李光耀, 肖 昊, 趙英卓,王 煜, 肖 情,肖忠良, 馮澤猛, 印遇龍,曹 忠*
(1.長沙理工大學化學與生物工程學院,電力與交通材料保護湖南省重點實驗室,微納生物傳感與食品安全檢測協(xié)同創(chuàng)新中心,湖南長沙410114)
(2.中國科學院亞熱帶農(nóng)業(yè)生態(tài)研究所,湖南長沙410125)
硫化氫(Hydrogen sulfide,H2S)在常溫常壓下是一種無色、有臭雞蛋氣味的氣體,主要來源于動植物腐敗、火山噴發(fā)、石油天然氣開采精煉、化學品制造和廢物處理等過程[1-2]。由于具有較強腐蝕性,H2S會使催化劑失活,引發(fā)環(huán)境污染,腐蝕破壞各種工業(yè)設備導致能量損失、效率低下[3]。因此,發(fā)展有效的策略以實現(xiàn)硫化氫的快速、實時監(jiān)測是非常有必要的,在環(huán)境保護、衛(wèi)生安全、節(jié)能減排等方面具有重要意義。
金屬氧化物半導體氣敏傳感器是一種以金屬氧化物半導體材料為敏感介質(zhì),通過其電導率(或電阻)變化感測目標氣體成分或濃度的器件。材料的氣敏性能很大程度上受其晶粒尺寸的影響,一般而言,晶粒尺寸越小靈敏度越高[4-7]。但晶粒尺寸越小,材料的表面能就越高,越容易團聚,這對提高材料氣敏性能是不利的。利用石墨烯作負載體可有效解決納米顆粒的團聚問題,提高材料的比表面積,改善材料的氣敏性能[8-10]。Zhang等[11]采用溶劑水熱法合成了純 NiO和NiO/rGO納米復合物,實驗測試表明NiO/rGO納米復合物的比表面積是純NiO的3.6倍,得益于比表面積的增大,其對15mg/LNO2的響應值是純NiO的2.8倍。Bai等[12]經(jīng)微波輔助水熱法制備了MoO3/rGO,其相對于MoO3對H2S具有更高的靈敏度和更快的響應、恢復速度。Bai等[13]經(jīng)由水熱法合成了Co3O4/rGO,研究發(fā)現(xiàn)Co3O4/rGO的比表面積是Co3O4的2.5倍,其對甲苯具有更高的靈敏度和選擇性。
由于貴金屬元素具有優(yōu)異的敏化性能,以及摻雜貴金屬元素引起的溢出效應可改變目標氣體-金屬氧化物之間的相互作用[14-16]。因此摻雜貴金屬元素是改善傳感器氣敏性能的一個有效策略。Hosseini等[17]研究了ZnO和AuNPs修飾ZnO納米棒對H2S的氣敏性能,由于AuNPs的溢出效應能導致更多的吸附氧擴散到ZnO表面,而增加表面上氧離子的密度,因此經(jīng)AuNPs敏化后ZnO納米棒對H2S表現(xiàn)出高的靈敏度和選擇性。Liu等[18]研究發(fā)現(xiàn),Pt活化的SnO2納米顆粒傳感器對500 mg/L氨氣的響應從6.84提高到203.44,且工作溫度從140℃下降到115℃。Liu等[19]比較了Au、Pd和 Pt納米顆粒修飾 SnO2八面體的氣敏性能,發(fā)現(xiàn)相對于SnO2八面體,修飾了貴金屬納米顆粒之后的氣敏響應都大幅度提高。
基于此,該文以氯化亞錫和氧化石墨烯(Graphene oxide,GO)為前驅(qū)體,經(jīng)由簡單水相路徑制得還原氧化石墨烯負載二氧化錫(Tin dioxide/reduced graphene oxide,SnO2/rGO),再將HAuCl4原位還原,成功地合成了AuNPs/SnO2/rGO三元納米復合物,將其涂覆于氧化鋁陶瓷管金電極上,形成新型薄膜氣敏傳感器。該氣敏傳感器對H2S有良好的響應性能,且工作溫度低、響應恢復快、重現(xiàn)性好,適用于養(yǎng)殖場監(jiān)測,在環(huán)境保護領域具有潛在的應用價值。
實驗所用的主要儀器有:數(shù)字萬用表(Agilent 34410A,安捷倫科技有限公司,美國);電子分析天平 (BS 124 S,北京賽多利斯儀器系統(tǒng)有限公司);電熱鼓風干燥箱(101-1AB,天津市泰斯特儀器有限公司);高速離心機(H1850,湖南湘儀實驗室儀器開發(fā)有限公司);超聲波清洗器(KQ-300,昆山市超聲儀器有限公司);集熱式恒溫加熱磁力攪拌器(DF-101S,鄭州科豐儀器設備有限公司);紅外光譜儀(Avatar 360 FT-IR,美國熱電尼高力儀器公司);紫外-可見分光光度計(TU-1901,北京普析通用儀器有限責任公司);氧化鋁陶瓷管金電極(內(nèi)徑2mm,外徑3mm,高度6mm,鄭州煒盛電子科技有限公司)。
