• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feedback stabilization of N-dimensional stochastic quantum systems based on bang-bang control

    2017-12-21 09:47:05XiaqingSUNSenKUANGYananLIUJuanZHOUShuangCONG
    Control Theory and Technology 2017年3期

    Xiaqing SUN,Sen KUANG,Yanan LIU,Juan ZHOU,Shuang CONG

    Department of Automation,University of Science and Technology of China,Hefei Anhui 230027,China

    Feedback stabilization ofN-dimensional stochastic quantum systems based on bang-bang control

    Xiaqing SUN,Sen KUANG?,Yanan LIU,Juan ZHOU,Shuang CONG

    Department of Automation,University of Science and Technology of China,Hefei Anhui 230027,China

    For anN-dimensional quantum system under the influence of continuous measurement,this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator,respectively.In the switching control strategy,we divide the state space into two parts:a set containing a target state,and its complementary set.By analyzing the stability of the stochastic system model under consideration,we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state.Further,for the case of a non-degenerate measurement operator,we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory;while for the case of a degenerate measurement operator,the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians.The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved.The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.

    Quantum systems,feedback stabilization,bang-bang control,switching strategy

    1 Introduction

    Control theory has attained many successful applicationsin the fields ofatom physics,quantum information,quantum chemistry,quantum optics,and so on[1-3].Many classical control methods have been extended to the quantum domain,such as optimal control[4,5],Lyapunov control[6-8],sliding mode control[9,10],H∞control[11],measurement-based feedback con-trol[12-14]and fault-tolerant control[15].It is well known that feedback control may have stronger robustness and better control effect than open-loop control.In the quantum domain,quantum measurement may destroy the state of a system to be measured.It can also be used as an important approach to acquire the information on the controlled system.Actually,the quantum measurement itself can be regarded as a particular control means[16-18].

    Since the 1990s,measurement-based feedback control has been widely studied and applied to protect quantum entanglement[19],prepare specific quantum states[20],and so on.For the preparation of quantum states using quantum measurement theory,we usually consider the preparation of a specific eigenstate of a measurement operator.Handel etal.[21]designed a continuous control law based on numerical methods and achieved the feedback stabilization of a desired eigenstate of a non-degenerate measurement operator for spin systems.For high-dimensional systems,direct numerical methods usually lead to expensive computation cost.Mirrahimi and Handel[22]proposed a switching control law by dividing the state space into different sets to reduce the complexity of direct numerical computation,and at the same time achieve the feedback stabilization of an arbitrary eigenstate of the angular momentum operator ofN-dimensional angular momentum systems.Zhou and Kuang[23]proposed a doublechannel control scheme where the control law on one channel is kept as a constant and only the control law on the other channel is designed,and achieved the feedback stabilization preparation of any Bell state of a degenerate measurement operator for two-qubit quantum systems.Then,the scheme has been extended to generalN-qubit systems and used in the feedback stabilization preparation of GHZ entangled states[24].

    As an easily implemented control means for many quantum systems,bang-bang control has been utilized in the design of quantum control systems.For instance,via the parameterization of state vectors under complex hyperspherical coordinates,the authors in[25]designed the corresponding bang-bang control sequence which can achieve the desired state transfer.Kuang etal.[26,27]designed an open-loop approximate bang-bang control law based on Lyapunov methods and prepared an eigenstates of the internal Hamiltonians of a closed quantum system.In[28],for a trapped-ion oscillator,Alonso etal.achieved the preparation and manipulation of coherent states with up to 10000 quanta of energy by bang-bang control.For two-qubit and three-qubit systems,Vu etal.[29]designed switching control laws of bang-bang type and achieved the feedback preparation of Bell states for two-qubit systems and GHZ entangled states for three-qubit systems,respectively.In[30],for a non-degenerate measurement operator,Wei etal.designed a switching control law of bang-bang type and realized the feedback generation of symmetric multi-qubit Dicke states.Recently,a feedback control law based on switching between models was proposed to prepare the Bell states of two-qubit systems[31],which is equivalent to a bang-bang control law for a double-channel control model.

    This paper further considers the bang-bang control problem of stochastic quantum systems under the influence of measurement feedback.Compared to the existing literature,this paper first extends the bangbang control scheme to generalN-dimensional stochastic quantum systems.Secondly,for the bang-bang control strategy and the stability of the closed-loop system,this paper simultaneously considers the cases of a nondegenerate measurement operator and a degenerate measurement operator.Even for non-degenerate measurementoperators,the design ofthe bang-bang control strategy in this paper is also different from the methods in the existing references since the bang-bang control law in this paper is designed by analyzing the stability of the system with a constant Hamiltonian and using quantum continuous measurement theory,instead of being directly provided or designed via Lyapunov functions.Finally,we give the conditions that the control Hamiltonian satisfies for the global asymptotic stability of the closed-loop systems.

    The rest of this paper is organized as follows.In Section 2,we present the stochastic quantum system model under the influence of measurement feedback and describe the control task of this paper.Section 3 analyzes the stability of the system with a constant Hamiltonian;and gives the bang-bang control strategies under a non-degenerate measurement operator and a degenerate measurement operator,including the design of switching control laws and the construction of the control Hamiltonians.In Section 4,the stability of the closed-loop systems with a non-degenerate measurement operator and a degenerate measurement operator is strictly proved.In Section 5,we perform simulation experiments on an angular momentum system with a non-degenerate measurement operator and a two-qubit quantum system with a degenerate measurement op-erator to demonstrate the effectiveness of the control scheme proposed in this paper.Section 6 presents the conclusion.

