• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Online calibration of combustion phase in a diesel engine

    2017-12-26 09:28:39QingyuanTANPrasadDIVEKARYingTANXiangCHENMingZHENG
    Control Theory and Technology 2017年2期

    Qingyuan TAN,Prasad DIVEKAR,Ying TAN,Xiang CHEN?,Ming ZHENG

    1.Department of Electrical and Computer Engineering,University of Windsor,Windsor N9B 3P4,Canada;

    2.Department of Mechanical,Automotive&Materials Engineering,University of Windsor,Windsor N9B 3P4,Canada;

    3.Department of Electrical and Electronic Engineering,University of Melbourne,Parkville 3010,VIC,Australia

    Online calibration of combustion phase in a diesel engine

    Qingyuan TAN1,Prasad DIVEKAR2,Ying TAN3,Xiang CHEN1?,Ming ZHENG2

    1.Department of Electrical and Computer Engineering,University of Windsor,Windsor N9B 3P4,Canada;

    2.Department of Mechanical,Automotive&Materials Engineering,University of Windsor,Windsor N9B 3P4,Canada;

    3.Department of Electrical and Electronic Engineering,University of Melbourne,Parkville 3010,VIC,Australia

    In this work,an online calibration mechanism is proposed for the combustion phase in a diesel engine.In particular,a simplified event-based engine model,of which the output predicts the optimum combustion phase,is used to aid the calibration,and the model is updated online along with the engine operation to keep the integrity high so as to improve the quality of optimum combustion phase prediction.It is found this mechanism can be applied to develop an online automated calibration process when the engine system shifts to a new operating point.Engine test results are included to demonstrate the effectiveness of the proposed mechanism.

    Extremum seeking,event-based model,diesel engine,online optimization,automated calibration

    1 Introduction

    The calibration of the diesel engine system is essentially a multi-objective optimization problem[1,2].In traditional engine calibration processes,extensive time and efforts have to be invested to derive the steady state look-up tables for on-board actuation during engine operations since the optimum set-points of the actuators vary over the range of engine operation[3,4].Profound knowledge of engine operation principles as well as advanced optimization methods are called in,therefore,to turn the sophisticated engine calibration process into an efficient and inexpensive one.

    For an on-road vehicle,depending on the operating condition,the on-board electronic control unit(ECU)assigns the optimal parameter values to the actuators based on the feedback signals retrieved from various sensors.A finite number of the optimal parameters are calibrated off-line and stored inside the look-up table characterized based on engine operating conditions[5].The parameters for the un-calibrated conditions which have not been included inside the look-up table are interpolated using the calibrated parameters. Model based Design of Experiment(DOE)methods[5,6]are usually applied for engine calibration in which a statistical engine model is required for the determination of the optimal parameters at each “engine operating space”grid knot[7],the obtained values are then applied to engine test cells for validation and fine tuning.When the number of parameters to be calibrated is high,the experimental burden required for DOE based calibration would increase significantly.

    To reduce the calibration burden,the data-driven optimization method,such as extremum seeking(ES),has been attempted for engine parameter calibration.Compared to the DOE method,the ES approach relies solely on the relationship between the system input and output[8–10],which is essentially a model-free method.Both engine operation and the ES optimization can proceed concurrently which further reduces the strict design requirements proposed in conventional DOE processes.Therefore,ES is a good alternative for solving engine calibration problems.In[11],ES is applied to the calibration of the air-fuel-ratio and the spark advance phase for a spark ignition engine to deliver high Indicated Mean Effective Pressure(IMEP)and low exhaust manifold temperature.In[12],the valve timings and spark trigger timing of a spark ignition engine is calibrated using ES in terms of achieving the best break specific fuel consumption.In[13],the spark timing for an spark ignition engine which runs on ethanol/gasoline blended fuel is calibrated using ES to operate at the best thermal efficiency.However,the work presented in[11–13]are all measurements dependent without taking the advantage of modeling knowledge.

    To improve the efficiency of ES applied to engine calibration,a structure which utilizes both the engine model and the measurement is proposed in this paper.A model-data integrated structure is developed for the calibration of the diesel engine combustion phase in order to achieve the best IMEP value.An event-based first-principle engine model is applied in the structure to predict the optimum combustion phase which is later used to reset the ES method when the engine shifts to a new operation point.The ES optimization compensates the influence of external disturbances and model uncertainty.The event-based model is,on the other hand,updated in real time for its parameters in order to keep the model integrity.

    The remainder of this paper is organized as follows.Firstly,a model-data integrated structure is introduced.The event-based model as well as the parameter online optimization are then presented.Thereafter,the effectiveness of the online calibration approach is demonstrated using engine test results.Finally,concluding remarks are made.

    2 Online calibration procedures

    The structure for the proposed calibration procedures are shown in Fig.1.υdrepresents the external control inputs that define the engine operating point(determined by different engine load or speed).The model is calibrated simultaneously during the engine operation using ES by tuning the coefficient Chtwhich affects the modeled heat transfer process;?pIMEis the IMEP acquired from the engine model;?θ?CA50is the optimum CA50(crank angle for 50%of released accumulated heat)control obtained through gradient descent optimization(GDO)[14]on the engine model;pIMEis the measured IMEP value and θCA50is the CA50 control input applied to the real engine.