實驗所用的主要試劑有:石墨粉(導電純,325目,阿法埃莎化學有限公司);聚二烯丙基二甲基氯化銨 (Poly(diallyldimethylammonium chloride),PDDA),Mw:20~35W,w=20%,阿拉丁試劑公司);硝酸鈉、高錳酸鉀、30%過氧化氫、二水合氯化亞錫、氯金酸、硼氫化鈉、無水氯化鈣(分析純,國藥集團化學試劑有限公司); 濃硫酸、濃鹽酸(分析純,衡陽市凱信化工試劑有限公司);硫化氫(10mol%,上海偉創(chuàng)標準氣體有限公司);實驗用水均為超純水(電阻率≥18.3MΩ·cm)。
圖1 AuNPs/SnO2/rGO納米復合材料的制備示意圖Fig.1 Schematic diagram for preparation of AuNPs/SnO2/rGO nanocomposites
氣敏材料制備流程如圖1所示,先采用改進的Hummers法制備氧化石墨烯 (GO);然后以SnCl2為前驅(qū)體、以PDDA作表面活性劑,與GO分散液混合后,經(jīng)水相反應形成還原氧化石墨烯負載二氧化錫復合物 (SnO2/rGO);最后將SnO2/rGO超聲分散后與HAuCl4攪拌混合,使用NaBH4作還原劑制得AuNPs/SnO2/rGO。將制備好的SnO2/rGO和Au/SnO2/rGO氣敏材料分別使用瑪瑙研缽研磨好后涂抹到氧化鋁陶瓷管金電極上,制得兩種氣敏元件。
將氣敏元件與數(shù)字萬用電表連接好,并置于檢測室中。使用無水氯化鈣干燥檢測室內(nèi)的空氣。然后,接通交流電源后,放置老化過夜,以使氣敏元件的基線電阻穩(wěn)定。
接著,將老化后的氣敏元件與數(shù)字萬用電表連接好,置于檢測室中,并記下此時的電阻為R0。用注射器往密閉的檢測室中注入一定量的H2S氣體,每隔一段時間記錄一次電阻值,待電阻穩(wěn)定后,記下此時的電阻為Rg,再將氣敏元件置于相同溫濕度條件下的空氣中,每隔一段時間記錄一個電阻值,待其電阻值平穩(wěn)后,記下此時的電阻為 R0′。
數(shù)據(jù)處理:氣敏元件對H2S氣體的響應值(S)可表示為S(%)=(R0-Rg)/R0×100%;響應時間為氣敏元件的電阻從R0變化到R0-(R0-Rg)×90%所用的時間,記為τrep。恢復時間為氣敏元件的電阻從 Rg變化到 Rg+ (R0′-Rg)×90%所用的時間,記為τrev。
采用TU-1901型雙光束紫外-可見分光光度計測試 GO、SnO2/rGO和 AuNPs/SnO2/rGO在200~700 nm范圍內(nèi)的紫外-可見吸收。如圖2A所示,對于GO,在228 nm處有一強吸收峰,為GO中苯環(huán)上的碳碳雙鍵發(fā)生π→π*躍遷(黑線);在300 nm附近有一肩峰,這是由于GO表面的含氧官能團與其相鄰C=C發(fā)生了n→π*躍遷。而對于SnO2/rGO,在257 nm處出現(xiàn)一個吸收峰 (紅線),這是rGO中苯環(huán)上的C=C發(fā)生π→π*躍遷的結果,相對于GO發(fā)生了紅移,這是因為GO表面的含氧官能團被部分還原后,苯環(huán)上的碳碳雙鍵得以恢復,從而使π→π*躍遷更容易發(fā)生。AuNPs/SnO2/rGO的紫外-可見吸收曲線分別在260 nm和540 nm處各有一吸收峰(藍線),此兩處的吸收峰分別歸屬于rGO中苯環(huán)上的C=C發(fā)生的π→π*躍遷和復合材料中金納米顆粒的紫外-可見吸收,且相對于SnO2/rGO的略有紅移,這可能是由于rGO被硼氫化鈉進一步還原,其表面的含氧官能團減少而形成更多的碳碳雙鍵,使共軛體系更大。
圖2 不同納米材料的紫外-可見光譜圖(A)和紅外光譜圖(B)Fig.2 UV-Vis(A)and FTIR(B)spectra of different nan omaterials
