the fiber density of the upper group may be higher than in the middle and lower groups. The mean white matter FA value in the cervical cord was similar to that in some previous reports, and the larger sample size of our study could explain minor variations in DTI parameters. Similar to the study by Vedantam et al. (2013), our results revealed that signi ficant differences between the FA in each area of individual white funiculi and the FA value of ventral funiculi were lowest compared with lateral and dorsal funiculi through all the white matter bundles. We also found that axial diffusion was highest in the ventral funiculi. Previous studies suggest that radial diffusivity strongly associates with the diameter of axons and to the fiber packing density. For example, the vestibulospinal tract with the largest axons also had the highest radial diffusivity values (Schwartz et al., 2005). Thus, axon diameter of the ventral funiculi increases and axons are less densely packed relative to the lateral and dorsal funiculi. The general pattern of gray matter is similar to that reported by Onu et al. (2010), and the FA of gray matter is lower than that of white matter through the whole cervical spinal cord.

    In conclusion, the RESOLVE sequence improves spatial resolution of DTI imaging in clinical applications and provides DTI baseline data for the gray matter and different white matter funiculi throughout the cervical spinal cord.

    Table 2 Fractional anisotropy, λ‖ and λ⊥ values of all regions of interest of each cervical spinal cord segment

    Author contributions:BTZ participated in study design and paper writing. ML, LLY, YMD, and SNY were in charge of data collection. JLJ gave research guidance. All authors approved the final version of the paper.

    Con flicts of interest:None declared.

    Research ethics:The study protocol was approved by Ethics Committee of China-Japan Hospital of Jilin University. The study followed international and national regulations in accordance with the Declaration of Helsinki. Written informed consent was provided by each participant after they indicated that they had fully understood the treatment plan.

    Declaration of participant consent:The authors certify that they have obtained all appropriate participant consent forms. In the form,participants have given their consent for their images and other clinical information to be reported in the journal. Participants understand that their names and initials will not be published and while due efforts will be made to conceal their identity, anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review: Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Banaszek A, Bladowska J, Szewczyk P, Podgorski P, Sasiadek M (2014)Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J 23:1523-1530.

    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435-455.

    Demir A, Ries M, Moonen CT, Vital JM, Dehais J, Arne P, Caillé JM,Dousset V (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229:37-43.

    Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448-453.

    Ellingson BM, Ulmer JL, Schmit BD (2007) Gray and white matter delineation in the human spinal cord using diffusion tensor imaging and fuzzy logic. Acad Radiol 14:847-858.

    Ellingson BM, Salamon N, Grinstead JW, Holly LT (2014) Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J 14:2589-2597.

    Frost R, Jezzard P, Douaud G, Clare S, Porter DA, Miller KL (2014) Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla. Magn Reson Meddoi:10.1002/mrm.25391.

    Jones DK, Basser PJ (2004) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979-993.

    Middleton DM, Mohamed FB, Barakat N, Hunter LN, Shellikeri S, Finsterbusch J, Faro SH, Shah P, Samdani AF, Mulcahey MJ (2014) An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging 32:433-439.

    Ong HH, Wright AC, Wehrli SL, Souza A, Schwartz ED, Hwang SN,Wehrli FW (2008) Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies. Neuroimage 40:1619-1632.

    Onu M, Gervai P, Cohen-Adad J, Lawrence J, Kornelsen J, Tomanek B,Sboto-Frankenstein UN (2010) Human cervical spinal cord funiculi:investigation with magnetic resonance diffusion tensor imaging. J Magn Reson Imaging 31:829-837.

    Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Naja fiY,Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556-1566.

    Rossi C, Boss A, Steidle G, Martirosian P, Klose U, Capuani S, Maraviglia B, Claussen CD, Schick F (2008) Water diffusion anisotropy in white and gray matter of the human spinal cord. J Magn Reson Imaging 27:476-482.

    S?siadek MJ, Szewczyk P, Bladowska J (2012) Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit 18:RA73-79.

    Schwartz ED, Cooper ET, Fan Y, Jawad AF, Chin CL, Nissanov J, Hackney DB (2005) MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport 16:73-76.

    Takahashi M, Hackney DB, Zhang G, Wehrli SL, Wright AC, O’Brien WT, Uematsu H, Wehrli FW, Selzer ME (2002) Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 99:16192-16196.