    Fig.1 Proposed control structure.

    In this work,ES is chosen as the data-driven method.ES is essentially a model-free optimization method which uses input-output measurements to achieve system optimal performances[8,9].As not much knowledge of the system is needed,ES is robust in handling disturbances[8].

    ES runs iteratively and the optimization process is to guide the cost function to an extremum(minimum or maximum)by tuning the selected system control input based on the system steady-state response[8].ES would first initiate perturbation on the system input by adding a dither signal to it.The output from the system is used to construct a cost function.The gradient of the cost function can be extracted by ES through demodulation and the interaction with a series of embedded filters.The ES cost function design is based on the assumption that the system output has an asymptotically stable equilibrium.The behavior of the cost function is usually unknown and ES is able to determine the optimum control input from the cost function convergence based on the available measurement data.

    In Fig.1,the block ES2represents the ES controller for engine combustion phase calibration.A dither signal with a relatively low frequency is used in order to achieve the time scale separation between the plant dynamics and the ES calibration.By using singular perturbation technique and averaging,ES can estimate the gradient of the cost function[8,9,15].

    It is also worthwhile to highlight that modeling work on every automotive subsystems have been immensely investigated[16].These models usually are calibrated by extensive experiments.Even though the accuracy or the complexity of these models do not favor model-based DOE design,some useful system information can be retrieved from the model output.One possible application for these models is to improve the performance of data-driven techniques such as ES.As shown in Fig.1,when the external input υdhas caused a shift of system operation point,i.e.,υd(n)≠ υd(n?1),the“mode change detection”mechanism is triggered.This mechanisminitializes the model-based GDO to obtain the optimum inputunder υd(n)for the model as shown in Fig.1.is then applied as the starting point for ES2to perform the combustion phase calibration.Providing the model is very accurateinitializes ES2to the proximity of the realDuring the calibration,ES2only compensates the effects caused by external disturbances and the model uncertainty.Therefore,the work load on ES calibration is reduced.Note,even ifis faraway fromas the result of bad modeling,which is undesired in real applications,the proposed calibration would perform no worse than the conventional ES calibration.

    The authors’have previously investigated the application of ES for online parameter tuning of the event-based engine model[17,18].In this work,the authors have strived an attempt to apply this technique by integrating it into the engine calibration procedures,Fig.1.Real time engine measurement data are acquired for model parameter corrections.The minimization of the differences between measurement and model output are used for this parameter optimization.In Fig.1,ES1indicates the ES block for model parameter optimization.In this work,only Chtis tuned by ES1while guidelines based on experience and literature review are used to select the other parameters of the event-based model.

    3 Online optimization of engine model parameters

    3.1 Event-based engine model

    In this work,the model shown in Fig.1 is a first principle event-based model defined in the engine crank angle domain,θ.The model control input is chosen as the crank angle of 50%accumulated heat release,θCA50,within one engine cycle.The control of θCA50is implemented through the manipulation of fuel injection timing.The parameter identified for online tuning is chosen as Cht.Chtis a heat transfer coefficient defined in the Woschni’s heat transfer correlation[19].A brief introduction of this model is explained further below.Detail explanation and the validation of this model can be found in[17].

    Thermodynamic expressions under the crank angle domain for bulk gas temperature T in the nth engine cycle can be represented as

    where αis an empirical coefficient that is related to the specific heat ratio γ at the temperature Tnand is given by

    The speed-density equation is used to evaluate Nimin terms of the intake manifold pressure,pim,intake manifold temperature,Timand the cylinder volumetric efficiency ηV.

    where Vsis the cylinder displacement volume.

    The specific heat ratio γ(Tn(θ))at temperature Tnis approximated by a linear expression:

    where γ(θIVC)is the specific heat ratio obtained at the crank angle of intake valve closing(θIVC),which is considered as a constant in the model,and ρ is an empirical coefficient obtained from engine tests.

    The amount of heat transfer,dQht,is modeled using Woschni’s empirical correlation while the heat release rate,dQhr,is estimated using a triangle function in the crank angle,θ,domain.The control input θCA50is incorporated in the definition of dQhr(see[17]for more details).

    The amount of heat transfer is defined as

    where As(θ)is the exposed combustion surface area at the crank angle θ,Twallis the cylinder wall temperature,Chtis a coefficient that varies under different types of combustion,B is the bore diameter,pnis the in-cylinder pressure,C1is swirl constant,Spis the mean piston speed,C2is combustion constant,and pmotis the cylinder motoring pressure.

    The amount of heat release is approximated by

    θCDis the combustion duration determined under the crank angle domain,mfuelis the injected fuel mass at each engine cycle,and Hlowis the lower heating value of the fuel.

    The piston work dWpvis expressed as

    with the cylinder instantaneous volume V calculated from the slider-crank mechanism(see[19]for more details):

    where Vcis the clearance volume of the cylinder,l is the connecting rod length,and a is the crank radius.