    2 System models and problem description

    ConsideranN-dimensionalquantum system.Assume that when one performs proper quantum measurement(e.g.,homodyne measurement)on the observableA,the system dynamics can be described by the following filtering equation[19,32]:

    In this paper,we assume that the measurement operatorAis a real-valued diagonal matrix,i.e.,

    Under the action of control fields,the system HamiltonianHusually can be written as

    whereH0is the free Hamiltonian of the system;Hkcorresponds to the control Hamiltonian of the system;andukis a real-valued control field.

    The control task of this paper is to design the control lawukin(4)and give the conditions that the control HamiltonianHksatisfy in order to achieve the convergence of system(1)to a given eigenstate ρdof the measurement operatorA.When the measurement operatorAis non-degenerate,we only need to consider the case wherek=1 for the control task.While when the measurement operatorAis degenerate,two control channels(i.e.,k=2)are used.

    3 Switching control strategy

    In this section,we first analyze the stability of the system when the HamiltonianHin(1)is a constant matrix,and then give the switching control strategies for a non-degenerate measurement operator and a degenerate measurement operator.

    3.1 Stability of the system with constant Hamiltonian

    Denote the expectation of the system state as

    The dynamics of the average state of system(1)can be written as

    We analyze the stability of system(5)via the LaSalle’s invariance principle.We may define the following Lyapunov function:

    A direct calculation shows that the time derivative ofQ(ˉρt)is

    where?A?Frepresents the Frobenius norm of the matrixA.

    Thus,the LaSalle’s invariance principle implies that the state of system(5)will converge to the largest invariant setMcontained in the set

    The equilibrium point ρeof system(10)satisfies

    Thus,we have the following theorem:

    According to Theorem 1,it is difficult to write the general form ofH.However,when the measurement operatorAis non-degenerate,one always can obtain some concrete forms ofHby imposing some special constraints on the HamiltonianH.For instance,each of the following four conditions can guarantee that the condition in Theorem 1 holds:

    Example 1Consider a two-qubit system.Assume that the measurement operatorAin Theorem 1 is

    Then,[A,ρ]=0 implies that

    Thus,the system state in the invariant setMis of the form:

    Then,[H,ρ]=0 in Theorem 1 can be expanded as the following set of equations:

    According to(17),if we take

    Therefore,the constant HamiltonianHof the system can be constructed as

    3.2 Design of switching control law

    Due to the geometric symmetry of the state space,the eigenstates of the measurement operator which are antipodal with the target state often form the equilibrium points of the closed-loop system.In order to avoid the convergence of the system to its antipodal states,we may design the switching control laws.Let us define the following distance function

    and the sets:

    Fig.1 The division of the state space.

    In what follows,we design the switching control laws for the cases where the measurement operator is nondegenerate and degenerate,respectively.

    3.2.1 Switchingcontrollawunderanon-degenerate measurement operator

    When the measurement operatorAis nondegenerate,i.e.,

    we only use one controlchannel.In this case,the system Hamiltonian can be written as

    In fact,due to randomness,after the system state entersS?1-γ,it will exitS?1-γwith a certain probability.Fortunately,those system trajectories leavingS?1-γwill not be too far away from the boundaryS1-γsince the influence of randomness is relatively small.Therefore,we can define two new setsS?1-γ/2andS>1-γ/2as in[24],and give the following switching control law(also see[30]):

    1)If ρt∈S?1-γ,thenu1=0;

    2)If ρt∈S>1-γ/2,thenu1=1;

    3)For ρt∈S?1-γ/2∩S>1-γ,we further consider two specific situations:

    ?if ρtentersS?1-γ/2∩S>1-γfromS?1-γ,thenu1=0;

    ?if ρtentersS?1-γ/2∩S>1-γfromS>1-γ/2,thenu1=1.

    In this paper,we call the switching control law here under a non-degenerate measurement operator Bang-Bang Switching Control Law I.It should be noted that the switching of the control law depends on which set the current system state is in,and therefore depends on the distance between the system state and the target state.

    3.2.2 Switching control law under a degenerate measurement operator

    When the measurement operatorAis degenerate,we adopt two control channels.In this case,the system Hamiltonian can be written as

    For the system trajectories inS>1-γ,when we design the constant control lawsu1andu2such that the HamiltonianHin(21)satisfies the condition in Theorem 1,the system almost surely converges intoS?1-γ.For simplicity,we takeu1=1 andu2=0 in this case.

    Next,we derive the condition that the system trajectories inS?1-γconverge to the target state and give a switching control law under a degenerate measurement operator.For the system model(1),We consider the following Lyapunov function[31]:

    To calculate the infinitesimal generator LV(ρt)ofV(ρt)along the trajectory of system(1),we first calculate dTr(ρtρd)and have

    Let the target state ρdbe the eigenstate ofAassociated with the eigenvalue λd.Then,Tr(D[A]ρtρd)=0 holds.Assume that the HamiltonianHsatisfies

    then we have

    Thus,(23)becomes

    According to the Ito formula,we have

    Therefore,the infinitesimal generator LV(ρt)ofV(ρt)is

    where Tr(H[A]ρtρd)can be calculated as

    Substituting(28)into(27)gives

    From(29),LV(ρt)=0 means that

    Considering that the system trajectory is inS?1-γ,we have

    Therefore,Tr(Aρt)= λdholds.