    Vedantam A, Jirjis MB, Schmit BD, Wang MC, Ulmer JL, Kurpad SN(2013) Characterization and limitations of diffusion tensor imaging metrics in the cervical spinal cord in neurologically intact subjects. J Magn Reson Imaging 38:861-867.

    Yamada H, Yamamoto A, Okada T, Kanagaki M, Fushimi Y, Porter DA,Tanji M, Hojo M, Miyamoto S, Togashi K (2016) Diffusion tensor imaging of the optic chiasm in patients with intra- or parasellar tumor using readout-segmented echo-planar. Magn Reson Imaging 34:654-661.

    How to cite this article:Zhang BT, Li M, Yu LL, Dai YM, Yu SN, Jiang JL (2017) Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains. Neural Regen Res 12(12):2067-2070.

    Graphical Abstract

    *Correspondence to:Jin-lan Jiang, M.D.,zbt0417@outlook.com;jiangjl2003@hotmail.com.

    orcid:0000-0003-0891-3464(Jin-lan Jiang)

    10.4103/1673-5374.221166

    2017-09-18

    Copyedited by Yu J, Li CH, Qiu Y, Song LP, Zhao M

    桃色一区二区三区在线观看| 看免费成人av毛片| 久久99精品国语久久久| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 干丝袜人妻中文字幕| 亚洲av成人精品一区久久| 国语自产精品视频在线第100页| 人人妻人人澡欧美一区二区| 久久综合国产亚洲精品| 国产视频内射| 国产伦在线观看视频一区| 男人舔奶头视频| 日日撸夜夜添| 久久午夜福利片| 18禁动态无遮挡网站| 九九在线视频观看精品| 欧美bdsm另类| 99国产精品一区二区蜜桃av| 老司机福利观看| 高清视频免费观看一区二区 | 国产精品一区二区三区四区久久| 性色avwww在线观看| 午夜精品国产一区二区电影 | 国产精品美女特级片免费视频播放器| 国产综合懂色| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久 | 国产高清不卡午夜福利| 日韩中字成人| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 97超碰精品成人国产| 国产免费一级a男人的天堂| 久久久久久久久大av| 欧美激情在线99| 国产精品一区www在线观看| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 三级经典国产精品| 免费播放大片免费观看视频在线观看 | 久久久久网色| 精品久久久久久久人妻蜜臀av| 国产一级毛片七仙女欲春2| 亚洲av男天堂| 大香蕉97超碰在线| 啦啦啦观看免费观看视频高清| av福利片在线观看| 国产精品久久久久久精品电影| 久久6这里有精品| 免费看av在线观看网站| 亚洲性久久影院| 亚洲av中文av极速乱| 国产成人福利小说| 久久久久网色| 国产成人午夜福利电影在线观看| 国产亚洲5aaaaa淫片| or卡值多少钱| 久久草成人影院| 搞女人的毛片| 亚洲欧洲国产日韩| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 久久久久久久久久久免费av| 精品久久久久久电影网 | 精品酒店卫生间| 神马国产精品三级电影在线观看| 亚洲综合色惰| 欧美色视频一区免费| 韩国av在线不卡| 啦啦啦观看免费观看视频高清| 永久免费av网站大全| 国产亚洲91精品色在线| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| 亚洲精品,欧美精品| 乱人视频在线观看| 中文字幕亚洲精品专区| 欧美日韩综合久久久久久| 色综合亚洲欧美另类图片| 好男人视频免费观看在线| 国产精品永久免费网站| 我的老师免费观看完整版| 天堂√8在线中文| 国产淫片久久久久久久久| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 乱人视频在线观看| 九九爱精品视频在线观看| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 99热6这里只有精品| 91精品一卡2卡3卡4卡| 只有这里有精品99| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 