• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control system design of flying-wing UAV based on nonlinear methodology

    2017-12-20 03:04:49JigungLIXinCHENjunLIRongZHANGSchoolofAutomtionNnjingUniversityofAeronuticsAstronuticsNnjingJingsu210016ChinSchoolofElectronicEngineeringNnJingXioZhungUniversityNnjing211171Chin
    Defence Technology 2017年6期

    Ji-gung LI,Xin CHEN,Y-jun LI,Rong ZHANGSchool of Automtion,Nnjing University of Aeronutics&Astronutics,Nnjing,Jingsu,210016 ChinSchool of Electronic Engineering,NnJing XioZhung University,Nnjing,211171 Chin

    Control system design of flying-wing UAV based on nonlinear methodology

    Ji-guang LIa,*,Xin CHENa,Ya-juan LIb,Rong ZHANGaaSchool of Automation,Nanjing University of Aeronautics&Astronautics,Nanjing,Jiangsu,210016 China
    bSchool of Electronic Engineering,NanJing XiaoZhuang University,Nanjing,211171 China

    In this paper,A fluid vector rudder flying-wing UAV is employed as the design object,so as to study the nonlinear design method and flight validation.For the maneuvering flight control,this paper presents a control structure.This control structure included the inner loop linearization decoupling methods to eliminate the known negative coupling and the outer loop backstepping methods for trajectory tracking control.The stability of the control structure has been proved in this paper.Compared with the traditional backstepping control method,this controller increases the inner loop decoupling structure and retains the aerodynamic damping term which makes the linearized system a weak nonlinear system.This structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.Simulation and flight validation results show that the proposed control scheme is effective.

    1.Introduction

    With the wide application of the UAV and extension of the mission requirements,maneuver ability gradually becomes the basic performance of the UAV[1-3].The ability of maneuver flight not only helps the UAV to evade the land-based air defense,thus improving the survivability of the UAV in the battlefield,but it is also the basic guarantee for carrying out the surveillance and attack of the fast moving target,thus intercepting cruise missile and landing on board the ship[4,5].

    Compared with the conventional aircraft,flying-wing aircraft has advantages on structural strength,aerodynamic and stealth aspects,but it is not suitable for maneuvering flight[6-8].Flyingwing aircraft canceled the tail,thus weakening the course stability.In addition,the short arm of force leads to the condition that the pneumatic rudder control efficiency is not enough.Before the vector control technology has been applied,these limiting factors result in that the flying-wing UAV does not have the ability of maneuvering flight.In recent years,with the development of vector control technology and control theory,as well as the demand for combat environment,the maneuver ability of flying-wing UAV has attracted unprecedented attentions[9,10].

    In designing the control system,because of the special aerodynamic configuration,the coupling between longitudinal and lateral channel in maneuvering flight of the flying-wing UAV is more serious than that in conventional aircraft.At the same time,the complex nonlinearity,hysteresis effect,uncertain disturbances and other problems make the maneuvering control of flying-wing UAV difficult to achieve[11-13].The characteristics of nonlinearity,unsteadiness and strong coupling involved in UAV maneuvering flight result in the lack of typical equilibrium state.The traditional linear control method based on the equilibrium point of the small disturbance linearization is facing a serious challenge[13-15].When the flying-wing UAV is maneuvering at large attack angles,there are problems of nonlinearity,unsteadiness,and strong coupling as well as unsteady effects of mass inability to model and disturbance.It is very difficult for the conventional controller to meet the flight performance requirements.Thus,we need to study a system design method that has strong robustness in accordance with the dynamical features of flying-wing UAVs.Good robust stability and the desired flying qualities are guaranteed in the situation of nonlinearity,strong coupling and model uncertainty.

    Maneuver control is typically a matter of nonlinear closed-loop stability augmentation control,and its main issue is to eliminate the effect of nonlinearity as well as the design the calculationproblems of the controller.In recent years,the rapid development of linearization theory,such as dynamic inversion method,has opened the way for the development of the modern design of nonlinear systems.Literature[16-23]studied the problems of the nonlinear control method applied in the flight control design,which were verified by practical flight test.