利用Avatar 360傅里葉紅外光譜儀對GO、SnO2/rGO和AuNPs/SnO2/rGO在400~4000 cm-1范圍內(nèi)進行了紅外光譜表征。如圖2B所示,在GO 的紅外光譜中 (黑線),1048 cm-1、1086 cm-1附近的吸收峰為GO表面C-O的伸縮振動吸收;1402 cm-1和1628 cm-1附近的吸收峰對應GO中苯環(huán)骨架的C=C伸縮振動吸收;1718 cm-1附近的吸收峰對應GO表面-COOH的C=O伸縮振動吸收;而3136 cm-1和3390 cm-1附近的吸收峰則可歸于GO表面-COOH和-OH的O-H伸縮振動吸收。在SnO2/rGO的紅外光譜中(紅線),除上述位置有吸收峰外,在561 cm-1附近出現(xiàn)一新的吸收峰,這可歸于SnO2中O-Sn-O的變角振動吸收;此外,1718 cm-1附近的吸收峰強度相對于GO的有明顯減弱,這說明GO表面的含氧官能團被部分還原。有趣的是在SnO2/rGO的紅外光譜中3390 cm-1附近吸收峰的強度相對于GO的不減反增,這可能是引入表面具有大量的-OH的SnO2納米顆粒的緣故,雖然GO被部分還原,其表面的-OH有所減少,但SnO2納米顆粒的引入使得3390 cm-1附近吸收峰的強度比還原前的GO有所增加。在AuNPs/SnO2/rGO的紅外光譜中 (藍線),1402 cm-1附近的吸收峰強度相比 GO和SnO2/rGO都增大了,而3390 cm-1附近吸收峰的強度卻明顯減小,這說明硼氫化鈉在將氯金酸還原的同時也還原了rGO,rGO表面的-OH相比SnO2/rGO進一步減少,而有更多的碳碳雙鍵得以恢復,這與上述紫外-可見光譜表征的結果是吻合的。
分別將SnO2/rGO、AuNPs/SnO2/rGO氣敏元件暴露于100mg/LH2S中,得到兩種材料的響應曲線如圖3A所示。由圖3B可知,AuNPs/SnO2/rGO和SnO2/rGO的響應時間τrep分別是31 s和65 s,AuNPs/SnO2/rGO的響應值約為SnO2/rGO的1.5倍??梢姡啾扔赟nO2/rGO,AuNPs/SnO2/rGO三元復合納米材料對H2S的靈敏度更高、響應速度更快,這可能是由于金納米顆粒的催化效應使得AuNPs/SnO2/rGO復合納米材料具有更好的氣敏性能。
將Au/SnO2/rGO氣敏元件置于檢測室中,使用氯化鈣調(diào)節(jié)環(huán)境相對濕度為50%,將檢測室置于恒溫水浴鍋中,調(diào)節(jié)水浴鍋的溫度,考察在不同環(huán)境溫度下Au/SnO2/rGO氣敏元件檢測100 mg/L硫化氫的電阻變化規(guī)律。得到Au/SnO2/rGO氣敏元件在不同溫度下的響應曲線(圖4B)??梢?,隨著溫度的增加,同一氣敏元件對硫化氫的響應有下降趨勢 (圖4A),但其平均響應值為29.86%,相對標準偏差為5.3%,可知環(huán)境溫度對氣敏元件的影響不大。
圖3 SnO2/rGO、AuNPs/SnO2/rGO對100mg/LH2S的響應曲線(A),以及其氣敏性能的比較(B)Fig.3 Response curves(A)of SnO2/rGO and AuNPs/SnO2/rGO to 100mg/LH2S,and their comparison of gas-sensing properties(B)
圖4 不同環(huán)境溫度下,AuNPs/SnO2/rGO對100mg/LH2S的響應值(A)和響應曲線(B)Fig.4 Response values(A)and response curves(B)of AuNPs/SnO2/rGO to 100mg/LH2Sat different ambient temperatures
將檢測室置于恒溫水浴鍋中,調(diào)節(jié)水浴鍋的溫度,控制檢測室內(nèi)環(huán)境溫度為30℃。實驗考察了在不同環(huán)境濕度下Au/SnO2/rGO氣敏元件對100mg/L硫化氫的響應曲線(圖5B),其中氣敏元件在相對濕度為10%~70%范圍的響應相對穩(wěn)定(圖5A),平均響應值為36.57%,相對標準偏差為5.5%;當相對濕度超過70%時傳感器對硫化氫的響應急劇下降,說明該氣敏元件可在10%~70%濕度范圍內(nèi)工作。
圖5 不同濕度下AuNPs/SnO2/rGO對100mg/LH2S的響應值(A)與響應曲線(B)Fig.5 Response values(A)and response curves(B)ofAuNPs/SnO2/rGO to 100mg/LH2S at different ambient humidity
