,
(南華大學(xué)藥物藥理研究所血管生物學(xué)研究室,湖南 衡陽 421001)
·講座與綜述·
糖尿病發(fā)病的表觀遺傳學(xué)機(jī)制
洪陳亮,秦旭平*
(南華大學(xué)藥物藥理研究所血管生物學(xué)研究室,湖南 衡陽 421001)
目前表觀遺傳通過DNA的甲基化、組蛋白的乙?;⒓谆头蔷幋aRNA的方式影響著生命的活動(dòng),表觀遺傳的變化會(huì)影響糖尿病及糖尿病并發(fā)癥的發(fā)生和發(fā)展,研究表明,懷孕期間,各個(gè)基因的DNA甲基化異常,嬰兒成年后得糖尿病的概率增加。在成人體內(nèi),DNA甲基化異常通過干擾胰島的發(fā)育和影響胰島的分泌,以及糖脂代謝的紊亂從而導(dǎo)致糖尿病。組蛋白的翻譯后修飾主要分為:組蛋白的甲基化和乙?;饕ㄟ^作用于促炎癥因子和炎癥因子的信號(hào)通路,從而影響糖尿病的發(fā)生及其并發(fā)癥的發(fā)生與發(fā)展。非編碼RNA分為miRNA和lncRNA,隨著近年來對miRNA和lncRNA研究越來越深入,已發(fā)現(xiàn)幾十種miRNA和數(shù)十種LncRNA分別作用于胰島素分泌和β細(xì)胞的發(fā)育、胰島素抵抗、內(nèi)皮功能紊亂、PI3K、IRS proteins、GLUT4、AKT/PKB、Insulin receptor、GF-1/2和IGF-1R等信號(hào)通路。
表觀遺傳學(xué); DNA甲基化; 組蛋白翻譯后修飾; 非編碼RNA
糖尿病發(fā)病率在近幾十年來有了顯著的增加,而且現(xiàn)在它已經(jīng)在中國達(dá)到了流行病的程度。1980年,中國人口中的糖尿病發(fā)病率不到1%。但在1994年及在2000~2001年間開展的全國性調(diào)查中,糖尿病的發(fā)病率分別為2.5%和5.5%。2007年,全國性調(diào)查報(bào)告指出,糖尿病的發(fā)病率為9.7%,這代表著在中國的成年人中估計(jì)有9 240萬人患有糖尿病。2010年中國成人糖尿病患病率男性為12.1%,女性為11.0%;城市居民患病率為14.3%,農(nóng)村居民為10.3%[1]。這些證據(jù)表明,隨著我國居民生活水平的提高,除了遺傳因素外,環(huán)境因素與糖尿病的發(fā)生和發(fā)展有重要聯(lián)系。表觀遺傳改變是指在基因組DNA序列不發(fā)生變化的條件下,基因的表達(dá)發(fā)生可遺傳的改變,導(dǎo)致表型的變化。表觀遺傳變化包括DNA胞嘧啶甲基化、染色質(zhì)組蛋白的翻譯后修飾、非編碼RNA修飾等[2]。這些改變在基因和環(huán)境相互作用之間對糖尿病的發(fā)病和治療起著重要作用。因此,研究糖尿病表觀遺傳學(xué)機(jī)制可能為防治該病帶來新思路。
眾所周知,染色體有高度壓縮的核小體組成。約200 bp的DNA分子盤繞在組蛋白八聚體構(gòu)成的核心結(jié)構(gòu)外面,形成一個(gè)核小體。DNA的甲基化、組蛋白的翻譯后修飾以及短鏈和長鏈RNA修飾則是表觀遺傳的主要方式。隨著研究的深入,發(fā)現(xiàn)表觀遺傳狀態(tài)的改變會(huì)影響糖尿病及其并發(fā)癥發(fā)生和發(fā)展。而營養(yǎng)、運(yùn)動(dòng)以及環(huán)境的變化會(huì)抑制成人及其后代的表觀遺傳的改變。從而抑制糖尿病及其并發(fā)癥的發(fā)生和發(fā)展[3]。
1.1 DNA甲基化DNA甲基化是指在DNA甲基轉(zhuǎn)移酶的催化下,以S-腺苷甲硫氨酸作為甲基供體使CpG島上胞嘧啶上的5’端甲基化,當(dāng)然也可以不在CpG島上發(fā)生,甲基轉(zhuǎn)移酶3A和3B介導(dǎo)了DNA的甲基化。越來越多的證據(jù)表明甲基化的發(fā)生由氧化酶類引起的,甲基化水平的調(diào)節(jié)與飲食、生理活動(dòng)和高糖等相關(guān),說明甲基化是個(gè)動(dòng)態(tài)的過程[4]。DNA甲基化通常是抑制基因的表達(dá)。