    Known from the above literature,the nonlinear control method represented by the dynamic inversion method has made full recognition and development for solving the problem of nonlinear closed-loop stability augmentation control.The main idea of dynamic inversion method is to eliminate the nonlinear influence through the inverse controller,thus enabling the inner loop dynamics of theUAV topresentthe characteristics of the linearsystem(or approximate linear system).

    According to the processing power of the airborne electronic device,this paper presents a control scheme that uses the inner loop linearization decoupling methods to eliminate the known negative coupling,the outer loop backstepping methods for trajectory tracking control.The stability of the control structure has been proved in this paper.Compared with the traditional backstepping control method,this controller increases the inner loop decoupling structure and retains the aerodynamic damping term which makes the linearized system a weak nonlinear system.The structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.It is validated to be effective design method through l ying-wing UAV flight test.

    Nomenclature

    fTthe thrust of the one fan

    l1the distance of the vector rudder along with fuselage direction to the center of gravity

    δrthe angle of vector rudder

    MAthe torque generated by aerodynamic forces

    Iinertia matrix

    S(ω) ω's anti symmetric matrix

    Θinominal value

    ΔΘiperturbation value

    f0the inertial coupling torque

    Kthe damping torque coefficient nominal value of each channel

    ulinthe control input to design the outer controller

    ??,?ζthe output of the ideal weight matrix of the outer controller

    ?*,ζ*the output of the adaptive law f

    2.The flight test flying wing UAV

    In this paper,the study of flying-wing UAV have thrust vectoring rudder.The UAV and rudder surface as shown in Fig.1(a)and Fig.1(b).

    As shown in the above figures,the UAV is powered by a ducted fan.An adjustable bezel is mounted on the air outlet of the duct,which is used to change the direction of air flow to provide yaw moment and named vector rudder.Two pieces of vector rudder can only be deflected in the same direction.However,due to the layout,twovector rudderonlyonecan deflection for middleof the fuselage and change the direction of airflow.A piece of elevon on the back of wing.

    3.Aerodynamic modeling

    Since the UAV using a special vector rudder,the function of vector rudder is modeling firstly here.Definition:The thrust of the one fan isfT;the distance isl1which the vector rudder along the fuselage directiontothe centerof gravity;Deflection angle of vector rudder isδr.Assuming that the air flows along the bezel,then the lateralforce and yaw moment generatedbythe vector rudderare as follows

    This paper presents a controller fora nonlinear flying-wing UAV.The body- fixed axes,and nonlinear equations of motion for a flying-wing UAV over a flat earth are given by

    Define the state vectors as follows

    Definex4= [x1,x2]T,x5= [x2,x3]T,and the fight dynamic equations(3)-(5)can be rearranged as

    In order to express the inner loop decoupling design conveniently,the attitude equation of the UAV is presented as

    4.Structural design of the controller

    Compared with the conventional layout of the aircraft,the coupling effect of the flying-wing UAV is more serious.Moreover,the flying-wing UAV is unstable and its rudder operation is ineff icient.These factors make it difficult for the flying-wing UAV to guarantee the quality in the maneuver flight.

    In the traditional dynamic inverse decoupling control method,it is expected to eliminate all the nonlinear terms in the UAV dynamic model through the state feedback.These nonlinear terms include aerodynamic force/torque term,inertial coupling term,gravity term and other uncertain terms caused by various disturbances.Some of these terms show very strong nonlinear features,such as the inertial coupling,etc.,which must be linearized for the design of the controller.But the damping term in the aerodynamic torque reflects the inherent damping characteristic of the UAV,which is beneficial tothe stabilityof the dynamic performance of the control system.Therefore,there is no need to eliminate the coupling of this part.Thus,in the process of inverse system design,the damping term can be reserved to obtain the weakly non-linear system by non-linear compensation.This system is a pseudo linear system of time-varying parameters.By retaining the aerodynamic damping characteristics of part of the system,this method that uses the robust control method for further design of the outer loop controller can not only reduce the conservatism of the controller design,but also be easy for engineering realization.Based on this idea,this paper designs the controller structure as shown in Fig.2.