    Equation(30)implies that

    Denote any state inSdas ρSd,then

    Equation(31)implies that

    Thus,the system filter(1)can be simplified as

    For the system state to converge to the target state,system(32)must have the only equilibrium ρd.That is to say,in the set of all ρ which satisfyAρ = λdρ,if the equation

    has the only solution ρ = ρd,then system(1)almost surely converges to the target state.Note that when this condition holds,(24)naturally holds.

    Equation(33)gives a condition that the Hamiltonian satisfies when the system trajectories inS?1-γconverge to the target state.For simplicity in the design of the control law,we takeu1=0 andu2=1 in this case.

    Thus,similar to the case of a non-degenerate measurement operator,we can give the following switching control strategy to achieve convergence of the system with a degenerate measurement operator to the target state:

    We also call the switching control law here under a degenerate measurementoperatorBang-Bang Switching Control Law II.

    4 Stability of closed-loop switching systems

    In this section,we present the stability results for the whole closed-loop switching systems with a nondegenerate measurement operator and a degenerate measurement operator,respectively.

    4.1 Stability under non-degenerate measurement operator

    Theorem 2Consider theN-dimensional stochastic quantum system in(1)with the measurement operatorAbeing a non-degenerate diagonal matrix.Assume that the target state ρdis an eigenstate ofAand the HamiltonianH=H0+H1(u1=1)in(20)satisfies one of conditions(12)-(15).Then,with the Bang-Bang Switching Control Law I in Section 3.2.1,the whole closedloop switching system converges to the target state ρdin probability.

    The proof includes the following three steps.

    Step 1When ρt∈S>1-γ/2or ρtenters ρt∈S?1-γ/2∩S>1-γ,the control lawu1=1 makes the system state almost surely enterS?1-γin a finite time.

    Step 2When ρt∈S?1-γ,the control lawu1=0 guarantees that the system state stays inS?1-γ/2with probability one.

    Step 3For the system states staying inS?1-γ/2,with the control lawu1=0,the system converges to the target eigenstate in probability.

    ProofWe first present the proof of Step 1.

    Since the system state ρtis a continuous function of timetwhile the distance function

    is continuous with respect to the state ρt,we have

    then ε>0.Equation(34)means that there exists a finite timeT>0 such that

    holds fort?T.

    According to(35),we have

    Equation(36)implies thatthe conclusion in Step 1 holds.

    Now we turn to the proof of Step 2.

    We firstly calculate the infinitesimal generator of the distance functionV(ρt)in(18).It follows from(18)that

    Since ρdis an eigenstate ofA,

    hold.Further,considering the fact that the control law isu1=0 when ρtis inS?1-γ,we can write(37)as

    In this paper,AandH0are both diagonal matrices.Therefore,ρdis also an eigenstate ofH0,i.e.,[ρd,H0]=0.Substituting[ρd,H0]=0 into(38),we know that the infinitesimal generator ofV(ρt)satisfies

    Thus,based on the estimate

    from stochastic stability theory[33],we take α =1-γ/2 and have

    Equation(40)shows that the probability that the system state entersS?1-γand eventually leaves fromS?1-γ/2is less than 1.That is,the system state will stays inS?1-γ/2with a probability greater than 1-Pafter it entersS?1-γ.Denote this probability asP1.Then,the probability that the system state leaves fromS?1-γ/2isP2=1-P1<1.

    Now,we show that the system state will not keep shuttling betweenS?1-γ/2andS>1-γ/2forever.Let the number that the system state returns toS>1-γ/2fromS?1-γ/2bemand denote the probability that this event occurs as P(m),then we have

    Now,the proof of Step 3 is presented as follows.

    For the system trajectories staying inS?1-γ/2,the control law isu1=0.According to quantum continuous measurement theory,the system state will converge to an eigenstate ofA.Since the measurement operatorAis non-degenerate in this paper,theNdifferent eigenstates ofAare mutually orthogonal.This means that for any eigenstate ρgthat is different from the target state ρd,V(ρg)=1 always holds,i.e.,ρg∈S?1-γ/2.In other words,ρdis the only eigenstate ofAwhich is contained inS?1-γ/2.Quantum continuous measurement theory states that the system state will eventually converge to an eigenstate of the measured physical quantity when the control law is zero.On the other hand,with the designed switching control law,the system state will stays inS?1-γ/2almost surely.Therefore,the system state will converge to the target state ρdin probability. ?

    4.2 Stability under degenerate measurement operator

    The proof of this theorem still includes three steps as follows:

    Step 1When ρt∈S>1-γ/2or ρtenters ρt∈S?1-γ/2∩S>1-γ,the control lawu1=1,u2=0 makes the system state almost surely enterS?1-γin a finite time.

    Step 2When ρt∈S?1-γ,the control lawu1=0,u2=1 guarantees that the system state stays inS?1-γ/2with probability one.

    Step 3For the system states staying inS?1-γ/2,with the control lawu1=0,u2=1,the system converges to the target eigenstate in probability.

    The concrete proof process is similar to the case where the measurementoperatoris non-degenerate.For brevity,we omit it here.

    5 Numerical examples

    In this section,we perform simulation experiments on an angular momentum system with a non-degenerate measurement operator and on a two-qubit system with a degenerate measurement operator,respectively.

    5.1 An angular momentum spin system

    We consider a 17-dimensional(17=2J+1)angular momentum spin system with the absolute value of the momentumJ=8.When one observes the angular momentum on theZdirection and applies the magnetic field along theYdirection,the corresponding measurement operator and control Hamiltonian can be obtained as[25,34]

    We assume the initial state ρ0is and the target state ρdis the last eigenstate of the measurement operator,i.e.,

    In simulations,we take Γ =1 and η =1.Using the Bang-Bang Switching Control Law I in Section 3.2.1,we perform three simulation experiments under the same conditions.The simulation results are shown in Figs.2 and 3.