波野结衣二区三区在线| 欧美精品国产亚洲| 国产精品一二三区在线看| 欧美人与善性xxx| av免费观看日本| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久 | 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频 | 久久99蜜桃精品久久| 综合色丁香网| 男女那种视频在线观看| 在线观看av片永久免费下载| 免费观看性生交大片5| 精品久久久久久成人av| 国产精品久久久久久久电影| 九九热线精品视视频播放| 成年免费大片在线观看| 国产高清不卡午夜福利| 久久人人爽人人爽人人片va| 欧美3d第一页| 插逼视频在线观看| 久久久久久大精品| 亚洲国产精品久久男人天堂| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 亚洲在线观看片| 91午夜精品亚洲一区二区三区| 欧美一区二区亚洲| av黄色大香蕉| 午夜日本视频在线| 欧美成人a在线观看| 亚洲精品一区蜜桃| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 日韩av不卡免费在线播放| 偷拍熟女少妇极品色| 久久久久久久国产电影| 我的老师免费观看完整版| 中国国产av一级| 99久国产av精品| 欧美区成人在线视频| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花 | 欧美xxxx黑人xx丫x性爽| av在线老鸭窝| 黄片无遮挡物在线观看| 能在线免费看毛片的网站| 国产淫语在线视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合精品二区| 天堂av国产一区二区熟女人妻| 国产精品无大码| 天天躁日日操中文字幕| 99热精品在线国产| 国内揄拍国产精品人妻在线| 免费黄色在线免费观看| www.av在线官网国产| 日韩欧美三级三区| 国产一级毛片在线| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 久久草成人影院| 国产熟女欧美一区二区| 一夜夜www| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 精品久久久噜噜| 日产精品乱码卡一卡2卡三| 久久6这里有精品| 国产成人a区在线观看| 婷婷色麻豆天堂久久 | 三级国产精品欧美在线观看| 岛国在线免费视频观看| 国产一区有黄有色的免费视频 | 搡女人真爽免费视频火全软件| 日本一二三区视频观看| 91狼人影院| 精品一区二区免费观看| 国产精品国产三级国产专区5o | av女优亚洲男人天堂| 亚洲性久久影院| 七月丁香在线播放| 亚洲精品456在线播放app| 美女脱内裤让男人舔精品视频| 久久久久久久午夜电影| 中文字幕亚洲精品专区| 午夜福利在线在线| 大香蕉97超碰在线| 欧美人与善性xxx| 丰满人妻一区二区三区视频av| 一级黄片播放器| 成年版毛片免费区| 我要看日韩黄色一级片| 国产色婷婷99| 热99在线观看视频| 乱系列少妇在线播放| 国产毛片a区久久久久| АⅤ资源中文在线天堂| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品综合一区二区三区| videos熟女内射| 久久欧美精品欧美久久欧美| 久久国内精品自在自线图片| 色综合色国产| 我要看日韩黄色一级片| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 精品欧美国产一区二区三| 欧美激情国产日韩精品一区| 男女边吃奶边做爰视频| 乱码一卡2卡4卡精品| 国产三级在线视频| 在线免费十八禁| 岛国毛片在线播放| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 男人舔奶头视频| 午夜老司机福利剧场| 国产亚洲精品av在线| 久久久久久伊人网av| 国产69精品久久久久777片| 在线天堂最新版资源| 成人漫画全彩无遮挡| 国产亚洲av片在线观看秒播厂 | 婷婷六月久久综合丁香| 男人狂女人下面高潮的视频| 神马国产精品三级电影在线观看| av女优亚洲男人天堂| 久久久久久久久久久免费av| 嫩草影院新地址| 国产探花在线观看一区二区| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 国产极品精品免费视频能看的| 日日干狠狠操夜夜爽| 久久精品熟女亚洲av麻豆精品 | 一边亲一边摸免费视频| 日韩欧美国产在线观看| 日本色播在线视频| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 久久久久久久久中文| 美女黄网站色视频| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 午夜激情福利司机影院| av在线蜜桃| 日韩av在线大香蕉| 伦精品一区二区三区| 少妇的逼好多水| 高清在线视频一区二区三区 | 久99久视频精品免费| 老司机影院毛片| 我要搜黄色片| 国产又色又爽无遮挡免| 国产av不卡久久| 免费看av在线观看网站| 日韩av不卡免费在线播放| 午夜免费激情av| 一个人看视频在线观看www免费| 国产一区二区在线av高清观看| 级片在线观看| 99久久精品热视频| 