研究發(fā)現(xiàn),DNA甲基化在妊娠期的變化與糖尿病有關(guān),在子宮內(nèi)或者早期,表觀遺傳的變化可以對代謝基因產(chǎn)生巨大的影響,導(dǎo)致個(gè)體患糖尿病的幾率大大的增加。這些結(jié)果在中國和荷蘭的中年人得到了證明,因?yàn)樵谒麄兂錾臅r(shí)候正是饑荒時(shí)期,營養(yǎng)得不到滿足,因此他們比其他人群患2型糖尿病的比例要高的多。其機(jī)制是該類人群的胰腺和十二指腸同源框1(PDX1)的基因DNA甲基化。PDX1的改變對B細(xì)胞的分化和胰島素的分泌產(chǎn)生巨大的影響。同樣,DNA的超甲基化可以通過肝胰島素生長因子- 1(IGF-1)和海馬糖皮質(zhì)激素受體(hpGR)基因表達(dá)減少從而影響胰島素的分泌。
1.1.1 DNA的甲基化和糖尿病的并發(fā)癥 研究表明,在糖尿病患者中,DNA甲基化異常,主要表現(xiàn)在糖尿病病人中外周血白細(xì)胞中與心血管疾病相關(guān)基因的DNA甲基化水平明顯比正常人要高[5]。在1型和2型糖尿病腎病病人的唾液中,都發(fā)現(xiàn)DNA甲基化的水平比普通人要高的多。2型糖尿病中某些蛋白啟動(dòng)子發(fā)生甲基化而影響基因的轉(zhuǎn)錄[6]。經(jīng)過6個(gè)月的運(yùn)動(dòng)干擾后,與2型糖尿病相關(guān)基因甲基會(huì)發(fā)生改變,如:THADA(甲狀腺相關(guān))與2型糖尿病相關(guān)基因和NDUFC2(NADH脫氫酶)基因(呼吸鏈)的甲基化程度發(fā)生了改變。還有與新陳代謝相關(guān)基因,如脂聯(lián)素受體也發(fā)生了改變。甚至與糖尿病直接相關(guān)的基因PPARGC1A啟動(dòng)子在糖尿病病人呈現(xiàn)超甲基化。機(jī)體在高糖狀態(tài)下,與胰島素分泌有關(guān)的基因CpG島上面有4個(gè)位點(diǎn)出現(xiàn)了甲基化[7],如PPARGC1A基因啟動(dòng)子上出現(xiàn)高甲基化導(dǎo)致PPARα 和PPARγ表達(dá)減少,從而引起糖脂代謝混亂。另外發(fā)現(xiàn)糖尿病病人的骨骼肌與普通人相比,CDKN2A,CDKN2B,JAZF1,KCNQ1,PDX1,PPARGC1等相關(guān)代謝的基因不同程度的發(fā)生了甲基化[7]。DNA甲基化主要影響是干擾胰島的發(fā)育和減少胰島素分泌,也使能量代謝通路上的甲基化增高,從而減弱了胰島素重要靶器官對葡萄糖的代謝能力。
1.1.2 DNA甲基化與代謝記憶 研究表明,DNA甲基化還與代謝記憶有關(guān),雖然在臨床上研究不是很多,但在動(dòng)物和細(xì)胞上已經(jīng)有相關(guān)的報(bào)道。在STZ誘導(dǎo)的糖尿病大鼠中發(fā)現(xiàn),即使嚴(yán)格控制血糖持續(xù)3個(gè)月,在視網(wǎng)膜中POLG啟動(dòng)子依然是被限制的,DNA的復(fù)制模式跟3個(gè)月之前是一樣的,同樣的結(jié)果在內(nèi)皮細(xì)胞中也得到了驗(yàn)證[2]。
1.2組蛋白的翻譯后修飾(PTMs) 組蛋白是核小體的重要組成部分,組蛋白尾部可以發(fā)生乙?;?、甲基化、磷酸化和泛素化等修飾,這些修飾是動(dòng)態(tài)可逆的,通過這些修飾可以調(diào)控基因的表達(dá)。組蛋白修飾方式通常是賴氨酸的甲基化(Kme)和乙?;?Kac)。修飾的位點(diǎn)通常在H3和H4上,通常組蛋白的乙酰化可以促進(jìn)轉(zhuǎn)錄激活,如:H3K9ac,H3K14ac,H4K5ac,而組蛋白的甲基化通常通過組蛋白賴氨酸或者精氨酸殘基的位點(diǎn)以及程度來決定基因的激活和抑制。如H3K4me1/2/3 和 H3K36me2/3通??梢约せ钷D(zhuǎn)錄活性的基因組區(qū)域,而H3K9me3,H3K27me3 和H4K20me3則抑制轉(zhuǎn)錄活性的基因組區(qū)域[8]。