傳感器對檢測物的響應-恢復性能對其推廣應用非常重要,一般使用響應和恢復時間表征傳感器的響應-恢復性能。為測試氣敏元件的響應-恢復性能,先往檢測室中注入100mg/LH2S,待達到響應平衡后,將氣敏元件暴露于干凈空氣中,使其恢復,記錄該過程的阻值變化,轉(zhuǎn)化為響應比值后得到氣敏元件的響應-恢復曲線(見圖6)。如圖6所示,可得響應時間τrep約為34 s,恢復時間τrev約為78 s,表明該氣敏元件具有快的響應、恢復速度,響應-恢復性能良好。
圖6 AuNPs/SnO2/rGO對100mg/LH2S的響應恢復曲線Fig.6 The response-recovery curve of AuNPs/SnO2/rGO to 100mg/LH2S
在室溫30℃下,調(diào)節(jié)檢測室的相對濕度為50%,將同一批次制備的多個相同的Au/SnO2/rGO氣敏傳感器分別用于檢測100mg/L硫化氫,并記錄其電阻的響應,計算響應幅度的變化,其結果如表1所示。7只Au/SnO2/rGO氣敏傳感器在同一濃度下的電流響應值非常相近,對100 mg/L硫化氫的響應平均值為29.97%,相對標準偏差為3.2%,表明該方法對H2S具有良好的重現(xiàn)性。而同一支電極在上述濃度氣體中反復測定7次,結果如表2所示,其對100mg/L硫化氫的響應平均值為31.74%,相對標準偏差為1.2%,表明Au/SnO2/rGO氣敏傳感器的重復性好,性能非常優(yōu)異。
表1 AuNPs/SnO2/rGO傳感器的重現(xiàn)性Tab.1 Reproducibility of AuNPs/SnO2/rGO gassensor
表2 AuNPs/SnO2/rGO氣敏傳感器的重復性Tab.2 Repeatability of AuNPs/SnO2/rGO gas sensor
將Au/SnO2/rGO氣敏傳感器置于檢測室中,調(diào)節(jié)檢測室的溫度為30℃,相對濕度為70%,依次檢測其對 25mg/L、50mg/L、75mg/L、100mg/L、125mg/L和150mg/L硫化氫的響應,結果如圖7所示,所制作的氣敏元件在25~150mg/L范圍內(nèi)對H2S具有良好的線性響應關系,其線性方程可擬合為S=32.22 lg c-35.42,相關系數(shù)為r=0.9940。因此,該氣敏元件對H2S的響應性能優(yōu)異,可以用于禽舍中硫化氫的檢測。
圖7 AuNPs/SnO2/rGO對H2S響應的線性曲線圖Fig.7 Response linear curve of AuNPs/SnO2/rGO to H2S
穩(wěn)定性不僅影響氣敏元件的檢測工作,同時也影響其推廣??刂茩z測室的溫度為30℃,調(diào)節(jié)相對濕度為50%,將Au/SnO2/rGO氣敏傳感器安裝至檢測室中,接通電源。加入100mg/L硫化氫,記錄傳感器數(shù)值的變化。按此方法,每天測試一次,持續(xù)重復半個月。結果如圖8所示,使用13、14、15、16 d時的電阻響應值分別下降為初始響應的92.60%、85.75%、84.72%、78.16%。可見,Au/SnO2/rGO氣敏傳感器使用13 d時對硫化氫的響應值基本保持不變,其響應的平均值為28.74%,相對標準偏差為3.6%。因此,該文設計Au/SnO2/rGO氣敏傳感器能持續(xù)穩(wěn)定工作半個月,可以用于禽舍中硫化氫氣體的連續(xù)監(jiān)測。
圖8 AuNPs/SnO2/rGO氣體傳感器對100mg/LH2S的持續(xù)響應曲線圖Fig.8 Stability of AuNPs/SnO2/rGO gas sensors to 100 mg/LH2S
該文成功地制備了AuNPs/SnO2/rGO三元復合納米材料,將其組裝于氧化鋁陶瓷管金電極上,形成一種新型的薄膜式氣體傳感器。該傳感器對H2S響應-恢復速度快、靈敏度高,受環(huán)境溫度的影響小,且具有良好的重復性、重現(xiàn)性和穩(wěn)定性。該傳感器的制作工藝簡單,可在室溫下工作,能耗小,在養(yǎng)殖場環(huán)境實時監(jiān)測方面有潛在的應用價值。
[1]Shi JJ,Cheng ZX,Xu JQ,et al.Facile synthesis of reduced graphene oxide/hexagonal WO3nanosheets composites with enhanced H2Ssensing properties[J].Sensors and Actuators B,2016,230:736-745.