    The pressure pnin the combustion chamber is modeled as

    The underlying engine model can then be expressed in state-space by combining(1)–(12):

    is the state variable vector.

    zn(θ)indicates the performance output vector,and unis θCA50,all in the nth engine cycle.Note that

    where dQ(θ,un)=dQhr(θ,un)? dQht(θ).The performance output zn(θ)represents the normalized piston work,obtained at θ.

    In this work,the calibration target is to maximize the engine output work for a constant fuel injection duration so as to achieve the best fuel efficiency.The indicated mean effective pressure or IMEP of the nth engine cycle is a representation of the indicated torque normalized to the displacement volume,and is defined from the time of intake valve closing,IVC,to exhaust valve opening,EVO:

    3.2 Online parameter optimization

    ES is applied for parameter online optimization.The differences between the realtime engine measured IMEP and the modeled IMEP values are used to form the cost function:

    In the event-based model,the simplification for the amount of heat release,dQhr,and the specific heat ratio,γ,would introduce uncertainty to the engine model.The combustion of in-cylinder air-fuel mixture is a complicated thermodynamic process.It determines the amount of energy which is converted from heat to piston work.A good estimation of piston work increases the accuracy for the estimation of?pIMEat the end of the nth engine cycle.

    As mentioned in the previous section,Chtis a coefficient which affects the modeled in-cylinder combustion characteristics.This coefficient is also dependent on different engine operating conditions.In this work,Chtis tuned for model accuracy improvement,as it determines the amount of heat that is transferred to the cylinder wall.The heat loss reduces the amount of energy which eventually converts to the piston work and therefore lowers down the IMEP value.

    4 Engine test setup

    The experimental work is conducted on a single cylinder common-rail direct-injection diesel engine with independent air and fuel management systems.The engine details are summarized in Table 1.A non-motoring eddy current dynamometer is used for engine speed control and power dissipation.The engine speed control is set at 1500r·min?1for all the tests.The boosted intake air for the research cylinder is simulated using hydrocarbon-free,dry,compressed air.The air flow rate is measured using a Roots air flow meter.Exhaust gas recirculation(EGR)is adjusted by a combination of EGR valve and exhaust back-pressure valve position.The engine coolant temperature is managed with external conditioning systems to maintain coolant temperature at 80°C.The engine fuel system consists of a high pressure common rail diesel injection with rail pressure up to 1600bar.The average diesel fuel flow rate is measured using volumetric fuel flow detector.

    Table 1 Engine system configuration.

    5 Engine test results

    Engine tests are carried out in the authors’lab to demonstrate the performance of the proposed calibration procedures.In this section,the tuning of heat transfer coefficient,Cht,is first demonstrated.Note that this process runs continuously in real test conditions as to make sure that the modeled IMEP can track the measured IMEP during engine calibration.When the engine shifts to a new operating point,i.e.,υd(n)≠ υd(n? 1),GDO is applied to the optimized event-based model so as to locate the optimumwith the condition of meeting the optimum thermal efficiency demand. Lastly,is applied to reset the ES controller designed for engine combustion phase calibration. In this work,θCA50is chosen as the only control input to be calibrated.A cost function is designed for the calibration of θCA50using ES which starts from

    5.1 Online optimization of heat transfer coefficient

    The engine operation zone is governed by the engine load and the engine speed. For the engine test conducted in the authors’lab,the engine speed is kept constant at 1500r·min?1using the eddy current dynamometer.The engine load can be adjusted by altering the injection duration.When constant fuel pressure is maintained,a longer injection duration usually results in more fuel spray into the engine cylinder.

    As shown in Fig.2,during the engine test,the injection duration is altered from 500μs to 450μs at the 43rd engine cycle.This change has led to a decrease in engine IMEP from around 5.5bar to nearly 4bar.The change in engine operation zone requires a calibration in Chtvalue to maintain a good prediction of IMEP values from the engine model.ES increases Chtto drive(17)to its minimum.

    From Fig.2,it is clear that the model tracks the engine measured IMEP quite well as the average difference between the two sets of IMEP values is 0.17bar.The maximum difference between model and the measured IMEP takes place at the time of engine operation zone shifts.Where the difference is 0.98bar.ES responds to this sharp change of cost function values by increasing the Chtvalues drastically.

    Fig.2 Parameter optimization.

    Note that when the engine is operated within each operation zone,Chtis still altered by ES as to minimize the cost function(17).For this test,when the injection duration is 500μs,Chtis 3.7±0.5.When the injection duration is kept at 450μs,Chtis 4.8±0.6.Though variations do exist for Chtvalues within the same operation zone,the differences of Chtobtained under different operation zones are more significant.

    5.2 Model input calibration

    A simple GDO method is applied to find the optimumfor the event-based model after the injection duration has changed to 500μs:

    When the fuel injection duration is kept constant,the minimization of J2is realized by varying thethrough the scheduling of injection timing.As the derived J2value reaches its minimum,the GDO locates thewhich makesp?IMEto its maximum.Thus the event-based engine model can produce the best fuel efficiency.