組蛋白的甲基化修飾通常是通過組蛋白乙酰轉(zhuǎn)移酶(HATs)和組蛋白去乙酰化酶(HDACs)來影響組蛋白結(jié)構(gòu),從而使組蛋白和DNA的親和力改變,導(dǎo)致染色體結(jié)構(gòu)的改變。
機(jī)體在高糖狀態(tài)下,單核細(xì)胞分泌的炎癥因子NFκB和HATs呈現(xiàn)高乙?;娃D(zhuǎn)錄活性。使淋巴細(xì)胞有關(guān)炎癥和免疫的信號(hào)通路的H3上的第9位上的賴氨酸甲基化(H3K9)[9]。另有文獻(xiàn)報(bào)道,在血管平滑肌細(xì)胞,該位點(diǎn)的甲基化可以促進(jìn)炎癥因子的表達(dá)[10]。同樣,在2型糖尿病小鼠血管平滑肌細(xì)胞中,H3K9和H3K4的甲基化可以增加MCP-1和IL-6基因的表達(dá)。有文獻(xiàn)報(bào)道,PDX-1對與胰腺的早期發(fā)育和B細(xì)胞分化發(fā)揮重要的作用,并需要胰島素啟動(dòng)子附件的H3和H4乙?;?,如果懷孕期間,胚胎發(fā)育受到外界干擾,導(dǎo)致胎兒在宮內(nèi)發(fā)育遲緩,PDX-1表達(dá)受抑制,就會(huì)影響到胰腺和B細(xì)胞的成熟,個(gè)體成年后糖尿病易感性大大增加[11]。有研究表明,糖尿病狀態(tài)下,胰島細(xì)胞、單核細(xì)胞和內(nèi)皮細(xì)胞中的賴氨酸甲基轉(zhuǎn)移酶set7可以使H3K4發(fā)生甲基化,使基因激活。有意思的是,影響胰島B細(xì)胞和腎小球纖維化的信號(hào)通路通常和糖尿病有關(guān),這說明set7影響著糖尿病的并發(fā)癥發(fā)生發(fā)展[12]。
1.3非編碼RNA(Non-coding RNA) 非編碼RNA是表觀遺傳學(xué)的調(diào)節(jié)方式之一,在糖尿病并發(fā)癥中,非編碼RNA調(diào)節(jié)基因表達(dá)方式通過轉(zhuǎn)錄和轉(zhuǎn)錄前調(diào)節(jié),非編碼RNA包括微小RNA(microRNA,miRNA)和長鏈非編碼RNA(IncRNA)。
1.3.1 MicroRNAs miRNA是內(nèi)源性的非編碼RNA,雖然只有19~24個(gè)核苷酸,卻在調(diào)節(jié)基因表達(dá)起著重要的作用,而且影響著體內(nèi)大多數(shù)的細(xì)胞功能。有60%的編碼蛋白的基因都受miRNA的調(diào)節(jié)[13]。miRNAs調(diào)節(jié)基因表達(dá)是通過形成RNA誘導(dǎo)沉默復(fù)合體(RISC)結(jié)合靶基因的3’UTR來影響基因的表達(dá)。一方面,一個(gè)目標(biāo)基因有多個(gè)miRNA結(jié)合位點(diǎn),另外一方面,一個(gè)miRNA可以作用多個(gè)功能相關(guān)的基因。隨著基因組計(jì)劃的完成,以及對糖尿病研究的不斷深入,人們發(fā)現(xiàn)近數(shù)十種miRNA與糖尿病和糖尿病并發(fā)癥有關(guān),以下是已經(jīng)被證明了可以導(dǎo)致胰島素生長因子-1及其受體、胰島素受體蛋白、PI3K、AKT/PKB和GLUT4介導(dǎo)的糖攝取能力損傷或減緩導(dǎo)致胰島素抵抗和2型糖尿病、影響胰島B細(xì)胞分泌和糖尿病血管異常的miRNAs。妊娠狀態(tài)下的糖尿病機(jī)體中有數(shù)十種miRNA表達(dá)異常[14],其功能如表1所示。
同時(shí)研究發(fā)現(xiàn),miR-125b 和 miR-146a-5p可以通過長時(shí)間的作用NF-kappaB,從而影響代謝記憶[49]。由于miRNA在生物體內(nèi)穩(wěn)定存在,所以有可能將作為各種糖尿病的并發(fā)癥的生物標(biāo)記物。