    In the controller structure shown in Fig.2,the aerodynamic database,torque compensation module,torque allocation module and UAV dynamic model comprise the pseudo control object.The linear controller and the pseudo control object connect in series and form a closed loop system that is also a weakly nonlinear system.The closed-loop system is compensated by the robust controller so as to adjust the output error of the ideal model.Thus,the sensitivity problem of the inverse system to the modeling error can be solved.

    The following is the control process of the system:Firstly,according to the current flight status of UAV,the control input is obtained by linear modular to eliminate the non-linear and unsteady aerodynamic torque and inertia coupling torque,and the pseudolinearsystem isobtained bythereal-timetorque compensation.Then,a linear controller is designed for the compensated linear system on the control law.Finally,through utilizing the expected reference model,the closed-loop controller of the flight quality and flight performance is designed by the robust control compensator,which enables the system to have a good operation stability.

    5.Linearization decoupling of attitude equations

    5.1.Inner loop torque compensation

    According to the previous discussion,it can be seen that the decoupling linearization but retaining aerodynamic damping torque can bring many benefits.Therefore,this section will introduce the method of torque compensation and retaining the aerodynamic damping torque.For the controller structure of Fig.2,a more detailed structure of the inner loop nonlinear decoupling controller is shown in Fig.3:

    In order to express conveniently,the attitude equation of the flying wing UAV is expressed as follows

    Where: ω = [p,q,r]T,MAis the torque generated by aerodynamic forces.IandS(ω)are inertia matrix and ω's anti symmetric matrix

    Aerodynamic moments in formula(8)can be expressed as

    Assuming that the aerodynamic moment coefficient and the engine thrust are nonlinear function with time varying parameters

    Taking formula(10)into formula(8),and we get

    The nominal model of the system can be expressed as

    As the damping torque re flects the inherent damping characteristics of the UAV,this part of the torque should be retained in the aerodynamic compensation process.The compensation torque can be expressed as:

    The influence of the inertia coupling torque and the cross coupling torque between the channels can be compensated by the above formula.The coupling between the channels can be avoided when the UAV is maneuvering with large angular velocity.

    Taking formula(10)into formula(9),and we get

    From the equation(14),we can see that the compensation method finally obtains a first-order inertia link.This inertial link retains the inherent damping characteristics of the system.Withulinas the control input to design the outer controller,it can be ensuredthatthesystem couldhaveabetterclosed loop performance.

    5.2.Linearization of attitude equations

    In order to make the system to have a better response to the instruction,the attitude equation of the UAV is linearized to eliminate the influence of the motion coupling in this paper.Herein,the method of input-output linearization based on Lie derivative is presented.The steps of the system linearization are as follows:

    (1)Select the coordinate transformation function set

    which is defined in the neighborhoodxo.

    (2)The system is transformed into m groups of equations:

    After the above coordinate transformation and state feedback,the original system is transformed into a Brunovsky standard system

    The affine non-linear system can be transformed into a standard linear system with the above steps.However,the calculation process is not always easy,especially for the matrix A-1.in formula(19).But it is not difficult to get the analytic formula of the matrix A.Fortunately,the solution of matrix A-1is not necessary.In the actual simulation design,it is not in accordance with the above steps:first is the coordinate transformation,and then state feedback to get the state of the system after the transformation.Afterwards,the original system state can be obtained by inverse coordinate transformation.In practical application,the process of coordinate transformation is totally unnecessary.Only by state feedback can the decoupling of the original system be achieved.Such a design avoids the solution of the matrix A-1and some unnecessary coordinate transformations.If the state of the linear system after transformation is required,it can be obtained by coordinate transformation of the original system.