    As shown in Fig.3,the searching forstarts at 364°CA where the modeled IMEP is 5.1bar.The equivalent fuel injection duration is 500μs.GDO delays theas the IMEP increases and the value of J2is reduced.When J2reaches its minimum,GDO terminates andis 369°CA.Thus 369°CA is considered asfor this operation point.The modeled IMEP is around 5.4bar which is close to a 6%increase as comparedto the condition whenis364°CA.ThisGDO calibration lasts for 4ms.

    Fig.3 GDO calibration results.

    In the following section,the derived?θCA50is applied to reset the ES calibration for engine θCA50control at 500μs injection duration.

    5.3 Combustion phase calibration

    In this section,two engine tests results are demonstrated as to compare the differences between the data only and the proposed procedures for calibrating the engine combustion phase

    The injection duration is maintained at 500 μs thus the engine can stay at an IMEP close to 5.2bar.One engine test is conducted using the conventional ES controller to identifywhile the other test uses the proposed approach forsearching.The same cost function(19),which is designed for GDO,is also applied to obtain(pIMEis used to replace).Results from both engine tests are shown in Fig.4.A quick impression from the two results is that despite the ES searching starting point,the obtainedfrom the two tests are both 369°CA.

    Fig.4(a)shows the engine test results using the conventional ES approach.Due to the lack of system information,the starting point for this calibration is chosen randomly at 377°CA.Since the delayed phase has caused the combustion to take place more in the engine expansion stroke,the energy can not be used efficiently to convert to piston work.As a result,the obtained IMEP value is low.Based on the measured information,the ES controller drives the θCA50value earlier which eventually rested at 369°CA.The measured IMEP value is around 5.5bar and the overall time consumed for this convergence is around 750 engine cycles.

    Fig.4(b)shows the engine test results using the proposed approach.As shown previously,the online optimized model has an optimumof 369°CA when the injection duration is kept at 500μs.Therefore,369°CA is directly applied to initialize the ES controller for θCA50calibration.Note that for this very test demonstrated in Fig.4(b),thehappens to be the same as θ?CA50for the real engine,thus little effort on the ES searching can be observed.The system can generate a 5.5bar IMEP since the very beginning of ES calibration usingtheprovided by the online optimized engine model.

    In addition to the test results,the authors would like to address three remarks as future perspectives for the proposed calibration framework:

    Remark 1With a slight modification,the proposed procedures can be extended to handle multiple parameters calibration in a diesel engine.Due to its data-driven nature,the procedures can be executed automatically in practice.Compared to the conventional DOE procedures,this can significantly reduce human interferences and time consumption for the engine calibration task.

    Remark 2To accommodate the computational resource constraint,the criteria for event-triggered GDO can be appropriately designed.In particular,a user defined bound is set for variations in consecutive updates of the model parameters.Only if the model parameters updates exceed the bound,the GDO calibration of the engine parameters would be initiated.The defined threshold can be used as an additional index to classify engine operating points in this regard.

    Remark 3Other system states can also be estimated from the online optimized model.Subject to the application as well as model complexity,this relatively accurate model can be used in model based designs to regulate engine(transient)performances.

    Fig.4 Engine test results.

    6 Conclusions

    This paper presents a model-data integrated structure capable for online engine combustion phase calibration.θCA50is calibrated subject to the engine IMEP under one operation condition.

    The parameters of an event-based model which has been developed by the authors is first optimized against the engine measurement data to guarantee a good matching between the model and real engine performance.GDO method is then triggered by a mode change detection mechanism to identify the optimumwhich maximizes the modeled IMEP value.Theis then applied to reset the ES controller for real engine combustion phase calibration.Engine test results demonstrate the effectiveness of the proposed procedures.

    [1]L.Guzzella,A.Amstutz.Control of diesel engines.IEEE Control Systems Magazine,1998,18(5):53–71.

    [2]G.Zhu,J.Wang,Z.Sun,et al.Tutorial of model-based powertrain and aftertreatment system control design and implementation.Proceedings of the American Control Conference,Chicago:IEEE,2015:2093–2110.

    [3]Z.Yang,R.Stobart,E.Winward.Online Adjustment of Start of Injection and Fuel Rail Pressure Based on Combustion Process Parameters of Diesel Engine.SAE Technical paper 2013-01-0315.Detroit:SAE International,2013.

    [4]H.Zhao.Advanced Direct Injection Combustion Engine Technologies and Development.Sawston,Cambridge:Woodhead Publishing,2009.

    [5]M.Guerrier,P.Cawsey.The development of model based methodologies for gasoline IC engine calibration.SAE Technical paper 2004-01-1466.Detroit:SAE International,2004.

    [6]S.Jiang,D.Nutter,A.Gullitti.Implementation of Model-based Calibration for A Gaslone Engine.SAE Technical Paper 2012-01-0722.Detroit:SAE International,2012.

    [7]K.Ropke,C.von Essen.DOE in engine development.Quality and Reliability Engineering International,2008,24(6):643–651.

    [8]K.B.Ariyur,M.Krstic.Real-time Optimization by Extremum-seeking Control.New Jersey:Wiley,2003.

    [9]S.Liu,M.Krstic.Stochastic Averaging and Stochastic Extremum Seeking.London:Springer,2012.