    Fig.2 The evolution curves of the distances between the system states and the target state under three sample paths with the same initial state ρ0.

    Fig.3 The evolution curves of the control laws associated with the three sample paths,where(a),(b),and(c)correspond to the sample paths 1,2,and 3,respectively.

    It can be seen from Fig.2 that the system states under the three sample paths eventually converge to the target state.Fig.3 shows that the switching control law corresponding to each sample path only takes 1 and 0,i.e.,so-called bang-bang control.This is consistent with the theoretical results above.

    5.2 A two-qubit system

    Now,we consider the two-qubit system in Example 1 where the measurement operator is

    Assume that the free Hamiltonian is

    The target state is given as

    We choose the control Hamiltonians as(also see[29]):

    It can be verified that the conditions in Theorem 3 are satisfied.Now,we give an initial state as

    We use the Bang-Bang Switching Control Law II in Section 3.2.2 to perform simulation experiments,and the corresponding simulation resultsare shown in Fig.4.It can be seen from Fig.4 that system state eventually converges to the target state and the switching control lawsu1andu2also only take 1 and 0,which is the so-called bang-bang property.

    6 Conclusions

    For anN-dimensional stochastic quantum system with a non-degenerate or degenerate measurement operator,this paper proposed a switching control law based on the state space division and realized the stabilizing preparation of any eigenstate of the measurement operator.We also gave the conditions on the system Hamiltonian in order to ensure the system stability and proved the stability of the closed-loop system via stochastic stability theory.It should be pointed out that the switching control laws of bang-bang type are not unique for the case of a degenerate measurement operator.For special systems,it is necessary to choose the bang-bang control laws that are more easily realized in physics.

    Fig.4 The simulation results under the initial state ρ0,where(a)indicates the distance between the system state and the target state,(b)and(c)are the evolution curves of control laws u1 and u2,respectively.

    Acknowledgements

    We thank Dr.Daoyi Dong for helpful discussion.

    [1]D.Dong,I.R.Petersen.Quantum control theory and applications:A survey.IET ControlTheory and Applications,2010,4(12):2651-2671.

    [2]H.M.Wiseman,G.J.Milburn.Quantum Measurement and Control.Cambridge:Cambridge University Press,2009.

    [3]D.D’Alessandro.IntroductiontoQuantumControl and Dynamics.Boca Raton:Taylor and Francis Group,2007.

    [4]D.Stefanatos.Optimal shortcuts to adiabaticity for a quantum piston.Automatica,2013,49(10):3079-3083.

    [5]Q.M.Chen,R.B.Wu,T.M.Zhang,etal.Near-time-optimal control for quantum systems.Physical Review A,2015,92(6):DOI 10.1103/PhysRevA.92.063415.

    [6]S.Zhao,H.Lin,Z.Xue.Switching control of closed quantum systems via the Lyapunov method.Automatica,2012,48(8):1833-1838.

    [7]S.Kuang,S.Cong.Lyapunov control methods of closed quantum systems.Automatica,2008,44(1):98-108.

    [8]X.Wang,S.G.Schirmer.Analysis ofLyapunov method forcontrol of quantum states.IEEE Transactions on Automatic Control,2010,55(10):2259-2270.

    [9]D.Dong,I.R.Petersen.Sliding mode control of two-level quantum systems.Automatica,2012,48(5):725-735.

    [10]D.Dong,I.R.Petersen.Notes on sliding mode control of twolevel quantum systems.Automatica,2012,48(12):3089-3097.

    [11]M.R.James,H.I.Nurdin,I.R.Petersen.H∞control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2008,53(8):1787-1803.

    [12]J.Zhang,Y.X.Liu,R.B.Wu,etal.Quantum feedback:theory,experiments,and applications.Physics Reports,2017,679:1-60.

    [13]B.Qi,H.Pan,L.Guo.Further results on stabilizing control of quantum systems.IEEE Transactions on Automatic Control,2013,58(5):1349-1354.

    [14]W.Cui,F.Nori.Feedback control of Rabi oscillations in circuit QED.Physical Review A,2013,88(6):DOI 10.1103/PhysRevA.88.063823.

    [15]S.Wang,D.Dong.Fault-tolerant control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2017,62(6):2929-2935.

    [16]J.Gong,S.A.Rice.Measurement-assisted coherent control.The Journal of Chemical Physics,2004,120(21):9984-9988.

    [17]D.Dong,J.Lam,T.J.Tarn.Rapid incoherent control of quantum systems based on continuous measurements and reference model.IET Control Theory and Applications,2009,3(2):161-169.

    [18]D.Dong,I.R.Petersen,H.Rabitz.Sampled-data design forrobust control of a single qubit.IEEE Transactions on Automatic Control,2013,58(10):2654-2659.

    [19]J.Zhang,R.B.Wu,C.W.Li,etal.Protecting coherence and entanglement by quantum feedback controls.IEEE Transactions on Automatic Control,2010,55(3):619-633.

    [20]S.S.Ge,T.L.Vu,C.C.Hang.Non-smooth Lyapunov functionbased global stabilization for quantum filter.Automatica,2012,48(6):1031-1044.

    [21]R.V.Handel,J.K.Stockton,H.Mabuchi.Feedback control of quantum state reduction.IEEE Transactions on Automatic Control,2005,50(6):768-780.

