• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    2017-12-22 06:23:25RonghuiZHENGHuaihaiCHENXudongHE
    CHINESE JOURNAL OF AERONAUTICS 2017年6期

    Ronghui ZHENG,Huaihai CHEN,Xudong HE

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Ronghui ZHENG,Huaihai CHEN*,Xudong HE

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Cross spectra; Kurtosis control; Multi-input multi-output; Non-Gaussian; Random vibration test

    A control method for Multi-Input Multi-Output(MIMO)non-Gaussian random vibration test with cross spectra consideration is proposed in the paper.The aim of the proposed control method is to replicate the speci fied references composed of auto spectral densities,cross spectral densities and kurtoses on the test article in the laboratory.It is found that the cross spectral densities will bring intractable coupling problems and induce dif ficulty for the control of the multioutput kurtoses.Hence,a sequential phase modi fication method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test.To achieve the speci fied responses,an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modi fication method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses.Then,an inverse system method is used in frequency domain to obtain the continuous stationary drive signals.At the same time,the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further.At the end of the paper,a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.

    1.Introduction

    The traditional Multi-Input Multi-Output(MIMO)random vibration test is mainly to force the multiple outputs to have the speci fied reference power spectra and the test can only be used for the case of stationary Gaussian random vibration.However,non-Gaussian random vibration environments,such as the action of atmospheric turbulence on aircraft,the acoustic excitation by reaction engine and the vibration by combustion instability,are often encountered in aerospace engineering.It is important to monitor the dynamic behavior of the aerospace structures in these non-Gaussian vibration environments.Furthermore,a structure exposure of the same spectra by the Gaussian vibrations or non-Gaussian vibrations will have different damages.1–4Hence,it is necessary to research the method for MIMO non-Gaussian vibration environmental test.

    In recent years,method for the simulation of non-Gaussian random signal has become one of the important topics in many fields,especially in the simulation of wind forces,radar clutters,sea waves and road vehicle vibrations.5–10Some methods are used such as Zero Memory NonLinear(ZMNL)transformation,Auto Regressive Moving Average(ARMA)models,filtered Poisson process,phase modification,alpha stable process,and spherically invariant random vectors process.In the random vibration environmental test,the ZMNL transformation and phase modification are most widely applied.11–13

    ZMNL transformation method is based on ZMNL monotonic functions,among which the most classical one is Hermitian polynomial.Wint′erstein developed a Hermitian moment model to transform a Gaussian process into a non-Gaussian process.14But this method has some inherent shortcomings and some modified forms are suggested by other scholars later.15Smallwood presented three kinds of the ZMNL functions,and each covers similar but slightly different ranges of skewness and kurtosis.11The ZMNL transformation method is simple and computationally efficient,but it may induce harmonic distortion and significant dynamic range loss.11,16

    Phase modification is also a commonly used method to generate non-Gaussian random vibration signals.It is noted that the Auto Spectral Density(ASD)of a random vibration signal is only related to the amplitudes of its Fourier spectrum;hence the kurtosis of the signal can be adjusted by modifying the phase angles without changing its ASD.Steinwolf gave an analytic phase modification formula to generate a non-Gaussian signal with a specified kurtosis from a Gaussian signal.17,18Smallwood utilized a non-uniform phase distribution method to realize the non-Gaussian signal with specified skewness and kurtosis and only kurtosis greater than or equal to 3 can be produced by the method.19Seong and Peterka constructed the Fourier phases by using the four parameterized phase angles.20Hsueh and Hamernik set the Fourier phase to zero within the selected band of frequencies to synthesize the non-Gaussian signal.21Generally,phase modi fication method is a good technique to generate non-Gaussian random signal,but its computational efficiency is not very well if the speci fied kurtosis is large.

    Single Input Single Output(SISO)random vibration test has been widely performed in the laboratory for tens of years.But it is recognized that SISO test is inadequate to simulate the multi-dimensional vibration environments in the real fields.22,23MIMO random vibration test has been emerging and applied along with the advancement of hardware and software.Compared to SISO test,it is much dif ficult to generate the drive signals in MIMO test.Smallwood and Paez contributed to some methods for the generation of stationary Gaussian random drive signals for MIMO test.24But the methodsare difficultto be extended to the MIMO non-Gaussian case.25,26The spectra and kurtoses of the responses should be controlled simultaneously in an MIMO non-Gaussian random vibration test.The kurtoses are used to measure the amplitude distribution characteristics of the responses in time domain and the spectra are used to represent the vibration intensity in frequency domain.Note that the signal in random vibration test is always set to be zero-mean and zero-skewness,so in this paper we only use kurtosis to describe the non-Gaussian characteristic of a random signal.