    [10]C.Zhang,R.Ordonez.Extremum-seeking Control and Applications.London:Springer,2012.

    [11]E.Corti,C.Forte,G.Mancini,et al.Automatic combustion phase calibration with extremum seeking approach. ASME Journal of Engineering for Gas Turbine and Power,2014,136(9):DOI 10.1115/1.4027188.

    [12]D.Popovic,M.Jankovic,S.Magner,et al.Extremum seeking methods for optimization of variable cam timing engine operation.IEEE Transactions on Control Systems Technology,2006,14(3):398–407.

    [13]E.Hellstrom,D.Lee,L.Jiang,et al.On-board calibration of spark timing by extremum seeking for flex-fuel engines.IEEE Transactions on Control Systems Technology.2013,21(6):2273–2279.

    [14]M.Bartholomew-Biggs.Nonlinear Optimization with Engineering Applications.London:Springer,2008.

    [15]S.Z.Khong,Y.Tan,C.Manzie,et al.Multi-agent seeking via discrete-time extremum seeking control.Automatica,2014,50(9):2312–2320.

    [16]L.Guzzella,C.Onder.Introduction to Modeling and Control of Internal Combustion Engine Systems.Berlin:Springer,2010.

    [17]P.Divekar,Q.Tan,Y.Tan,et al.Nonlinear model reference observer design for feedback control of a low temperature combustion diesel engine.Proceedings of the American Control Conference,Chicago:IEEE,2015:13–18.

    [18]Q.Tan,P.Divekar,Y.Tan,et al.A diesel engine combustion phasing optimization using a model guided extremum seeking approach.Chinese Control Conference,Chengdu:IEEE,2016:2837–2842.

    [19]J.B.Heywood.Internal Combustion Engines Fundamentals.New York:Mc Graw Hill,1988.

    2 December 2016;revised 9 February 2017;accepted 9 February 2017

    DOI10.1007/s11768-017-6178-y

    ?Corresponding author.

    E-mail:xchen@uwindsor.ca.

    The work at the Clean Combustion Engine Laboratory was supported by the Canada Research Chair program,NSERC,CFI,OIT,AUTO21,the University of Windsor,Ford Motor Company,and other OEMs.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Qingyuan TANreceived his B.Eng.degree in Instrumentation and Control Science from Shanghai Jiao Tong University,China,and his M.Sc.degree in Bio Microfluidics from University of Toronto,Canada.He is currently a Ph.D.candidate at the University of Windsor,Canada.E-mail:tan1b@uwindsor.ca.

    Prasad DIVEKARreceived the B.Sc.degree from the Shivaji University,India,in 2008,the M.S.degree from the Clemson University,U.S.A.,in 2010,and the Ph.D.degree from the University of Windsor,Canada in 2016,all in Automotive Engineering.E-mail:divekar@uwindsor.ca.

    Ying TANis an Associate Professor and Reader in the Department of Electrical and Electronic Engineering at The University of Melbourne.She received her B.Sc.degree from Tianjin University,China,in 1995,and her Ph.D.from the National University of Singapore in 2002.She joined McMaster University in 2002 as a postdoctoral fellow in the Department of Chemical Engineering.She joined the Department of Electrical and Electronic Engineering Department at the University of Melbourne in 2004.E-mail:yingt@unimelb.edu.au.

    Ming ZHENGis a Professor and Research Chair in Clean Diesel Engine Technology at the University of Windsor.He is the cofounder and the Director of the Clean Combustion Engine Lab.His research areas encompass Clean combustion including diesel combustion,low temperature combustion,diesel HCCI and PCCI,adaptive combustion control,high energy spark ignition and control,EGR hydrogen-reforming,active flow control aftertreatment,engine modeling,diagnosis,and dynamometer tests,biofuel and biodiesel research.E-mail:mzheng@uwindsor.ca.

    Xiang CHENis a Professor in the Department of Electrical and Computer Engineering at the University of Windsor.He re-ceived the M.Sc.and Ph.D.degrees from the Louisiana State University,U.S.A.,in 1996 and 1998,respectively.His research areas include Network based control system,robust and nonlinear control,vision based motion control,control applications in automotive and manufacturing systems.E-mail:xchen@uwindsor.ca.