中文字幕亚洲精品专区| 亚洲欧美日韩无卡精品| 久久人人爽人人片av| 国内精品美女久久久久久| 亚洲精品影视一区二区三区av| 久久亚洲国产成人精品v| 亚洲国产欧洲综合997久久,| av在线老鸭窝| 亚洲av男天堂| 高清在线视频一区二区三区 | 秋霞在线观看毛片| 日韩av不卡免费在线播放| 久久国内精品自在自线图片| 在线天堂最新版资源| 69av精品久久久久久| 97超碰精品成人国产| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 国产成人免费观看mmmm| 精品久久久久久成人av| 26uuu在线亚洲综合色| 青春草国产在线视频| 成人毛片60女人毛片免费| 日韩欧美精品免费久久| 精品酒店卫生间| 国产精品女同一区二区软件| 日韩欧美在线乱码| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 亚洲av成人精品一二三区| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 精品一区二区三区视频在线| 亚洲av日韩在线播放| 一区二区三区免费毛片| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 久久人人爽人人爽人人片va| 日韩视频在线欧美| АⅤ资源中文在线天堂| 99热精品在线国产| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 天堂av国产一区二区熟女人妻| 国产成年人精品一区二区| av黄色大香蕉| 国产精品,欧美在线| 内地一区二区视频在线| 国产一区二区三区av在线| 非洲黑人性xxxx精品又粗又长| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 国产免费福利视频在线观看| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 日韩,欧美,国产一区二区三区 | 夫妻性生交免费视频一级片| 欧美成人a在线观看| 九草在线视频观看| 成人午夜高清在线视频| 看免费成人av毛片| 少妇猛男粗大的猛烈进出视频 | 久久久欧美国产精品| 麻豆国产97在线/欧美| 国产日韩欧美在线精品| 在线免费观看的www视频| 亚洲国产精品国产精品| 亚洲综合色惰| 国产色爽女视频免费观看| 亚洲av.av天堂| 99久久人妻综合| 日本wwww免费看| 欧美成人午夜免费资源| 精品久久久久久电影网 | 亚洲内射少妇av| 黄色欧美视频在线观看| 长腿黑丝高跟| 欧美潮喷喷水| 九色成人免费人妻av| 青春草视频在线免费观看| 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 国产成人91sexporn| 在线播放国产精品三级| 国产私拍福利视频在线观看| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 直男gayav资源| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 久久精品久久久久久噜噜老黄 | 中文精品一卡2卡3卡4更新| 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| 午夜福利成人在线免费观看| ponron亚洲| 欧美日韩在线观看h| 亚洲精品乱码久久久久久按摩| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| av播播在线观看一区| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片 | 最后的刺客免费高清国语| 国产激情偷乱视频一区二区| 日本色播在线视频| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 欧美色视频一区免费| 国产伦理片在线播放av一区| 国产伦精品一区二区三区视频9| 一个人观看的视频www高清免费观看| 啦啦啦韩国在线观看视频| 亚洲美女视频黄频| 久久99热6这里只有精品| 日本黄大片高清| 国产成人a∨麻豆精品| 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看| 免费看日本二区| 老司机福利观看| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 亚洲18禁久久av| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利高清视频| 精品久久久久久久末码| 中文资源天堂在线| 亚洲18禁久久av| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 久久久久国产网址| 亚洲av成人精品一二三区| 欧美3d第一页| 成人三级黄色视频| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 国产视频内射| 人妻夜夜爽99麻豆av| 一区二区三区四区激情视频| av天堂中文字幕网| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 