    In some circumstances,the reference spectra are only de fined as a diagonal matrix of auto spectral densities in an MIMO random vibration test.22In such cases,MIMO random vibration test becomes relatively simple,because only the auto spectral densities need to be controlled and the intractable coupling problems induced by cross spectral densities need not to be considered.26But,the cross spectral densities are very important and they determine the phase and coherence relationships among the outputs.So,the cross spectral densities should also be controlled in order to simulate the vibration environments more realistically.However,in MIMO case,the control to non-Gaussian random vibration test will become very dif ficult if the cross spectral densities are taken into account.Thus,the authors aim to solve this problem in the paper.

    2.Generation of non-Gaussian random signal

    It is known that a Gaussian signal and a non-Gaussian signal can have the same ASD but different kurtoses.As shown in Fig.1,three random signals have the same ASD but different kurtoses.

    Zero-mean stationary Gaussian random signal can be completely determined by its standard deviation.But for zeromean zero-skewness stationary non-Gaussian signal,kurtosis must also be taken into consideration.Normalized kurtosis is de fined as the fourth statistical moment divided by the square of the second statistical moment as

    where x(t)is a random signal.With this definition,the kurtosis of a Gaussian signal is equal to 3 and the kurtosis of a non-Gaussian signal is not equal to 3.Random signal with a kurtosis greater than 3 is said to be leptokurtic or super-Gaussian and random signal with a kurtosis less than 3 is said to be platykurtic or sub-Gaussian.Because moment higher than the fourth is difficult to estimate,kurtosis is always the only parameter used to measure the non-Gaussian characteristic of a random signal in the engineering practice.

    As mentioned above,a non-Gaussian signal can be generated from a Gaussian signal by the ZMNL transformation method.Here,we suggest an improved ZMNL transformation method in order to overcome the defects from the original one.The improved ZMNL transformation method is based on a ZMNL function as

    where g(x)is the resulted non-Gaussian signal and x is the Gaussian signal.The constants a and b are selected to control the skewness and kurtosis of g(x).When a=b,skewness is equal to zero.K represents the kurtosis range of g(x).This improved method should be performed in an iterative process to search a set of proper a and b to obtain a desired kurtosis.At the same time,we back-substitute the Fourier amplitudes of the ZMNL transformed signal with its original ones,which will guarantee the Fourier spectrum of the signal not to be changed.With the improved ZMNL transformation method,the defects of the spectrum distortion and dynamic range loss by the original method can be overcome.

    The schematic of the improved ZMNL transformation method is shown in Fig.2.The Gaussian random signal is transformed to desired non-Gaussian random signal with the reference kurtosis Kfand tolerance kurtosis Ktolin an iterative process,where Eq.(2)is used in the ZMNL transformation.

    3.Description of reference spectra

    In MIMO random vibration test,not only the auto spectral densities need to be controlled,but also the cross spectral densities should be considered.The reference spectra matrix should be positive de finite or positive semi-de finite to be physically realizable.In general,in MIMO random vibration test,the reference spectra matrix is a positive de finite Hermitian matrix whose diagonal elements are real positive numbers and the corresponding off-diagonal elements are complex conjugate pairs.

    For a linear time invariant system with n excitations and n responses,the positive de finite three-dimensional reference spectral density matrix can be expressed as

    where Rjj(j=1,2,...,n)are the auto spectral densities and Rjk(j,k=1,2,...,n,j≠k)are the cross spectral densities.For convenience and brevity,the frequency notation ω will be omitted in the following expressions.The cross spectral densities can be de fined by the auto spectral densities as

    From the fact that the reference matrix should be positive de finite,the mathematical constraint conditions for positive de finite matrix R at each frequency line can be expressed as

    where Dkis the kth order principal minor determinant of R.Considering the general case that n=3,one can have

    Substituting Eqs.(4)and(5)into inequalities(7),one can obtain

    The former two inequalities in Eq.(8)are always true,and only the last inequality is required.Therefore,a reasonable set of coherences and phases is needed to make the reference spectra positive de finite.If the reference spectra are originated from the field measured data,there is no such concern because the reference spectra are always physically realizable.If we arti ficially de fine the reference spectra with coherences and phases as a function of frequency,the mathematical constraint conditions should be complied with.

    4.Control method

    The goal of MIMO non-Gaussian random vibration test is to control the kurtoses and the spectra of the response outputs to meet the references within speci fied tolerances.For a linear time invariant system with n excitations and n responses,we let

    where P is a diagonal matrix named random phase matrix,whose the jth diagonal element is eiθj(j=1,2,...,n)and the phase angle θjis uniformly distributed –π to π.L is the Cholesky decomposition of R as

    where the superscript ‘H’represents the complex conjugate transpose.

    Then one frame Gaussian random signal u can be achieved from U by IFFT,and the jth element of u can be expressed as24

    where F-1denotes IFFT and ljkis the element of L.The next step is to use the improved ZMNL transformation method as described in Section 2 and to modify the phase angles θj(j=1,2,...,n)in sequence to achieve one frame reference response signals unwith desired kurtoses.