1.3.2 long non-coding RNA lncRNA是一類轉(zhuǎn)錄長度超過200核苷酸單位的功能性RNA,lncRNA和mRNA類似,但不編碼蛋白質(zhì),大部分lncRNA表達(dá)量極低,而且只在特殊的組織中表達(dá)。lncRNA以RNA的形式調(diào)節(jié)基因表達(dá),已有大量證據(jù)表明,lncRNA在糖尿病的發(fā)生發(fā)展中其重要的作用(表2)。
表1miRNA及其作用
功能相關(guān)miRNA胰島素分泌和β細(xì)胞的發(fā)育miR?7[15]、miR?107[16]、miR?103/107[17]、miR?195[18]、miR?148[19]、miR?15a/b[20]miR?146[21]、miR?24[19]、miR?26[19]、miR?30d、miR?34a[22]、miR?375[23]miR?376[24]、miR?29a/b[25]、miR?9[26]、miR?96[27]胰島素抵抗miR?29a/b[25]miR?93[28]miR?802[29]、miR?494[30]miR?34a[22]miR?33a/b[31]miR?335[32]miR?320[32],miR?29a/b[25]、miR?223[33]miR?126[34]miR?122[35]miR?103/107[17]、miR?146[36]PI3KmiR?1[37]、miR?19a[38]、miR?29[39]內(nèi)皮功能紊亂miR?1[37]、miR?122/222、miR?503[40]、miR?126[34]、miR?146a[41]、miR?125b,miR?29a?3p、miR?130a[42]IRSproteinsmiR?126[34]miR?144[43]、miR?96[27]、miR?128a[44]、miR?135a[45]GLUT4miR?133a/b[46]、miR?21[47]AKT/PKBmiR?143[48]、miR?383[24]、miR?33a/b[31]、miR?29[39]、miR?21[47]InsulinreceptormiR?146aGF?1/2andIGF?1RmiR?181b[20]、miR?383[24]、miR?320[32]
表2lncRNA及其作用
功能相關(guān)miRNA通過特異性的胰島B細(xì)胞的轉(zhuǎn)錄因子影響糖代謝βlinc1[50]在早期的糖尿病腎病中表達(dá)降低,過表達(dá)可以抑制腎小球腸系膜細(xì)胞的增殖和纖維化CYP4B1?PS1?001[51]可以調(diào)節(jié)內(nèi)皮細(xì)胞的功能和病理狀態(tài)下的血管形成還有高糖導(dǎo)致腎小管上皮損傷lncRNA?MIAT[52]通過PI3k/Akt信號(hào)通路下調(diào)糖尿病小鼠視網(wǎng)膜內(nèi)皮細(xì)胞的氧化應(yīng)激、內(nèi)皮細(xì)胞的增殖、遷移和調(diào)節(jié)肝臟胰島素抵抗lncRNA?MEG3[53]在內(nèi)皮細(xì)胞中豐富表達(dá),影響著內(nèi)皮細(xì)胞的遷移和血管的新成lncRNA?MALAT1[54]在糖尿病中患者中,它在血液里的表達(dá)水平低GAS5[55]在人體或小鼠體內(nèi)缺失后,會(huì)導(dǎo)致胰島素信號(hào)通路受損和糖攝取量減少H19[56]調(diào)節(jié)胰島成熟的lncRNAHI?LNC25[57]在前脂肪細(xì)胞中調(diào)節(jié)PPARgamaHOTAIR[58]通過調(diào)節(jié)IGF?1、MAPK、JNK等多信號(hào)通路steroidreceptorRNAactivator(SRA)[54]通過介導(dǎo)細(xì)胞外基質(zhì)的積累從而影響糖尿病腎病PVT1[59]在糖尿病中,調(diào)節(jié)糖尿病腎小球細(xì)胞的增殖和纖維化lncRNACYP4B1?PS1?001[51]通過背根神經(jīng)節(jié)上的P2X3受體調(diào)節(jié)糖尿病神經(jīng)性疼痛lncRNAuc.48+