[2]Wu H,Chen ZM,Ren ZY,et al.Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II)for ppb-level H2Ssensing at room temperature[J].Journal of Materials Chemistry A,2015,4:1096-1104.
[3]Guo Z,Chen GQ,Zeng GM,etal.Metal oxides and metal salt nanostructures for hydrogen sulfide sensing:mechanism and sensing performance[J].RSC Advances,2015,5:54793-54805.
[4]Zhang J,Qin ZY,Zeng DW,et al.Metal-oxide-semiconductor based gas sensors:screening,preparation,and integration[J].Physical Chemistry Chemical Physics,2017,19:6313-6329.
[5]Zhang G,Liu M.Effect of particle size and dopant on properties of SnO2-based gas sensors[J].Sensors and Actuators B,2000,69:144-152.
[6]Xu CN,Tamaki J,Yamazoe N,etal.Grain size effects on gas sensitivity of porous SnO2-based elements[J].Sensors Actuators B,1991,3:147-155.
[7]Rothschild A,Komem Y.The effect of grain size on the sensitivity of nanocryst all inemetal-oxide gas sensors[J].Journal of Applied Physics,2004,95:6374-6380.
[8]Wang C,Zhu JW,Wang X,etal.Reduced graphene oxide decorated with CuO–ZnO hetero-junctions:towards high selective gas-sensing property to acetone[J].Journal of Materials Chemistry A,2014,2:18635-18643.
[9]Yin L,Chen D L,Zhang R,et al.Normal-pressuremicro wave rapid synthesis of hierarchical SnO2@rGO nanostructures with super high surface areas as high quality gas-sensing and electrochemical active materials[J].Nanoscale,2014,6:13690-13700.
[10]Hao Q,Liu T,Wang J,et al.Controllable synthesis and enhanced gas sensing properties of a single-crystalline WO3-rGO porous nanocomposite[J].RSC Advances,2017,7:14192-14199.
[11]Zhang J,Zeng DW,Zhao SQ,et al.Room temperature NO2sensing:What advantage does the rGO-NiO nanocomposite have over the pristine NiO[J].Physical Chemistry Chemical Physics,2015,17:14903-14911.
[12]Bai SL,Chen A F,Li D Q,et al.Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2Ssensing performances[J].Sensors and Actuators B,2015,216:113-120.
[13]Bai SL,LiD Q,Chen A F,etal.Preparation of reduced graphene oxide/Co3O4composites and sensing performance to toluene at low temperature[J].RSC Adv.,2016,6:60109-60116.
[14]Hwang IS,Choi JK,Lee JH,et al.Facile control of C2H5OH sensing characteristicsby decorating discrete Ag nanoclusters on SnO2nanowire networks[J].ACS Applied Materials and Interfaces,2011,3:3140-3145.
[15]VallejosS,Stoycheva T,Annanouch FE,et al.Microsensors based on Pt–nanoparticle functionalised tungsten oxide nanoneedles for monitoring hydrogen sulfide[J].RSC Advances,2014,4:1489-1495.
[16]Wang Y L,Cui X B,Lu G Y,et al.Preparation of Agloaded mesoporous WO3and its enhanced NO2sensing performance[J].Sensors and Actuators B,2016,225:544-552.
[17]Hosseini Z S,Mortezaali A,Iraji zad A,et al.Sensitive and selective room temperature H2Sgas sensor based on AuNPs sensitized vertical ZnO nanorods with flower-like structures[J].Journal of Alloys and Compounds,2015,628:222-229.
[18]Liu X,Chen N,Wang Y D,etal.Nanoparticle clustergas sensor:Ptactivated SnO2nanoparticles for NH3detection with ultrahigh sensitivity[J].Nanoscale,2015,7:14872-14880.
[19]Liu C,Kuang Q,Xie ZX,et al.The effect of noble metal(AuNPs,Pd and Pt)nanoparticleson the gas sensing performance of SnO2-based sensors:a case study on the{221}high-index faceted SnO2octahedra[J].Cryst Eng-Commun,2015,17:6308-6313.