    For simplicity and without loss of generality,we can describe the process in detail with n=2.When n=2,from Eqs.(9)and(11),one can have

    We first modify θ1to make the kurtosis of the first output(Line 1 in Eq.(13))meet its reference kurtosis,and then we modify θ2to make the kurtosis of the second output(Line 2 in Eq.(13))meet its reference.Note that the kurtosis of the first output is only affected by θ1and the kurtosis of the second output is affected by θ1and θ2,so θ1and θ2must be modi fied in sequence in order to avoid the cross affection between θ1and θ2.We call this method as Sequential Phase Modi fication(SPM)method.When n>2,we can continue to adjust the kurtoses from line 3 to n in sequence in Eq.(13).It is worthy to note that one cannot use the time domain randomization to u to obtain the continuous stationary non-Gaussian random signals25,27,otherwise the cross spectral structure will be destroyed.

    Up to now,we have obtained the outputs whose spectra and kurtoses are met to the references.In order to achieve the drive inputs,an inverse system method in the frequency domain is used.The Fourier spectra of reference response signals uncan be written as

    Table 1 Parameters of cantilever beam.

    where F denotes FFT.We de fine the frequency response function matrices of the MIMO system as G and its inverse as A.

    If G is ill-conditional at some frequencies,the Moore-Penrose pseudo inverse should be used.28,29Then,by the relationship between the outputs and inputs in the frequency domain,the drive spectra matrix can be obtained as

    Afterwards,one frame drive signals in time domain can be obtained as

    Table 2 Reference spectra for simulation test.

    Table 3 Reference kurtoses for simulation test.

    Repeat the above steps,and the continuously generated dnare windowed and overlapped to compose the continuous stationary drive signals d.It is obvious that the proposed method is different from time domain randomization technique.The time domain randomization technique uses one frame pseudo random signal to generate continuous stationary drive signals while the proposed method uses continuously generated dnto compose the continuous stationary drive signals by the windowing and overlapping.The function of the windowing and overlapping is to remove the discontinuities at the frame boundaries and to generate real drive signals.Here the Half-Sine window or Potter window with overlap factor of 2 is used to make d stationary and they have a good side lobe decaying.24It should be noted that the windowing and overlapping to a signal will decrease its kurtosis,but this in fluence is linear and does not affect the kurtosis control.30

    Because there are many factors which will affect the control process during the test31,one can hardly achieve reasonable responses by one-time inputs.It is essential to correct the drive signals for many times in order to obtain the responses with satisfactory spectra and kurtoses.The control algorithm is used to implement the correction process.Here the matrix power control algorithm is utilized for spectra correction,which has a good stability and does not need scale process.31The two main formulas of matrix power control algorithm are

    where Δlis the spectra error,Lris the Cholesky decomposition of the reference spectral density matrix R by Eq.(10)and Lcis the Cholesky decomposition of the spectral density matrix Scof the present responses.Lnewwill be used to substitute L in Eq.(9)to generate new U and Loldis L used in Eq.(9)last time.ε is the spectrum matrix power which is a constant between(0,1].Similarly,a control algorithm for the kurtosis correction is put forward.The two formulas are

    Table 4 Reference spectra for test.

    Table 5 Reference kurtoses for test.

    where Δkis the kurtoses error,Kris the reference kurtosis matrix which is a diagonal matrix with the reference kurtoses as the diagonal elements,and Kcis the kurtosis matrix of the present responses.Knewwill be used to generate one frame new reference response signals by the improved ZMNL transformation method in Eq.(11)and Koldis used last time.η is the kurtosis matrix power which is a constant between(0,1].

    Finally,the block diagram for the control method of MIMO non-Gaussian random vibration test is shown in Fig.3.

    5.Numerical example

    To verify the effectiveness of the proposed control method given in Fig.3,a simulation test was carried out by an aluminum cantilever beam.The parameters of the beam are listed in Table 1 and the locations of the excitation(input)and control(output)points are shown in Fig.4.Accordingly,the amplitude-frequency diagrams of Frequency Response Functions(FRFs)of the system are exhibited in Fig.5.The control frequency band for simulation was from 20 to 2000 Hz with 400 spectral lines.The reference spectral densities and kurtoses were set as described in Table 2 and Table 3 respectively.Only values at the break points are given and values at other frequency points are calculated by the linear logarithmic interpolation with the given values.

    The uncontrolled response spectra of two control points are shown in Fig.6.From Fig.6,we can see that the uncontrolled response spectra exceed the reference spectra at some frequencies because of the relatively large conditions of the FRF matrices at these frequency points,which make large errors during the inverse calculation of the FRF matrix.Fig.7 shows the controlled response spectra.It can be seen that the response spectra have been controlled within the±3 dB alarm limits after recurrent correction of the drive signals three times.Fig.8 shows the controlled response kurtoses.It is clearly to be seen that the kurtoses of the response signals have been stably controlled toward or around the reference values.The segment time histories of the drive signals and response signals are shown in Figs.9 and 10 respectively.