    [22]M.Mirrahimi,R.V.Handel.Stabilizing feedback controls for quantum systems.SIAM Journal on Control and Optimization,2007,46(2):445-467.

    [23]J.Zhou,S.Kuang.Feedback preparation of maximally entangled states of two-qubit systems.IET Control Theory and Applications,2016,10(3):339-345.

    [24]Y.Liu,S.Kuang,S.Cong.Lyapunov-based feedback preparation of GHZ entanglement ofN-qubit systems.IEEE Transactions on Cybernetics:DOI 10.1109/TCYB.2016.2584698(in press).

    [25]W.Zhou,S.G.Schirmer,M.Zhang,etal.Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimaltime-energy control.JournalofPhysics A:Mathematical and Theoretical,2011,44(10):DOI 10.1088/1751-8113/44/10/105303.

    [26]S.Kuang,D.Dong,I.R.Petersen.Approximate bang-bang Lyapunov controlforclosed quantum systems.Proceedings ofthe Australian Control Conference,Canberra,Australia:IEEE,2014:130-135.

    [27]S.Kuang,D.Dong,I.R.Petersen.Rapid Lyapunov control of finite-dimensional quantum systems.Automatica,2017,81:164-175.

    [28]J.Alonso,F.M.Leupold,Z.U.Sol`er,etal.Generation of large coherent states by bang-bang control of a trapped-ion oscillator.Nature Communications,2016,7:DOI 10.1038/ncomms11243.

    [29]T.L.Vu,S.S.Ge,C.C.Hang.Real-time deterministic generation of maximally entangled two-qubit and three-qubit states via bang-bang control.Physical Review A,2012,85(1):DOI 10.1103/PhysRevA.85.012332.

    [30]J.H.Wei,B.Qi,H.Y.Dai,etal.Deterministic generation of symmetric multi-qubit Dicke states:An application of quantum feedback control.IET Control Theory and Applications,2015,9(17):2500-2505.

    [31]J.Zhou,S.Kuang,S.Cong.Bell state preparation based on switching between quantum system models.Journal of Systems Science and Complexity,2017,30(2):347-356.

    [32]K.Jacobs,D.A.Steck.A straightforward introduction to continuousquantum measurement.Contemporary Physics,2006,47(5):279-303.

    [33]H.J.Kushner.Stability of Stochastic Dynamical Systems.Berlin:Springer,1972.

    [34]K.Tsumura.Global stabilization ofN-dimensional quantum spin systems via continuous feedback.Proceedings of the American Control Conference,New York:IEEE,2007:2129-2134.

    3 May 2017;revised 17 June 2017;accepted 17 June 2017

    DOI 10.1007/s11768-017-7061-6

    ?Corresponding author.

    E-mail:skuang@ustc.edu.cn.

    This paper is dedicated to Professor Ian R.Petersen on the occasion of his 60th birthday.This work was supported by the Anhui Provincial Natural Science Foundation(No.1708085MF144)and the National Natural Science Foundation of China(No.61573330).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Xiaqing SUNreceived a B.Sc.degree in Automation from the Anhui University in 2015.She is currently pursuing a M.Sc.degree with the Department of Automation,University of Science and Technology of China.Her current research interest focuses on quantum feedback control.E-mail:sxqing@mail.ustc.edu.cn.

    Sen KUANGreceived a Ph.D.degree in Control Theory and Control Engineering from the University of Science and Technology of China(USTC)in 2007.From 2007 to 2010,he was a post-doctoral fellow with the School ofInformation Science and Technology,USTC.He visited the University of Hong Kong in 2010 and 2015,respectively.From 2014 to 2015,he was a visiting scholar at the University of New South Wales,Canberra,Australia.Currently,he is an associate professor in the Department of Automation,University of Science and Technology of China.His research interests include quantum information and control,quantum machine learning and its applications,and intelligent control.E-mail:skuang@ustc.edu.cn.

    Yanan LIUreceived a B.Sc.degree in Measurement&Control Technology and Instrumentation from the Anhui University,Anhui,China,in 2014.She is currently pursuing a M.Sc.degree with the Department of Automation,University of Science and Technology of China.Her current research interests include quantum feedback control and stability analysis.E-mail:liuyn@mail.ustc.edu.cn.

    Juan ZHOUreceived a B.Sc.degree in Automation from the Anhui University in 2013,and a M.Sc.degree in Control Theory and Control Engineering from the University of Science and Technology of China in 2016.Her research interests include quantum feedback control and stability analysis.Email:sa130100@mail.ustc.edu.cn.

    Shuang CONGreceived a B.Sc.degree from the Beijing University of Aeronautics and Astronautics,Beijing,China,in 1982,and a Ph.D.degree in System Engineering from the University of Rome“La Sapienza,"Rome,Italy,in 1995.She is currently a Professor with the Department of Automation,University of Science and Technology of China,Hefei,China.Her current research interests include advanced control strategies for motion control,fuzzy logic control,neural networks design and applications,robotic coordination control,and quantum systems control.Email:scong@ustc.edu.cn.