    一边摸一边做爽爽视频免费| 91麻豆精品激情在线观看国产| 国产成+人综合+亚洲专区| 国产精品美女特级片免费视频播放器 | 亚洲人成电影免费在线| 美女高潮到喷水免费观看| 久热爱精品视频在线9| 精品欧美一区二区三区在线| 亚洲人成电影观看| 国产精品精品国产色婷婷| 午夜两性在线视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费激情av| 免费女性裸体啪啪无遮挡网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品合色在线| 欧美一级毛片孕妇| 久久精品成人免费网站| 美女大奶头视频| 国产亚洲精品av在线| 国产精品亚洲av一区麻豆| 一个人观看的视频www高清免费观看 | 中国美女看黄片| 99国产精品免费福利视频| 亚洲国产精品合色在线| 久久热在线av| 91麻豆av在线| 视频在线观看一区二区三区| 日韩三级视频一区二区三区| 亚洲精品一区av在线观看| 不卡av一区二区三区| 美女扒开内裤让男人捅视频| 99香蕉大伊视频| 搡老妇女老女人老熟妇| 国产亚洲欧美在线一区二区| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 国产在线观看jvid| 欧美亚洲日本最大视频资源| 欧美绝顶高潮抽搐喷水| xxx96com| 操出白浆在线播放| 国产成人精品在线电影| avwww免费| 免费在线观看影片大全网站| 色老头精品视频在线观看| 亚洲国产中文字幕在线视频| 久久性视频一级片| 在线天堂中文资源库| 巨乳人妻的诱惑在线观看| 国产成人欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 日本vs欧美在线观看视频| 久久精品成人免费网站| 国产精品一区二区三区四区久久 | 久久国产精品人妻蜜桃| 性欧美人与动物交配| 啪啪无遮挡十八禁网站| 啦啦啦 在线观看视频| 亚洲欧美日韩无卡精品| 亚洲熟女毛片儿| 欧美性长视频在线观看| 麻豆一二三区av精品| 亚洲欧美日韩高清在线视频| www.精华液| 老司机午夜十八禁免费视频| 久久天躁狠狠躁夜夜2o2o| 欧美日韩中文字幕国产精品一区二区三区 | 美国免费a级毛片| 久久热在线av| 老司机福利观看| а√天堂www在线а√下载| 亚洲成av片中文字幕在线观看| av欧美777| 妹子高潮喷水视频| 国产精品野战在线观看| 91大片在线观看| 欧美乱妇无乱码| 午夜福利在线观看吧| av在线天堂中文字幕| 美女高潮喷水抽搐中文字幕| 一区二区日韩欧美中文字幕| 亚洲av成人不卡在线观看播放网| 夜夜看夜夜爽夜夜摸| 99精品在免费线老司机午夜| 亚洲欧美精品综合久久99| 香蕉国产在线看| 搡老妇女老女人老熟妇| 欧美激情高清一区二区三区| 国产一区在线观看成人免费| 欧美日韩黄片免| 欧美乱色亚洲激情| 久久精品国产综合久久久| av天堂久久9| 亚洲国产中文字幕在线视频| 国产精品永久免费网站| 日本撒尿小便嘘嘘汇集6| 亚洲成av人片免费观看| 亚洲黑人精品在线| 国产欧美日韩精品亚洲av| 久久天堂一区二区三区四区| 美女大奶头视频| 日韩免费av在线播放| 亚洲最大成人中文| 久久久久国产精品人妻aⅴ院| 99精品在免费线老司机午夜| 两个人看的免费小视频| 欧美中文综合在线视频| 欧美丝袜亚洲另类 | www.自偷自拍.com| 最近最新中文字幕大全电影3 | 露出奶头的视频| 欧美黑人欧美精品刺激| 深夜精品福利| 99热只有精品国产| 午夜免费观看网址| 亚洲视频免费观看视频| 国产真人三级小视频在线观看| 香蕉丝袜av| 国产三级黄色录像| 久久精品影院6| 一二三四社区在线视频社区8| 亚洲美女黄片视频| 日本免费一区二区三区高清不卡 | 俄罗斯特黄特色一大片| 亚洲狠狠婷婷综合久久图片| 免费看美女性在线毛片视频| 午夜免费激情av| 首页视频小说图片口味搜索| 一本久久中文字幕| 午夜福利一区二区在线看| 亚洲精品中文字幕在线视频| 女性被躁到高潮视频| 午夜福利影视在线免费观看| 99久久99久久久精品蜜桃| 两个人看的免费小视频| svipshipincom国产片| 性欧美人与动物交配| 十分钟在线观看高清视频www| 免费在线观看黄色视频的| 免费看十八禁软件| 桃红色精品国产亚洲av| 电影成人av| 久久天躁狠狠躁夜夜2o2o| 国产高清有码在线观看视频 | 久99久视频精品免费| tocl精华| 99精品久久久久人妻精品| 亚洲色图 男人天堂 中文字幕| 十八禁人妻一区二区| 男人的好看免费观看在线视频 | 日韩国内少妇激情av| 中文字幕高清在线视频| 一级毛片高清免费大全| 怎么达到女性高潮| 国产aⅴ精品一区二区三区波| 国产人伦9x9x在线观看| 国产精品一区二区在线不卡| 黄片播放在线免费| 可以在线观看毛片的网站| 日日摸夜夜添夜夜添小说| 高潮久久久久久久久久久不卡| 午夜久久久久精精品| 亚洲一区二区三区不卡视频| 国产精品亚洲一级av第二区| 亚洲国产毛片av蜜桃av| 88av欧美| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| www.精华液| 精品卡一卡二卡四卡免费| 亚洲三区欧美一区| 日本 av在线| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 午夜精品在线福利| 大码成人一级视频| 欧美成人免费av一区二区三区| 午夜免费鲁丝| 亚洲一区中文字幕在线| 又紧又爽又黄一区二区| 免费看a级黄色片| 欧美午夜高清在线| 欧美日韩亚洲综合一区二区三区_| 亚洲aⅴ乱码一区二区在线播放 | 欧美不卡视频在线免费观看 | 黄色片一级片一级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 黄片播放在线免费| 女性被躁到高潮视频| 伊人久久大香线蕉亚洲五| 在线观看免费视频网站a站| 亚洲熟妇熟女久久| av网站免费在线观看视频| 欧美色欧美亚洲另类二区 | 国产成人系列免费观看| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 首页视频小说图片口味搜索| 成人18禁高潮啪啪吃奶动态图| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情极品国产一区二区三区| 久久久久久久久久久久大奶| 99久久精品国产亚洲精品| 中文字幕最新亚洲高清| 国产亚洲精品av在线| 亚洲专区中文字幕在线| 国产黄a三级三级三级人| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| av电影中文网址| 国产精品亚洲一级av第二区| 