    6.Test

    6.1.Parameter setting

    To verify the feasibility of the proposed control method for MIMO non-Gaussian random vibration test,a two-input two-output test was carried out.A personal computer with the programmed control software and an Agilent VXI were used to control the x and y directions of a three-axis vibration shaker table.The test system is shown in Fig.11 and the amplitude-frequency diagrams of frequency response functions of the system are exhibited in Fig.12.The control frequency band was from 20 to 2000 Hz with 400 spectral lines.The reference spectral densities were de fined in Table 4 and reference kurtoses for two directions were given in Table 5.For the reference spectra in Table 4,only values at the break points were given and values at other frequency points were calculated by the linear logarithmic interpolation with the given values.The tolerances for the test were set as follows.

    (1)Auto spectral densities:set±3 dB as alarm limits and±6 dB as abort limits in all bandwidths.The relative error of the Root Mean Square(RMS)value of response acceleration at each controlled point should be within±10%according to its reference.

    (2)Cross spectral densities:

    (A)Coherence:set the tolerance to be±0.1 in the rangeand others are not set in this paper.

    (B)Phase:set the tolerance to be±10°in the range 0.5any phase is acceptable.

    (3)Kurtoses:set the tolerance to be±1 in the range K>3 and±0.5 in the range 0

    6.2.Test results

    As shown in Fig.13,the uncontrolled response spectra deviate from the references largely.The uncontrolled auto spectra are not completely within the±3 dB alarm limits and even some spectral lines are beyond the±6 dB abort limits at the frequency points about 1265 and 1675 Hz.It can be seen from Fig.12 that 1265 and 1675 Hz are the resonance peaks of the FRFs,which lead to errors in the inverse calculation of the FRF matrices.From Fig.13,we can also see that the uncontrolled coherence and phase deviate from the references largely.Fig.14 shows the controlled spectra with four spectral corrections and it can be seen that the spectra are all within the tolerance ranges and very close to the references.The spectral RMS errors between the controlled auto spectra and the references are listed in Table 6.Before the kurtoses corrections,the kurtoses of the response signals were all about 3.Fig.15 shows the kurtosis controlling process.Two segments of the two drive signals and controlled responses are shown in Figs.16 and 17 respectively.

    Table 6 Spectral RMS errors.

    7.Conclusions

    In this paper,a control method for MIMO non-Gaussian random vibration test with cross spectra consideration is proposed.The control method is composed of four parts which are the inverse system method,the improved ZMNL method,the sequential phase modi fication method and the matrix power control algorithm.

    Because of the coupling effects of the cross spectra,it is very difficult to generate the drive signals for the MIMO non-Gaussian random vibration test.The key idea of the inverse system method is to generate the reference response signals from the reference spectra and kurtoses in the time domain first and then to obtain the drive signals by inverse system in the frequency domain.The improved ZMNL method is set forth to adjust a random signal to have a desired kurtosis without dynamic range loss.The sequential phase modification method is introduced to eliminate the cross effects among the phase selections.The matrix power control algorithm is applied to the spectra and kurtoses iteration corrections.

    At last,the proposed control method is verified by a simulation example with a cantilever beam and a shaker test and the results are satisfactory.

    Acknowledgements

    This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0234).

    1.Sarkani S,Kihl DP,Beach JE.Fatigue of welded joints under narrowband non-Gaussian loadings.Probabilist Eng Mech 1994;9(3):179–90.

    2.Benasciutti D,Tovo R.Fatigue life assessment in non-Gaussian random loadings.J Fatigue 2006;28(7):733–46.

    3.Kihm F,Rizzi SA,Ferguson NS,Halfpenny A.Understanding how kurtosis is transferred from input acceleration to stress response and its in fluence on fatigue life.11th international conference on recent advances in structural dynamics;2013 July 1–3;Pisa,Italy.Southampton:University of Southampton Press;2013.p.6.

    4.Kihm F,Ferguson NS,Antoni J.Fatigue life from kurtosis controlled excitations.Proc Eng 2015;133:698–713.

    5.Iii WHC.Comments on kurtosis of military vehicle vibration data.J IES 1991;34(6):38–41.

    6.Gioffre`M,Gusella V,Grigoriu M.Simulation of non-Gaussian if eld applied to wind pressure fluctuations.Probabilist Eng Mech 2000;15(4):339–45.

    7.Tatarskii VV,Tatarskii VI.Non-Gaussian statistical model of the ocean surface for wave-scattering theories.Waves Random Media 1996;6(4):419–35.

    8.Rangaswamy M.Spherically invariant random processes for modeling non-Gaussian radar clutter.1993 conference record of the 27th Asilomar conference on signals,systems and computers.Pacific Grove,USA;Piscataway:IEEE Press;1993.p.1106–10.

    9.Rouillard V.On the non-Gaussian nature of random vehicle vibrations.Lecture Notes Eng Comp Sci 2007;2166(1):1219–24.