    久久精品国产清高在天天线| 中文字幕精品亚洲无线码一区| 国产毛片a区久久久久| 51国产日韩欧美| 欧美一区二区国产精品久久精品| 午夜福利在线观看免费完整高清在 | 久久久精品欧美日韩精品| 老熟妇乱子伦视频在线观看| 欧美丝袜亚洲另类| 舔av片在线| 国产真实伦视频高清在线观看| 看黄色毛片网站| 成人av在线播放网站| 日本av手机在线免费观看| 男女做爰动态图高潮gif福利片| h日本视频在线播放| 观看免费一级毛片| 中文字幕精品亚洲无线码一区| 能在线免费看毛片的网站| 狂野欧美激情性xxxx在线观看| 精华霜和精华液先用哪个| 婷婷精品国产亚洲av| 日本一本二区三区精品| 国产精品一二三区在线看| 99国产精品一区二区蜜桃av| 亚洲欧洲国产日韩| 国产一级毛片七仙女欲春2| 中国美白少妇内射xxxbb| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇伦熟女老妇高清| 可以在线观看的亚洲视频| 亚洲成人中文字幕在线播放| 国产精品1区2区在线观看.| 天堂网av新在线| 国产视频内射| 夜夜爽天天搞| 国产伦精品一区二区三区视频9| 熟女电影av网| 99精品在免费线老司机午夜| 国产片特级美女逼逼视频| 欧美在线一区亚洲| www日本黄色视频网| 美女脱内裤让男人舔精品视频 | 啦啦啦啦在线视频资源| 国产成人a∨麻豆精品| 免费搜索国产男女视频| 丰满的人妻完整版| 国产男人的电影天堂91| 亚洲国产欧美人成| 黄色视频,在线免费观看| av视频在线观看入口| 亚洲婷婷狠狠爱综合网| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人久久小说 | 中文字幕av成人在线电影| 2021天堂中文幕一二区在线观| www日本黄色视频网| 亚洲精品色激情综合| 丝袜美腿在线中文| a级毛色黄片| 日本三级黄在线观看| 国产探花极品一区二区| 国产精品久久久久久精品电影| 国产成人a∨麻豆精品| 高清毛片免费看| 免费无遮挡裸体视频| 最新中文字幕久久久久| 久久午夜福利片| 日本三级黄在线观看| 亚洲人成网站在线观看播放| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 综合色av麻豆| 国产v大片淫在线免费观看| 亚洲国产精品合色在线| 国产精品一及| 人妻少妇偷人精品九色| a级一级毛片免费在线观看| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 欧美丝袜亚洲另类| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 岛国在线免费视频观看| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 男女下面进入的视频免费午夜| 夜夜爽天天搞| 欧美一级a爱片免费观看看| 精品不卡国产一区二区三区| 波多野结衣高清作品| 一本一本综合久久| 亚洲性久久影院| 黄片无遮挡物在线观看| 日本免费a在线| 干丝袜人妻中文字幕| 国产伦一二天堂av在线观看| 少妇丰满av| 美女内射精品一级片tv| 99热这里只有是精品50| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 国产精品一二三区在线看| 熟妇人妻久久中文字幕3abv| 久久久成人免费电影| 日韩高清综合在线| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看| 特大巨黑吊av在线直播| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 看十八女毛片水多多多| 国产成人福利小说| 人妻久久中文字幕网| h日本视频在线播放| 高清日韩中文字幕在线| 51国产日韩欧美| 欧美激情国产日韩精品一区| 久久久久久久久大av| 毛片女人毛片| 特级一级黄色大片| 久久久国产成人免费| 国产伦精品一区二区三区四那| 最好的美女福利视频网| 男女视频在线观看网站免费| 日韩视频在线欧美| 免费观看a级毛片全部| 免费人成视频x8x8入口观看| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 一级毛片aaaaaa免费看小| 国产三级中文精品| 亚洲精品影视一区二区三区av| 老女人水多毛片| 欧美精品一区二区大全| 丝袜美腿在线中文| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 欧美zozozo另类| 国产色爽女视频免费观看| 边亲边吃奶的免费视频| 99国产精品一区二区蜜桃av| 日韩一区二区视频免费看| 午夜激情欧美在线| 伦精品一区二区三区| 在线观看一区二区三区| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 日日摸夜夜添夜夜爱| 亚洲国产欧美人成| 男女视频在线观看网站免费| 如何舔出高潮| 麻豆一二三区av精品| 男的添女的下面高潮视频| 国产高清视频在线观看网站| 成人av在线播放网站| 午夜久久久久精精品| 精品熟女少妇av免费看| 五月伊人婷婷丁香| 有码 亚洲区| 精品欧美国产一区二区三| 国产高清三级在线| 三级国产精品欧美在线观看| 丰满的人妻完整版| 欧美在线一区亚洲| 亚洲久久久久久中文字幕| 国产成人freesex在线| 小说图片视频综合网站| 成人国产麻豆网| 青青草视频在线视频观看| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 99久久九九国产精品国产免费| 草草在线视频免费看| 男人和女人高潮做爰伦理| 亚洲国产日韩欧美精品在线观看| 国产精品,欧美在线| 在线免费观看不下载黄p国产| 日本熟妇午夜| 亚洲自拍偷在线| 能在线免费看毛片的网站| 午夜视频国产福利| 久久精品夜夜夜夜夜久久蜜豆| 毛片女人毛片| 国产精品.