亚洲国产看品久久| 51午夜福利影视在线观看| 如日韩欧美国产精品一区二区三区| 国产高清videossex| 日韩三级视频一区二区三区| 亚洲一码二码三码区别大吗| 婷婷丁香在线五月| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区| 欧美激情极品国产一区二区三区| 18美女黄网站色大片免费观看| 亚洲欧美激情综合另类| 国产精品永久免费网站| 97人妻天天添夜夜摸| 伊人久久大香线蕉亚洲五| 久久精品国产清高在天天线| 免费女性裸体啪啪无遮挡网站| 99在线视频只有这里精品首页| 美女扒开内裤让男人捅视频| 免费不卡黄色视频| 91大片在线观看| 91大片在线观看| 欧美精品啪啪一区二区三区| 嫩草影视91久久| 亚洲久久久国产精品| 午夜福利视频1000在线观看 | 日韩欧美国产一区二区入口| 88av欧美| 这个男人来自地球电影免费观看| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 每晚都被弄得嗷嗷叫到高潮| 国产91精品成人一区二区三区| 性色av乱码一区二区三区2| 日本一区二区免费在线视频| 亚洲天堂国产精品一区在线| 手机成人av网站| 亚洲第一av免费看| 亚洲熟妇中文字幕五十中出| 99国产综合亚洲精品| 日韩有码中文字幕| 国产精品一区二区免费欧美| 一本综合久久免费| av中文乱码字幕在线| 国产成人精品在线电影| 国产极品粉嫩免费观看在线| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看 | 久久久久久久久中文| 精品国产超薄肉色丝袜足j| 国产蜜桃级精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产99精品国产亚洲性色 | 国产精品亚洲美女久久久| 色在线成人网| 99riav亚洲国产免费| 中文字幕av电影在线播放| 亚洲自拍偷在线| 国产精品 国内视频| 色综合欧美亚洲国产小说| 一级毛片高清免费大全| www.自偷自拍.com| av视频免费观看在线观看| 国产高清有码在线观看视频 | 欧美 亚洲 国产 日韩一| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟女毛片儿| 久久中文看片网| 久久午夜亚洲精品久久| 久久人人爽av亚洲精品天堂| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 电影成人av| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩精品网址| 美女大奶头视频| 高清黄色对白视频在线免费看| 97超级碰碰碰精品色视频在线观看| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 天堂√8在线中文| 男人操女人黄网站| 真人做人爱边吃奶动态| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 三级毛片av免费| 国产精品亚洲美女久久久| 黄网站色视频无遮挡免费观看| 久久天堂一区二区三区四区| 又大又爽又粗| 国产av一区在线观看免费| 成年版毛片免费区| av欧美777| 嫁个100分男人电影在线观看| 多毛熟女@视频| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻在线不人妻| 国产成人精品无人区| 久久草成人影院| 好看av亚洲va欧美ⅴa在| 亚洲美女黄片视频| 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 午夜福利影视在线免费观看| 国产又爽黄色视频| 免费搜索国产男女视频| 国产高清videossex| 不卡一级毛片| 国产精品九九99| 女警被强在线播放| 在线观看舔阴道视频| 久久久久久人人人人人| 色综合站精品国产| 日本vs欧美在线观看视频| 国产成+人综合+亚洲专区| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| 很黄的视频免费| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 国产成+人综合+亚洲专区| 无遮挡黄片免费观看| 又大又爽又粗| 黄色毛片三级朝国网站| www.自偷自拍.com| 国产精品精品国产色婷婷| 操美女的视频在线观看| netflix在线观看网站| 亚洲精品一区av在线观看| 欧美日韩亚洲综合一区二区三区_| 桃色一区二区三区在线观看| 91精品国产国语对白视频| 欧美日韩黄片免| 90打野战视频偷拍视频| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 搡老岳熟女国产| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩精品网址| 国产精品久久久久久精品电影 | 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 一进一出抽搐gif免费好疼| 18禁美女被吸乳视频| 最新美女视频免费是黄的| 午夜视频精品福利| 国产成人精品在线电影| 老司机福利观看| 成人国产一区最新在线观看| 嫩草影院精品99| 国产激情久久老熟女| 韩国精品一区二区三区| 午夜免费激情av| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 黑人巨大精品欧美一区二区mp4| 日本免费a在线| 91老司机精品| 啦啦啦免费观看视频1| 国产精品久久视频播放| 人人澡人人妻人| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 我的亚洲天堂| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 黄色毛片三级朝国网站| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 一级毛片高清免费大全| 精品一品国产午夜福利视频| 亚洲免费av在线视频| 999久久久国产精品视频| av超薄肉色丝袜交足视频| 一本大道久久a久久精品| 一级a爱片免费观看的视频| 久久久久国内视频| 99精品在免费线老司机午夜| 亚洲自拍偷在线| 黄片大片在线免费观看| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 成人欧美大片| 国产精品香港三级国产av潘金莲| 国产色视频综合| 一本综合久久免费| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 