    10.Grigoriu M.Applied non-Gaussian processes:Examples,theory,simulation,linear random vibration,and MATLAB solutions.Upper Saddle River:Prentice Hall;1995.p.1–232.

    11.Smallwood DO.Generating non-Gaussian vibration for testing purposes.Sound Vib 2005;39(10):18–24.

    12.Steinwolf A.Vibration testing by non-Gaussian random excitations with specified kurtosis.Part I:Discussion and methods.J Test Eval 2014;42(3):659–71.

    13.Steinwolf A.Vibration testing by non-Gaussian random excitations with specified kurtosis.Part II:Numerical and experimental results.J Test Eval 2014;42(3):672–86.

    14.Wint′erstein SR.Nonlinear vibration models for extremes and fatigue.J Eng Mech 1988;114(10):1772–90.

    15.Yang Q,Tian Y.Comparison of non-Gaussian peak factor formulae in wind engineering applications.8th Asia-Pacific conference on wind engineering;2013 Dec 10–14;Chennai,India;Singapore:Research Publishing;2013.p.885–94

    16.Baren PV.The missing knob on your random vibration controller.Sound Vib 2005;39(10):10–6.

    17.Steinwolf A.Approximation and simulation of probability distributions with a variable kurtosis value.Comput Stat Data An 1996;21(2):163–80.

    18.Steinwolf A.Random vibration testing with kurtosis control by IFFT phase manipulation.Mech Syst Signal Pr 2012;28:561–73.

    19.Smallwood D.Vibration with non-Gaussian noise.J IEST 2009;52(2):13–30.

    20.Seong SH,Peterka JA.Experiments on Fourier phases for synthesis of non-Gaussian spikes in turbulence time series.J Wind Eng Indust Aerodyn 2001;89(5):421–43.

    21.Hsueh KD,Hamernik RP.A generalized approach to random noise synthesis:Theory and computer simulation.J Acoust Soc Am 1990;87(3):1207–17.

    22.United States Department of Defense.Test method standard for environmental engineering considerations and laboratory tests.Washington,D.C.:United States Department of Defense;2014.Standard No:MIL-STD-810G_CHG-1.

    23.Underwood MA,Keller T.Recent system developments for multiactuator vibration control.Sound Vib 2001;35(10):16–23.

    24.Smallwood DO,Paez TL.A frequency domain method for the generation of partially coherent normal stationary time domain signals.Shock Vib 1993;1(1):45–53.

    25.Chen HH,Wang PY,Sun JY.Generation of multi-input multioutput non-Gaussian driving signal based on inverse system method.Acta Aeronautica etAstronautica Sinica 2016;37(5):1544–51[Chinese].

    26.Zheng R,Chen H,He X.Control method for multiple-input multiple-output non-Gaussian random vibration test.Packag Technol Sci 2017;30(7):331–45.

    27.Smallwood DO.Multiple shaker random vibration control—An update.Albuquerque:Sandia NationalLaboratories;1999.Report No.:SAND 98–2044C.

    28.Cui S,Chen HH,He XD,Zheng W.Multi-input multi-output random vibration control using Tikhonov filter.Chin J Aeronaut 2016;29(6):1649–63.

    29.Cui S,Chen HH,He XD.Time-domain approach for multi-exciter random environment test.J Sound Vib 2017;398:52–69.

    30.Jiang Y,Chen X,Tao JY.Study on the generation of super-Gaussian and true-random drive signals using time domain randomization.J Vibr Eng 2005;18(4):491–4.

    31.Cui XL,Chen HH,He XD,Jiang SY.Matrix power control algorithm for multi-input multi-output random vibration test.Chin J Aeronaut 2011;24(6):741–8.

    28 October 2016;revised 20 June 2017;accepted 11 August 2017

    Available online 16 October 2017

    ?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access a rticle under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail addresses:rhzheng@nuaa.edu.cn(R.ZHENG),chhnuaa@nuaa.edu.cn(H.CHEN),hexudong@nuaa.edu.cn(X.HE).

    Peer review under responsibility of Editorial Committee of CJA.