久久久| 高清日韩中文字幕在线| 99久国产av精品| 日本-黄色视频高清免费观看| 一级二级三级毛片免费看| 亚洲精品乱码久久久v下载方式| 欧美精品一区二区大全| 一边摸一边抽搐一进一小说| 国产探花极品一区二区| 91久久精品国产一区二区三区| 成年av动漫网址| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 国产成人a区在线观看| 亚洲欧美精品专区久久| 乱系列少妇在线播放| 黄色配什么色好看| 色哟哟·www| 蜜桃亚洲精品一区二区三区| 国产极品精品免费视频能看的| 深爱激情五月婷婷| 免费人成在线观看视频色| 久久国产乱子免费精品| 国产成人aa在线观看| 黄色配什么色好看| 99九九线精品视频在线观看视频| 亚洲欧美日韩高清在线视频| 搡女人真爽免费视频火全软件| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 国产高清视频在线观看网站| 国内久久婷婷六月综合欲色啪| 又粗又爽又猛毛片免费看| 中国美女看黄片| 国产精品人妻久久久久久| 草草在线视频免费看| 少妇人妻精品综合一区二区 | av国产免费在线观看| 99在线视频只有这里精品首页| 久久精品国产亚洲av涩爱 | 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 久久99热6这里只有精品| 美女脱内裤让男人舔精品视频 | 青春草视频在线免费观看| www日本黄色视频网| 国产精品久久久久久精品电影小说 | 日韩,欧美,国产一区二区三区 | 国产真实乱freesex| 黄色一级大片看看| 免费观看人在逋| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 亚洲成a人片在线一区二区| 中文亚洲av片在线观看爽| 美女xxoo啪啪120秒动态图| 精品久久久久久久久久免费视频| 国产成人91sexporn| 青春草国产在线视频 | 毛片一级片免费看久久久久| 赤兔流量卡办理| 国产私拍福利视频在线观看| 蜜桃久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | av国产免费在线观看| 国产人妻一区二区三区在| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 欧美日本视频| 久久精品综合一区二区三区| 国产av一区在线观看免费| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 黄色一级大片看看| 欧美一区二区亚洲| 国产色婷婷99| 日韩制服骚丝袜av| 极品教师在线视频| 国产一区二区三区av在线 | 成人三级黄色视频| 久99久视频精品免费| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 国产成人一区二区在线| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 亚洲美女视频黄频| 免费黄网站久久成人精品| 只有这里有精品99| 三级毛片av免费| 在线天堂最新版资源| 嫩草影院新地址| 午夜免费男女啪啪视频观看| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| 国产精品久久久久久精品电影| 亚洲精品456在线播放app| 大型黄色视频在线免费观看| 国产老妇伦熟女老妇高清| 在线a可以看的网站| 免费大片18禁| 亚洲精华国产精华液的使用体验 | 内射极品少妇av片p| 亚洲精品粉嫩美女一区| 成人一区二区视频在线观看| 久久久久久伊人网av| 婷婷色av中文字幕| 欧美日本亚洲视频在线播放| 欧美xxxx性猛交bbbb| 久久精品91蜜桃| 欧美成人a在线观看| 欧美日韩国产亚洲二区| 欧美一区二区国产精品久久精品| 国产精品野战在线观看| 亚洲一级一片aⅴ在线观看| 国产精品美女特级片免费视频播放器| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 男女视频在线观看网站免费| h日本视频在线播放| 日本爱情动作片www.在线观看| 免费av观看视频| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 久久久精品大字幕| av又黄又爽大尺度在线免费看 | 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| www日本黄色视频网| 久久精品久久久久久久性| 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 日韩欧美 国产精品| 久久久久九九精品影院| 日本黄色视频三级网站网址| 毛片女人毛片| 不卡一级毛片| 日韩亚洲欧美综合| 国内精品美女久久久久久| 男人的好看免费观看在线视频| 国产精品.久久久| 日日干狠狠操夜夜爽| 亚洲美女搞黄在线观看| avwww免费| 婷婷色av中文字幕| 亚洲精品成人久久久久久| 成人鲁丝片一二三区免费| 日本五十路高清| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 亚洲国产精品成人久久小说 | 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 能在线免费观看的黄片| 大型黄色视频在线免费观看| 久久人人爽人人片av| 亚洲精品自拍成人| 免费在线观看成人毛片| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 日本黄大片高清| 国产亚洲av嫩草精品影院| 日本成人三级电影网站| 午夜福利视频1000在线观看| 寂寞人妻少妇视频99o| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 久久九九热精品免费| 成年女人看的毛片在线观看| 久久久久网色| 国产乱人视频| 久久精品国产亚洲网站| 免费看a级黄色片| 人妻系列 视频| 在线观看av片永久免费下载| 午夜激情福利司机影院| 黄片无遮挡物在线观看| 成熟少妇高潮喷水视频| 菩萨蛮人人尽说江南好唐韦庄 | 99精品在免费线老司机午夜| 最新中文字幕久久久久| 国产精品永久免费网站| 日韩欧美一区二区三区在线观看| av在线老鸭窝| 精品久久久久久久久av| 97超碰精品成人国产| 亚洲精品国产成人久久av| 亚洲av中文字字幕乱码综合| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| 久久6这里有精品| www.av在线官网国产| 卡戴珊不雅视频在线播放| 国内精品一区二区在线观看| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 高清毛片免费观看视频网站| 12—13女人毛片做爰片一| 久久久国产成人免费| 国产爱豆传媒在线观看| 亚洲成a人片在线一区二区| 欧美日韩在线观看h| 久久久国产成人精品二区| 久久国产乱子免费精品| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 高清毛片免费看| 亚洲综合色惰| 成人美女网站在线观看视频| 欧美一区二区国产精品久久精品| 伦精品一区二区三区| 亚洲七黄色美女视频| 