三级毛片av免费| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 色视频www国产| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区久久| 国产淫语在线视频| 国产精品女同一区二区软件| 久久久久久国产a免费观看| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 九九在线视频观看精品| 国产麻豆成人av免费视频| 国产三级在线视频| 国产在线一区二区三区精 | 建设人人有责人人尽责人人享有的 | 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 亚洲高清免费不卡视频| 中文天堂在线官网| 久热久热在线精品观看| 97超视频在线观看视频| 18+在线观看网站| 欧美另类亚洲清纯唯美| 日韩三级伦理在线观看| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 日本黄大片高清| 国产乱来视频区| 日韩精品有码人妻一区| 国产日韩欧美在线精品| 深爱激情五月婷婷| 欧美日韩综合久久久久久| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 国产精品永久免费网站| 男女边吃奶边做爰视频| www.av在线官网国产| 免费观看的影片在线观看| 亚洲精品日韩在线中文字幕| 亚洲av电影不卡..在线观看| 亚洲av成人av| 一个人看视频在线观看www免费| 丰满少妇做爰视频| 亚洲av中文av极速乱| 一卡2卡三卡四卡精品乱码亚洲| 爱豆传媒免费全集在线观看| 国产亚洲精品av在线| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 久久草成人影院| 日韩欧美三级三区| 欧美日本视频| 日韩高清综合在线| 日产精品乱码卡一卡2卡三| 国产精品久久电影中文字幕| 国产亚洲91精品色在线| 国产探花极品一区二区| 毛片女人毛片| 2021天堂中文幕一二区在线观| 精品99又大又爽又粗少妇毛片| 亚洲熟妇中文字幕五十中出| 日韩国内少妇激情av| 一区二区三区乱码不卡18| 男人舔奶头视频| 高清毛片免费看| 国产一区二区在线av高清观看| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 久久久久久久久久久丰满| 男女边吃奶边做爰视频| 亚洲色图av天堂| 在线免费十八禁| www日本黄色视频网| 久久久精品大字幕| 午夜亚洲福利在线播放| 寂寞人妻少妇视频99o| 美女高潮的动态| 99久久中文字幕三级久久日本| 免费av观看视频| videossex国产| 1000部很黄的大片| 中文字幕亚洲精品专区| 国产一区二区在线av高清观看| 岛国毛片在线播放| 乱系列少妇在线播放| 最新中文字幕久久久久| 国产欧美日韩精品一区二区| 一个人观看的视频www高清免费观看| 中文天堂在线官网| 欧美高清性xxxxhd video| 有码 亚洲区| 女人久久www免费人成看片 | 男女下面进入的视频免费午夜| 久久精品熟女亚洲av麻豆精品 | 亚洲欧美日韩高清专用| 日韩中字成人| 久久这里有精品视频免费| 99久久无色码亚洲精品果冻| 91久久精品电影网| 久久久久久久国产电影| 久久久久久国产a免费观看| 三级经典国产精品| 久久人人爽人人片av| 久久久久久久久大av| 久久亚洲国产成人精品v| 亚洲综合精品二区| 亚洲欧美日韩无卡精品| 亚洲三级黄色毛片| 欧美zozozo另类| 精品人妻偷拍中文字幕| 久久精品国产鲁丝片午夜精品| 国产高清国产精品国产三级 | 久久人人爽人人片av| 久久久久久伊人网av| 色5月婷婷丁香| 禁无遮挡网站| 深夜a级毛片| 免费观看精品视频网站| 成人漫画全彩无遮挡| 亚洲国产高清在线一区二区三| 久久99热6这里只有精品| 黄片wwwwww| 亚洲天堂国产精品一区在线| a级毛片免费高清观看在线播放| 国产高清不卡午夜福利| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 欧美成人午夜免费资源| 精品午夜福利在线看| 黄色一级大片看看| 最近的中文字幕免费完整| 亚洲av男天堂| 一个人看视频在线观看www免费| 麻豆成人午夜福利视频| 免费播放大片免费观看视频在线观看 | 男的添女的下面高潮视频| 高清毛片免费看| 国产精品精品国产色婷婷| 亚洲国产高清在线一区二区三| 如何舔出高潮| 一级毛片电影观看 | 亚洲av熟女| 久久精品人妻少妇| 久久久a久久爽久久v久久| 国产黄片视频在线免费观看| ponron亚洲| 日韩欧美国产在线观看| 日本爱情动作片www.在线观看| 22中文网久久字幕| 在线播放国产精品三级| 午夜亚洲福利在线播放| 精品人妻偷拍中文字幕| 国产亚洲av片在线观看秒播厂 | 国产精品熟女久久久久浪| 午夜a级毛片| 日日摸夜夜添夜夜添av毛片| 欧美色视频一区免费| 久久婷婷人人爽人人干人人爱| 久久亚洲国产成人精品v| 亚洲欧美日韩高清专用| 久久婷婷人人爽人人干人人爱| 亚洲性久久影院| 能在线免费观看的黄片| 99久久中文字幕三级久久日本| 久久鲁丝午夜福利片| 国产麻豆成人av免费视频| 日韩欧美三级三区| 女人久久www免费人成看片 | 色吧在线观看| 不卡视频在线观看欧美| 午夜激情福利司机影院| 国产精品一区二区三区四区久久| 亚洲经典国产精华液单|