    变态另类丝袜制服| 亚洲一级一片aⅴ在线观看| 哪里可以看免费的av片| 老司机影院成人| 国模一区二区三区四区视频| 日韩av在线大香蕉| 国产成人a∨麻豆精品| 日日干狠狠操夜夜爽| 激情 狠狠 欧美| 免费电影在线观看免费观看| 国产精品亚洲美女久久久| 亚洲三级黄色毛片| 久久韩国三级中文字幕| 男人舔奶头视频| 午夜日韩欧美国产| 嫩草影院入口| 一进一出抽搐gif免费好疼| 亚洲av电影不卡..在线观看| 变态另类丝袜制服| 大型黄色视频在线免费观看| 亚洲美女黄片视频| 国产精品av视频在线免费观看| 国产一区二区在线观看日韩| 亚洲av美国av| 丰满乱子伦码专区| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 日韩成人伦理影院| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站 | 亚洲中文字幕日韩| 看黄色毛片网站| 久久久久久久久中文| 一本一本综合久久| 69av精品久久久久久| 国产伦精品一区二区三区四那| 国产真实乱freesex| 亚洲四区av| 亚洲人成网站在线播| 亚洲在线观看片| 18+在线观看网站| 成人特级黄色片久久久久久久| 亚洲精品一区av在线观看| 99热只有精品国产| 日韩成人av中文字幕在线观看 | 日本熟妇午夜| 91久久精品电影网| 国产高清激情床上av| 国产精品一及| 久久精品综合一区二区三区| 日韩强制内射视频| 精品午夜福利在线看| 久久久久久久久大av| 国产一区亚洲一区在线观看| 国产黄a三级三级三级人| 亚洲三级黄色毛片| 亚洲aⅴ乱码一区二区在线播放| 国产一区二区三区av在线 | 97超碰精品成人国产| 一个人看视频在线观看www免费| 中文字幕av成人在线电影| 国产av不卡久久| 久久九九热精品免费| 中文在线观看免费www的网站| 精品福利观看| 日韩制服骚丝袜av| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 免费黄网站久久成人精品| 又黄又爽又免费观看的视频| 菩萨蛮人人尽说江南好唐韦庄 | 欧美绝顶高潮抽搐喷水| 午夜日韩欧美国产| 久久久精品大字幕| 欧美潮喷喷水| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 插阴视频在线观看视频| 亚洲丝袜综合中文字幕| 2021天堂中文幕一二区在线观| 日韩强制内射视频| 亚洲av电影不卡..在线观看| av福利片在线观看| 全区人妻精品视频| 久久久精品欧美日韩精品| 国产一区二区在线av高清观看| 我要搜黄色片| 国产真实乱freesex| 国产69精品久久久久777片| 国产片特级美女逼逼视频| 国产亚洲av嫩草精品影院| 韩国av在线不卡| 少妇的逼水好多| 看片在线看免费视频| 日韩精品中文字幕看吧| 免费无遮挡裸体视频| 亚洲精品在线观看二区| 一级a爱片免费观看的视频| 美女免费视频网站| ponron亚洲| 国产精品1区2区在线观看.| 又黄又爽又免费观看的视频| 99视频精品全部免费 在线| 身体一侧抽搐| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 伦精品一区二区三区| 成人三级黄色视频| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全电影3| 久久精品91蜜桃| 国产欧美日韩精品亚洲av| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 美女大奶头视频| а√天堂www在线а√下载| 老司机福利观看| av天堂中文字幕网| 国产精品三级大全| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 秋霞在线观看毛片| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 俺也久久电影网| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看| 免费观看人在逋| 亚洲人成网站在线播| 亚洲人成网站在线播放欧美日韩| 成年女人永久免费观看视频| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 国产视频内射| 黄色日韩在线| 床上黄色一级片| 一级黄片播放器| 欧美绝顶高潮抽搐喷水| 天堂动漫精品| 蜜桃亚洲精品一区二区三区| 中文字幕久久专区| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 久久久久性生活片| av天堂中文字幕网| 中国国产av一级| 91精品国产九色| 波野结衣二区三区在线| 成人特级av手机在线观看| 成年免费大片在线观看| 高清午夜精品一区二区三区 | 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 亚洲av电影不卡..在线观看| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 99热这里只有精品一区| 精品人妻偷拍中文字幕| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 在线观看一区二区三区| 国产精品一区www在线观看| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 久久久久国产网址| 成年女人永久免费观看视频| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 欧美国产日韩亚洲一区| 一进一出抽搐gif免费好疼| 观看美女的网站| 内地一区二区视频在线| 我的老师免费观看完整版| 热99在线观看视频| 在现免费观看毛片| 欧美激情久久久久久爽电影| 97在线视频观看| 中出人妻视频一区二区| 国产精品综合久久久久久久免费| 欧美成人a在线观看| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 国产精品99久久久久久久久| 亚洲18禁久久av| 干丝袜人妻中文字幕| 成人亚洲欧美一区二区av| 久久久久久大精品| 老师上课跳d突然被开到最大视频| 日韩精品青青久久久久久| 69av精品久久久久久| 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 99久国产av精品| 日本-黄色视频高清免费观看| 