2.1年齡隨著年齡增加,糖尿病發(fā)病率增加,這背后的機(jī)制可能牽扯到基因和環(huán)境的共同作用。最近的數(shù)據(jù)表明,表觀遺傳學(xué)通過影響一些關(guān)鍵的基因如COX7A1可以改變生命的進(jìn)程。COX7A1基因是呼吸鏈上復(fù)合體4的一部分,其作用和機(jī)體的耗氧量和糖攝取量息息相關(guān)。COX7A1是年齡相關(guān)的DNA甲基化的靶基因,在糖尿病人的骨骼肌中表達(dá)降低。而且,COX7A1啟動(dòng)子上的甲基化水平會(huì)隨著年齡的增加而增加,與它的基因表達(dá)水平呈反比。這說明隨著年齡增加,COX7A1表達(dá)降低,是影響機(jī)體代謝重要機(jī)制[60]。
2.2營養(yǎng)越來越多的證據(jù)表明,孕婦的生活方式和環(huán)境狀況對嬰兒成年后的健康有很大的影響。懷孕期間,孕婦的營養(yǎng)攝入過少過多都會(huì)對嬰兒的發(fā)育和肥胖產(chǎn)生影響,有研究表明,嬰兒出生時(shí)候的體重和肥胖都會(huì)對糖尿病發(fā)生發(fā)展產(chǎn)生影響[4]。如,胎兒或兒童期間營養(yǎng)不良,出現(xiàn)糖尿病的概率會(huì)增加。研究表明,懷孕期間營養(yǎng)過多或過少都會(huì)導(dǎo)致至少有150個(gè)的翻譯后修飾位點(diǎn)發(fā)生了不同的程度甲基化和乙?;揎?。如,孕婦營養(yǎng)失調(diào)下,瘦素蛋白和葡萄糖轉(zhuǎn)運(yùn)體的甲基化水平發(fā)生了改變[4]。在持續(xù)60多天營養(yǎng)不足的情況下,DNMT(DNA甲基轉(zhuǎn)移酶)的活性下降,改變了組蛋白的甲基化和乙酰化。這些基因表達(dá)改變大多發(fā)生在嬰兒的肝臟和平滑肌組織中。在1944年到1945的荷蘭大饑荒時(shí)的數(shù)據(jù)調(diào)查發(fā)現(xiàn),60年后,在出生前,遭受饑荒的人群相比他的兄弟姐妹來說,他們的IGF2上面的甲基化水平嚴(yán)重偏低[61]。懷孕期間營養(yǎng)過剩會(huì)改變胰小島基因的表達(dá)從而影響后代的胰島β細(xì)胞的功能[62]。
2.3運(yùn)動(dòng)眾所周知,運(yùn)動(dòng)能減少患代謝疾病的風(fēng)險(xiǎn)和改善心臟病和糖尿病,研究發(fā)現(xiàn),運(yùn)動(dòng)能使骨骼肌中2 873個(gè)基因和脂肪組織中7 663個(gè)基因甲基化水平發(fā)生改變,有趣的是,骨骼肌近四分之三的基因甲基化水平下調(diào),而在脂肪組織的基因的甲基化水平大部分是上調(diào)的。說明表觀遺傳在兩種組織作用是不同的。例如,在骨骼肌中,調(diào)節(jié)線粒體氧化磷酸的基因PPARGC1A甲基化水平明顯下調(diào),脂肪組織中,調(diào)節(jié)代謝綜合征和影響胰島素刺激的GLUT4通路的基因RALBP1在運(yùn)動(dòng)后甲基化水平增加[63]。
隨著近年來對糖尿病和表觀遺傳學(xué)的研究越來越深入,發(fā)現(xiàn)表觀遺傳學(xué)與糖尿病的發(fā)生發(fā)展越來越密切,因此對表觀遺傳學(xué)的研究將對糖尿病的防治和精準(zhǔn)治療提供一個(gè)新的思路。目前,各種表觀遺傳學(xué)藥物正在不同程度上開發(fā)和研制,如DNA甲基化抑制劑,miRNA及其組蛋白調(diào)節(jié)劑。表觀遺傳學(xué)如何調(diào)節(jié)細(xì)胞信號(hào)通路在糖尿病發(fā)病機(jī)制方面仍然是今后的研究重點(diǎn)。雖然在征服糖尿病的路上還有很遠(yuǎn)的路要走,但相信隨著表觀遺傳學(xué)理論和研究方法的發(fā)展,糖尿病及其并發(fā)癥的理論將逐步得到闡明,防治該類疾病的方法也將逐步改善。
[1] Xu Y,Wang L,He J,et al.Prevalence and control of diabetes in Chinese adults[J].Jama,2013,310(9):948-959.