看十八女毛片水多多多| 禁无遮挡网站| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 夜夜夜夜夜久久久久| 久久国产乱子免费精品| 亚洲第一电影网av| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 欧美人与善性xxx| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久久久久| 国产精品久久久久久精品电影小说 | 美女大奶头视频| 午夜精品国产一区二区电影 | 校园春色视频在线观看| 中文在线观看免费www的网站| 91av网一区二区| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区视频9| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 国产探花在线观看一区二区| 成人特级av手机在线观看| 色5月婷婷丁香| 日日摸夜夜添夜夜爱| 在线a可以看的网站| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 国产成人aa在线观看| 日本与韩国留学比较| 亚洲av电影不卡..在线观看| 高清日韩中文字幕在线| 联通29元200g的流量卡| 亚洲最大成人av| 日韩,欧美,国产一区二区三区 | 又爽又黄a免费视频| 久久久久久久久久黄片| 精品国内亚洲2022精品成人| 我要看日韩黄色一级片| 久久精品国产亚洲av涩爱 | 又粗又爽又猛毛片免费看| 成人鲁丝片一二三区免费| 亚洲欧美成人综合另类久久久 | 日本黄大片高清| 少妇人妻精品综合一区二区 | 少妇熟女欧美另类| 久久国产乱子免费精品| 高清在线视频一区二区三区 | 一夜夜www| 国产精品一区二区在线观看99 | 亚洲av成人av| 久久亚洲国产成人精品v| 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 国产老妇伦熟女老妇高清| 日本五十路高清| 亚洲人成网站在线播| 免费电影在线观看免费观看| 国产精品电影一区二区三区| 欧美一区二区亚洲| 波野结衣二区三区在线| 久久久国产成人免费| 亚洲欧美精品专区久久| 色尼玛亚洲综合影院| АⅤ资源中文在线天堂| 伦精品一区二区三区| 精品久久久久久久末码| 麻豆久久精品国产亚洲av| 久久人人爽人人片av| 少妇丰满av| 成人美女网站在线观看视频| 黄色视频,在线免费观看| 久久久久久久久久久免费av| 国产精品嫩草影院av在线观看| 国产三级中文精品| 亚洲人成网站在线播| 国产精品一区二区三区四区久久| 日韩成人伦理影院| 天天躁日日操中文字幕| 不卡一级毛片| 美女高潮的动态| 美女国产视频在线观看| 成人一区二区视频在线观看| 国产黄色小视频在线观看| 国产亚洲精品久久久久久毛片| 51国产日韩欧美| 在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 美女xxoo啪啪120秒动态图| av福利片在线观看| 最近2019中文字幕mv第一页| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 欧美性猛交黑人性爽| 欧美激情久久久久久爽电影| 亚洲四区av| 蜜臀久久99精品久久宅男| 久久99热6这里只有精品| 草草在线视频免费看| 国产精品野战在线观看| 两个人视频免费观看高清| 日本黄大片高清| 又爽又黄无遮挡网站| 在线免费观看的www视频| 看黄色毛片网站| 欧美成人a在线观看| 精品人妻偷拍中文字幕| 亚洲人成网站在线播| 国产黄a三级三级三级人| 一个人看视频在线观看www免费| 最近手机中文字幕大全| 2021天堂中文幕一二区在线观| 级片在线观看| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 免费搜索国产男女视频| 精品人妻偷拍中文字幕| 国产精品久久电影中文字幕| 男女边吃奶边做爰视频| 大香蕉久久网| 99在线视频只有这里精品首页| 亚洲成人中文字幕在线播放| 日韩视频在线欧美| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 一级av片app| 免费不卡的大黄色大毛片视频在线观看 | 最近的中文字幕免费完整| 亚洲美女视频黄频| 看黄色毛片网站| 一区二区三区免费毛片| av天堂在线播放| 亚洲天堂国产精品一区在线| 成人漫画全彩无遮挡| 成人亚洲欧美一区二区av| 久久久久性生活片| 久久中文看片网| 国产成人午夜福利电影在线观看| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 变态另类成人亚洲欧美熟女| 麻豆精品久久久久久蜜桃| 美女黄网站色视频| 国产探花极品一区二区| 国产精品久久久久久精品电影小说 | 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 日日摸夜夜添夜夜爱| 日韩一本色道免费dvd| 99久久成人亚洲精品观看| 成人漫画全彩无遮挡| 成年女人看的毛片在线观看| 国产精品久久久久久久久免| 菩萨蛮人人尽说江南好唐韦庄 | 国产av麻豆久久久久久久| 欧美一区二区亚洲| 久久久久久久久久久免费av| 国产亚洲精品久久久com| 日本色播在线视频| 成人欧美大片| 六月丁香七月| av天堂在线播放| 亚洲在线自拍视频| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 国产在视频线在精品| 观看美女的网站| 色哟哟哟哟哟哟| 免费黄网站久久成人精品| 激情 狠狠 欧美| 你懂的网址亚洲精品在线观看 | 黄色配什么色好看| 热99re8久久精品国产| 国产精品免费一区二区三区在线| 搞女人的毛片| 国产精品久久久久久精品电影小说 | 久久人人爽人人爽人人片va| www.av在线官网国产| 在线免费观看不下载黄p国产| 丰满人妻一区二区三区视频av| 日韩,欧美,国产一区二区三区 | 欧美日本视频| 久久久色成人| 午夜a级毛片| 日韩欧美在线乱码| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 亚洲三级黄色毛片| 69人妻影院| 亚洲av中文av极速乱| 亚洲av成人精品一区久久| av视频在线观看入口| 2022亚洲国产成人精品| 亚洲在线自拍视频| 欧美成人a在线观看| 中文欧美无线码| 国产欧美日韩精品一区二区| 一级毛片我不卡| av免费观看日本| 久久久欧美国产精品| 一本一本综合久久| 99久久精品热视频| 内射极品少妇av片p|