中文字幕熟女人妻在线| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | av卡一久久| 国产探花在线观看一区二区| 欧美日韩在线观看h| 插阴视频在线观看视频| 国产毛片a区久久久久| 亚洲av成人av| 天堂影院成人在线观看| 五月伊人婷婷丁香| 日本撒尿小便嘘嘘汇集6| 日韩在线高清观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 少妇裸体淫交视频免费看高清| 岛国在线免费视频观看| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| 午夜激情欧美在线| 日韩欧美在线乱码| 日本五十路高清| 十八禁网站免费在线| 日韩欧美精品免费久久| 亚洲av成人精品一区久久| 国产亚洲精品av在线| ponron亚洲| 99在线人妻在线中文字幕| 久久久久国内视频| 夜夜夜夜夜久久久久| 免费人成在线观看视频色| 身体一侧抽搐| 97超视频在线观看视频| 老司机影院成人| 又黄又爽又免费观看的视频| 国产精品精品国产色婷婷| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av| 国产精品日韩av在线免费观看| 免费黄网站久久成人精品| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 国产黄片美女视频| 99热网站在线观看| 久99久视频精品免费| 波野结衣二区三区在线| 少妇裸体淫交视频免费看高清| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 国产精品久久久久久av不卡| 免费一级毛片在线播放高清视频| 久久精品国产清高在天天线| 国产片特级美女逼逼视频| 中国美白少妇内射xxxbb| 国产高清视频在线观看网站| 久久久久久久久久久丰满| 婷婷精品国产亚洲av在线| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 直男gayav资源| 亚洲精品在线观看二区| 一本一本综合久久| 你懂的网址亚洲精品在线观看 | 天堂动漫精品| 欧美国产日韩亚洲一区| avwww免费| 99热这里只有是精品在线观看| 永久网站在线| 男人的好看免费观看在线视频| 欧美绝顶高潮抽搐喷水| 欧美性感艳星| 91在线观看av| 国国产精品蜜臀av免费| 亚洲在线观看片| 国产精品av视频在线免费观看| 最新在线观看一区二区三区| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 国产乱人偷精品视频| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 欧美日本视频| 国产精品日韩av在线免费观看| av在线老鸭窝| 国产精品,欧美在线| 99热这里只有精品一区| 色噜噜av男人的天堂激情| 久久人人爽人人片av| 亚洲成人久久性| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 我要看日韩黄色一级片| 97超碰精品成人国产| 九色成人免费人妻av| av在线老鸭窝| 亚洲av免费在线观看| 内地一区二区视频在线| 日韩精品有码人妻一区| 内地一区二区视频在线| 精品国产三级普通话版| 色av中文字幕| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 中文字幕av成人在线电影| 久久久色成人| 国产免费一级a男人的天堂| 久久午夜福利片| 国内精品一区二区在线观看| 成人漫画全彩无遮挡| 免费一级毛片在线播放高清视频| 亚洲国产欧美人成| 99热精品在线国产| 精品久久国产蜜桃| 日韩一区二区视频免费看| 精品乱码久久久久久99久播| 国产大屁股一区二区在线视频| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 久久99热6这里只有精品| av女优亚洲男人天堂| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 色5月婷婷丁香| 一级毛片电影观看 | 天堂av国产一区二区熟女人妻| 国产精品国产三级国产av玫瑰| 高清毛片免费看| 五月伊人婷婷丁香| 亚洲人成网站在线播| 婷婷色综合大香蕉| 热99re8久久精品国产| 内射极品少妇av片p| 精品少妇黑人巨大在线播放 | 久久国产乱子免费精品| 69av精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 亚洲色图av天堂| 69人妻影院| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 亚洲欧美日韩东京热| 日本a在线网址| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 伦精品一区二区三区| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 岛国在线免费视频观看| 三级经典国产精品| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品94久久精品| 少妇的逼水好多| 久久亚洲精品不卡| 六月丁香七月| or卡值多少钱| 成人鲁丝片一二三区免费| 尾随美女入室| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 亚洲自偷自拍三级| 直男gayav资源| 久久人人精品亚洲av| 欧美激情在线99| 99热这里只有是精品50| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 男女那种视频在线观看| 成人三级黄色视频| 国产69精品久久久久777片| 午夜福利在线在线| 一进一出抽搐动态| 在线国产一区二区在线| 国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久| 欧美一区二区国产精品久久精品| 欧美极品一区二区三区四区| 嫩草影视91久久| 18禁在线无遮挡免费观看视频 | 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 婷婷色综合大香蕉| 亚洲第一电影网av| 男女下面进入的视频免费午夜| 欧美中文日本在线观看视频| 日本 av在线| 亚洲精品乱码久久久v下载方式| 国产蜜桃级精品一区二区三区| 国产大屁股一区二区在线视频| 国产精品人妻久久久影院| 啦啦啦韩国在线观看视频| 