[2] Reddy MA,Zhang E ,Natarajan R.Epigenetic mechanisms in diabetic complications and metabolic memory[J].Diabetologia,2015,58(3):443-455.
[3] Keating ST ,El-Osta A.Epigenetic changes in diabetes[J].Clin Genet,2013,84(1):1-10.
[4] Wicklow BA ,Sellers EA.Maternal health issues and cardio-metabolic outcomes in the offspring:a focus on Indigenous populations[J].Best Pract Res Clin Obstet Gynaecol,2015,29(1):43-53.
[5] Ronn T ,Ling C.DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes[J].Epigenomics,2015,7(3):451-460.
[6] Babu M,Durga Devi T,Makinen PI,et al.Differential Promoter Methylation of Macrophage Genes Is Associated With Impaired Vascular Growth in Ischemic Muscles of Hyperlipidemic and Type 2 Diabetic Mice:A Genome-Wide Promoter Methylation Study[J].Circ Res,2015:289-299.
[7] De Mello VDF,Pulkkinen L,Lalli M,et al.DNA methylation in obesity and type 2 diabetes[J].Annals of Medicine,2014,46(3):103-113.
[8] Watson M,Chow S,Barsyte D,et al.The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytometry[J].Cytometry A,2014,85(1):78-87.
[9] Miao F,Chen Z,Zhang L,et al.Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes[J].J Biol Chem,2012,287(20):16335-16345.
[10] Greissel A,Culmes M,Napieralski R,et al.Alternation of histone and DNA methylation in human atherosclerotic carotid plaques[J].Thromb Haemost,2015,114(2):390-402.
[11] Park JH,Stoffers DA,Nicholls RD,et al.Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J].J Clin Invest,2008,118(6):2316-2324.
[12] Keating ST ,El-Osta A.Chromatin modifications associated with diabetes[J].J Cardiovasc Transl Res,2012,5(4):399-412.
[13] Wu H,Kong L,Zhou S,et al.The role of microRNAs in diabetic nephropathy[J].J Diabetes Res,2014,2014:920134.