极品人妻少妇av视频| 一级黄色大片毛片| 亚洲熟妇熟女久久| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 高潮久久久久久久久久久不卡| 美女午夜性视频免费| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 成人av一区二区三区在线看| 日韩欧美免费精品| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 国产av又大| 国产精品乱码一区二三区的特点 | 亚洲欧美激情综合另类| 美女国产高潮福利片在线看| 在线天堂中文资源库| 国产激情久久老熟女| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 丁香六月欧美| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 香蕉久久夜色| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 午夜激情av网站| 国产av精品麻豆| 久久人妻av系列| 正在播放国产对白刺激| 99久久99久久久精品蜜桃| 在线永久观看黄色视频| 日本vs欧美在线观看视频| 日本黄色视频三级网站网址| 久久中文字幕一级| 国产在线观看jvid| 老鸭窝网址在线观看| 我的亚洲天堂| 一a级毛片在线观看| 91成年电影在线观看| 久久午夜综合久久蜜桃| 欧美不卡视频在线免费观看 | 中文字幕最新亚洲高清| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 黄网站色视频无遮挡免费观看| 日本a在线网址| 又黄又粗又硬又大视频| 99在线人妻在线中文字幕| xxx96com| 国产真人三级小视频在线观看| x7x7x7水蜜桃| 纯流量卡能插随身wifi吗| 91国产中文字幕| 在线观看66精品国产| 丁香六月欧美| 99热只有精品国产| 欧美色欧美亚洲另类二区 | 久久中文字幕人妻熟女| 欧美一级a爱片免费观看看 | 人妻丰满熟妇av一区二区三区| 国产精品久久久久久精品电影 | 十分钟在线观看高清视频www| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 国产激情欧美一区二区| 天堂动漫精品| 校园春色视频在线观看| 男女午夜视频在线观看| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 啦啦啦观看免费观看视频高清 | 一卡2卡三卡四卡精品乱码亚洲| 97碰自拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 黄色a级毛片大全视频| 两个人免费观看高清视频| 亚洲欧美精品综合久久99| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 国产精品免费视频内射| 18禁美女被吸乳视频| 91精品国产国语对白视频| 久久天堂一区二区三区四区| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 中国美女看黄片| 久久久久国产精品人妻aⅴ院| 女性生殖器流出的白浆| 国产高清videossex| 亚洲成人精品中文字幕电影| 欧美人与性动交α欧美精品济南到| 欧美日韩瑟瑟在线播放| 国产精品日韩av在线免费观看 | 91成人精品电影| 国产熟女午夜一区二区三区| 亚洲精品国产区一区二| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 色老头精品视频在线观看| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看 | 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 亚洲 欧美一区二区三区| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 亚洲第一青青草原| 国产精品一区二区在线不卡| 黄色女人牲交| 制服人妻中文乱码| 日本精品一区二区三区蜜桃| 欧美一级a爱片免费观看看 | 午夜免费鲁丝| 亚洲久久久国产精品| 在线播放国产精品三级| 在线视频色国产色| 女警被强在线播放| 久久久久久免费高清国产稀缺| 免费看十八禁软件| 亚洲av五月六月丁香网| 露出奶头的视频| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 久久伊人香网站| 91成人精品电影| 国产亚洲欧美98| 国产三级在线视频| x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 香蕉国产在线看| 国产精品亚洲一级av第二区| 一本久久中文字幕| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 91字幕亚洲| 可以在线观看的亚洲视频| 日韩免费av在线播放| 国产欧美日韩综合在线一区二区| 午夜视频精品福利| 国产欧美日韩综合在线一区二区| 999久久久国产精品视频| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 午夜精品久久久久久毛片777| 精品电影一区二区在线| 99精品久久久久人妻精品| 老司机靠b影院| 精品欧美国产一区二区三| 精品国产超薄肉色丝袜足j| 黄片大片在线免费观看| 国产亚洲av高清不卡| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 免费女性裸体啪啪无遮挡网站| 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 国产亚洲精品综合一区在线观看 | 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 美女高潮喷水抽搐中文字幕| 国产精品久久电影中文字幕| 一a级毛片在线观看| 精品久久久久久成人av| 精品国产一区二区三区四区第35| 法律面前人人平等表现在哪些方面| 国产男靠女视频免费网站| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 久久人人精品亚洲av| 久久久久国产一级毛片高清牌| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 亚洲无线在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 成年人黄色毛片网站|