97在线视频观看| 日韩成人伦理影院| 91久久精品国产一区二区成人| 少妇高潮的动态图| 国产精华一区二区三区| 日韩人妻高清精品专区| 久久久国产成人精品二区| 久久国产乱子免费精品| 久久久久久久久久久丰满| 97超视频在线观看视频| 真人做人爱边吃奶动态| 日韩成人av中文字幕在线观看 | 老司机影院成人| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 国产精品永久免费网站| 黑人高潮一二区| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 成人永久免费在线观看视频| 国产精品久久久久久av不卡| 不卡一级毛片| 欧美色欧美亚洲另类二区| 亚洲成人中文字幕在线播放| 国产在视频线在精品| 天堂动漫精品| 日日摸夜夜添夜夜添av毛片| 一个人观看的视频www高清免费观看| 欧美区成人在线视频| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 国产精品久久久久久久久免| 国产精品一及| 国产在线男女| 女人十人毛片免费观看3o分钟| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 午夜影院日韩av| 亚洲久久久久久中文字幕| 国产精品女同一区二区软件| 大香蕉久久网| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 91麻豆精品激情在线观看国产| 国产综合懂色| 亚洲精品国产成人久久av| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 丰满人妻一区二区三区视频av| 淫妇啪啪啪对白视频| or卡值多少钱| 国产黄片美女视频| 亚洲国产精品成人久久小说 | 日韩成人av中文字幕在线观看 | 欧美xxxx性猛交bbbb| 国产午夜精品久久久久久一区二区三区 | 久久久久国产网址| 99久久精品国产国产毛片| 日韩精品青青久久久久久| 特大巨黑吊av在线直播| 黑人高潮一二区| 免费av观看视频| 91久久精品国产一区二区成人| 成年女人看的毛片在线观看| 国产视频内射| 免费av毛片视频| 欧美最黄视频在线播放免费| 深爱激情五月婷婷| 女同久久另类99精品国产91| 三级毛片av免费| 国产不卡一卡二| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| 亚洲av二区三区四区| 99久国产av精品国产电影| 日日啪夜夜撸| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 久久精品国产亚洲av涩爱 | 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 如何舔出高潮| 欧美丝袜亚洲另类| 99久久九九国产精品国产免费| 哪里可以看免费的av片| 日本在线视频免费播放| 成人国产麻豆网| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av在线| 精品人妻熟女av久视频| 插逼视频在线观看| 天天躁日日操中文字幕| 99精品在免费线老司机午夜| 99热只有精品国产| 久久久久久久久久久丰满| 天堂√8在线中文| 亚洲七黄色美女视频| 亚洲性久久影院| 我要搜黄色片| 国产午夜精品论理片| 日韩欧美免费精品| 午夜免费男女啪啪视频观看 | 非洲黑人性xxxx精品又粗又长| 老熟妇仑乱视频hdxx| 成年免费大片在线观看| 国产精品,欧美在线| 日韩在线高清观看一区二区三区| 一区二区三区免费毛片| av天堂在线播放| 高清毛片免费看| 国产精品日韩av在线免费观看| 久久鲁丝午夜福利片| 毛片女人毛片| 一级a爱片免费观看的视频| 国产成人a区在线观看| 国产精品精品国产色婷婷| 国产视频一区二区在线看| 少妇熟女欧美另类| 亚洲av.av天堂| 日韩成人伦理影院| 美女cb高潮喷水在线观看| 亚洲乱码一区二区免费版| 久久久a久久爽久久v久久| 超碰av人人做人人爽久久| 成年女人看的毛片在线观看| 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 亚洲最大成人中文| 亚洲欧美中文字幕日韩二区| 日韩中字成人| 麻豆一二三区av精品| 一个人观看的视频www高清免费观看| 国产爱豆传媒在线观看| 亚洲不卡免费看| 九九热线精品视视频播放| 国产伦在线观看视频一区| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 毛片一级片免费看久久久久| 国产黄片美女视频| 久久6这里有精品| 99久久精品一区二区三区| 我的女老师完整版在线观看| 亚洲欧美精品综合久久99| 成人国产麻豆网| 国产在视频线在精品| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 激情 狠狠 欧美| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 久久久欧美国产精品| a级毛片a级免费在线| 国产伦在线观看视频一区| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 最近手机中文字幕大全| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 国产爱豆传媒在线观看| 成年免费大片在线观看| 婷婷色综合大香蕉| 国产av一区在线观看免费| 国产一区亚洲一区在线观看| 国产av麻豆久久久久久久| 舔av片在线| 黄色一级大片看看| 插阴视频在线观看视频| 国产高潮美女av| 色视频www国产| 99久久精品热视频| 伦精品一区二区三区| 麻豆成人午夜福利视频| 亚洲美女视频黄频| av在线亚洲专区| av女优亚洲男人天堂| 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 好男人在线观看高清免费视频| avwww免费| 亚洲国产日韩欧美精品在线观看| 美女cb高潮喷水在线观看| 少妇被粗大猛烈的视频| 免费av观看视频| 久久午夜亚洲精品久久| 搡女人真爽免费视频火全软件 | 搡老岳熟女国产| 国产精品野战在线观看| 久久久久国内视频| 精品人妻视频免费看| 成人欧美大片| 最后的刺客免费高清国语| 久久国产乱子免费精品| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 亚洲欧美日韩无卡精品| 日韩一区二区视频免费看|