[14] Zhu Y,Tian F,Li H,et al.Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus[J].Int J Gynaecol Obstet,2015,130(1):49-53.
[15] Bravo-Egana V,Rosero S,Molano RD,et al.Quantitative differential expression analysis reveals miR-7 as major islet microRNA[J].Biochem Biophys Res Commun,2008,366(4):922-926.
[16] Kong L,Zhu J,Han W,et al.Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes:a clinical study[J].Acta Diabetol,2011,48(1):61-69.
[17] Trajkovski M,Hausser J,Soutschek J,et al.MicroRNAs 103 and 107 regulate insulin sensitivity[J].Nature,2011,474(7353):649-653.
[18] Herrera BM,Lockstone HE,Taylor JM,et al.Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes[J].Diabetologia,2010,53(6):1099-1109.
[19] Melkman-Zehavi T,Oren R,Kredo-Russo S,et al.miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors[J].EMBO J,2011,30(5):835-845.
[20] Shi ZM,Wang XF,Qian X,et al.MiRNA-181b suppresses IGF-1R and functions as a tumor suppressor gene in gliomas[J].Rna,2013,19(4):552-560.
[21] Lovis P,Roggli E,Laybutt DR,et al.Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction[J].Diabetes,2008,57(10):2728-2736.
[22] Roggli E,Britan A,Gattesco S,et al.Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells[J].Diabetes,2010,59(4):978-986.
[23] Zhao H,Guan J,Lee HM,et al.Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition[J].Pancreas,2010,39(6):843-846.
[24] Ibe JC,Zhou Q,Chen T,et al.Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension[J].Am J Respir Cell Mol Biol,2013,49(4):609-618.
[25] Pullen TJ,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[26] Ramachandran D,Roy U,Garg S,et al.Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets[J].Febs J,2011,278(7):1167-1174.
[27] Yu XY,Song YH,Geng YJ,et al.Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1[J].Biochem Biophys Res Commun,2008,376(3):548-552.
[28] Chen YH,Heneidi S,Lee JM,et al.miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance[J].Diabetes,2013,62(7):2278-2286.
[29] Kornfeld JW,Baitzel C,Konner AC,et al.Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b[J].Nature,2013,494(7435):111-115.
[30] Lee H,Jee Y,Hong K,et al.MicroRNA-494,upregulated by tumor necrosis factor-alpha,desensitizes insulin effect in C2C12 muscle cells[J].PLoS One,2013,8(12):e83471.
[31] Davalos A,Goedeke L,Smibert P,et al.miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J].Proc Natl Acad Sci U S A,2011,108(22):9232-9237.
[32] Esguerra JL,Bolmeson C,Cilio CM,et al.Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat[J].PLoS One,2011,6(4):e18613.
[33] Chuang TY,Wu HL,Chen CC,et al.MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue[J].J Diabetes Res,2015,2015:943659.
[34] Jansen F,Yang X,Hoelscher M,et al.Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles[J].Circulation,2013,128(18):2026-2038.
[35] Gebert LF,Rebhan MA,Crivelli SE,et al.Miravirsen (SPC3649) can inhibit the biogenesis of miR-122[J].Nucleic Acids Res,2014,42(1):609-621.
[36] Balasubramanyam M,Aravind S,Gokulakrishnan K,et al.Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes[J].Mol Cell Biochem,2011,351(1-2):197-205.
[37] Feng B,Cao Y,Chen S,et al.miRNA-1 regulates endothelin-1 in diabetes[J].Life Sci,2014,98(1):18-23.
[38] He J,Li Y,Yang X,et al.The feedback regulation of PI3K-miR-19a,and MAPK-miR-23b/27b in endothelial cells under shear stress[J].Molecules,2012,18(1):1-13.
[39] He A,Zhu L,Gupta N,et al.Overexpression of micro ribonucleic acid 29,highly up-regulated in diabetic rats,leads to insulin resistance in 3T3-L1 adipocytes[J].Mol Endocrinol,2007,21(11):2785-2794.
[40] Caporali A,Meloni M,Vollenkle C,et al.Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J].Circulation,2011,123(3):282-291.
[41] Feng B,Chen S,McArthur K,et al.miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications[J].Diabetes,2011,60(11):2975-2984.
[42] Ye M,Li D,Yang J,et al.MicroRNA-130a Targets MAP3K12 to Modulate Diabetic Endothelial Progenitor Cell Function[J].Cell Physiol Biochem,2015,36(2):712-726.
[43] Sesti G,Sciacqua A,Cardellini M,et al.Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance[J].Diabetes Care,2005,28(1):120-125.
[44] Motohashi N,Alexander MS,Shimizu-Motohashi Y,et al.Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis[J].J Cell Sci,2013,126(Pt 12):2678-2691.
[45] Agarwal P,Srivastava R,Srivastava AK,et al.miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle[J].Biochim Biophys Acta,2013,1832(8):1294-1303.
[46] Hua Y,Zhang Y ,Ren J.IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction:role of microRNA-1 and microRNA-133a[J].J Cell Mol Med,2012,16(1):83-95.
[47] Ling HY,Hu B,Hu XB,et al.MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue[J].Exp Clin Endocrinol Diabetes,2012,120(9):553-559.
[48] Jordan SD,Kruger M,Willmes DM,et al.Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J].Nat Cell Biol,2011,13(4):434-446.
[49] Zhong X,Liao Y,Chen L,et al.The MicroRNAs in the Pathogenesis of Metabolic Memory[J].Endocrinology,2015,156(9):3157-3168.
[50] Arnes L,Akerman I,Balderes DA,et al.betalinc1 encodes a long noncoding RNA that regulates islet beta-cell formation and function[J].Genes Dev,2016,30(5):502-507.
[51] Wang M,Wang S,Yao D,et al.A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy[J].Mol Cell Endocrinol,2016.
[52] Zhou L,Xu DY,Sha WG,et al.Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury[J].Biochem Biophys Res Commun,2015,468(4):726-732.
[53] Zhu X,Wu YB,Zhou J,et al.Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression[J].Biochem Biophys Res Commun,2016,469(2):319-325.
[54] Liu S,Sheng L,Miao H,et al.SRA gene knockout protects against diet-induced obesity and improves glucose tolerance[J].J Biol Chem,2014,289(19):13000-13009.
[55] Carter G,Miladinovic B,Patel AA,et al.Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus[J].BBA Clin,2015,4:102-107.
[56] Gao Y,Wu F,Zhou J,et al.The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells[J].Nucleic Acids Res,2014,42(22):13799-13811.
[57] Moran I,Akerman I,van de Bunt M,et al.Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific,dynamically regulated,and abnormally expressed in type 2 diabetes[J].Cell Metab,2012,16(4):435-448.
[58] Divoux A,Karastergiou K,Xie H,et al.Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation[J].Obesity (Silver Spring),2014,22(8):1781-1785.
[59] Alvarez ML,Khosroheidari M,Eddy E,et al.Role of microRNA 1207-5P and its host gene,the long non-coding RNA Pvt1,as mediators of extracellular matrix accumulation in the kidney:implications for diabetic nephropathy[J].PLoS One,2013,8(10):e77468.
[60] Ling C ,Groop L.Epigenetics:a molecular link between environmental factors and type 2 diabetes[J].Diabetes,2009,58(12):2718-2725.
[61] Barua S ,Junaid MA.Lifestyle,pregnancy and epigenetic effects[J].Epigenomics,2015,7(1):85-102.
[62] Barres R ,Zierath JR.The role of diet and exercise in the transgenerational epigenetic landscape of T2DM[J].Nat Rev Endocrinol,2016,12(8):441-451.
[63] Ling C ,Ronn T.Epigenetic adaptation to regular exercise in humans[J].Drug Discov Today,2014,19(7):1015-1018.
10.15972/j.cnki.43-1509/r.2017.01.003
2016-07-18;
2016-10-28
南華大學(xué)研究生創(chuàng)新項(xiàng)目(No.0223-0002-00031).
*通訊作者,E-mail:qinxp333@hotmail.com.
R587.102
A
蔣湘蓮)