    According to formula(13),the coordinate transformation function of the system is obtained

    with formula(16),

    For the convenience of expressing the design of the outer-loop controller in the following passage,the post-decoupled attitude equation and the trajectory equation are expressed as follows and named as System 1 and System 2.

    Where, state vectorx1,x2,x3,u∈R3, andx1= [α,β,φ]T,

    x2= [p,q,r]T,x3= [φ,θ,ψ]T,u= [δe,δa,δr,δT]T,x4= [x1,x2]T.

    6.Design of outer loop controller

    The purpose of the outer loop control is to achieve the tracking ofα,β,φ input commands.The outer loop controller is based on the current state of the aircraft and the adaptive law of the input U to output,so that the outputx1of the system can asymptotically track the desired reference inputx1d.

    Leading the derivative of the above formulas,and taking them into formulas(4)and(5),the closed-loop error state equations are as followed

    Known from above two formulas

    Define the ideal control variable of the system Z1 as

    wherek1>0 is the controller design parameter.Because ?*is unknown,the estimated value?? is used here.Hence the actual virtual control input for the system is obtained

    Taking formula(30)into formula(28),and we get

    According to formula(27),the ideal control input of the system is defined as

    Taking them into formula(27),we can obtain

    7.Controller stability analysis

    In order to analyze the stability of the system,we select the following Lyapunov function

    The ?*and ζ*are expressed in the form of a partitioned matrix,and then the above formula(35)can be expressed as

    Taking the derivative of the above functionV(t)over time t,and we will obtain

    The adaptive law of the particle swarm is expressed as followed

    Since the following inequalities are established

    Define ρ=min{2k10,2k20,αi,βi},and formula(40)can be expressed as

    Following are the theorem and the process of proof.

    (1)the statex(t)=[xT1,xT2]Tof the closed-loop system and the adaptive weight??,?ζis bounded:

    the state of the system and the exponential convergence of the compensator are convergent to a bounded compact setΩs,and

    Conclusion 1 can be proven as follows

    Integrate both sides of formula(41)from[0,t],and we can obtain

    Depending on the above formula and formula(36)

    From the above two formulas,formulas(42)and(43)can be obtained.

    Becausez1,z2,x1dare bounded ande t()=x1t()-xdt(),the following formula is available

    Thant is,formula(44)sets up,and conclusion 1 is proved.Conclusion 2 can be proven as follows:From formula(48)and(49)we can obtain

    Table 1Aerodynamic disturbance coefficients.

    The conclusion 2 is proved.

    From formula(45),we can know that by adjusting the magnitudes of thek10,k20,λ1,αi,λ2,βi,the convergence rate and the domain of the convergence of the system can be adjusted.

    8.Simulation and flight validation

    It is known from the above control law design that the purpose of control is to track the α,β,φ.However,due to the airborne equipment can not directly measure the signals of attack angle and sideslip angle,the acceleration and GPS velocity signals are used to calculate the required air flow angle.The calculating formulas are

    In order to verify the robustness of the controller,the aerodynamic disturbance coefficients are selected in the maneuver process.The amplitude of disturbance is shown in the table(see Table 1):

    In this paper,we choose the spiral isokinetic drop maneuver and the continuous rapid of one flying-wing UAV to Simulation toverify the performance of the designed controller.In the following of maneuver simulation results,the red solid lines represent the aerodynamic coefficients without disturbance while the black dashed lines represent the aerodynamic coefficient with disturbance.

    Spiral maneuvering is commonly used in UAV tracking target.In general,the speed of the UAV is greater than the speed of the tracking target motion.In order not to lose track of the target,the UAV often needs to spiral over the target.Spiral isokinetic maneuvering is to reduce the flying height on the basis of the spiral maneuver,and maintain the same flight speed.The maneuver not only requires the UAV to have a good course stability,coordination of turning ability,track tracking capability,but also increases the throttle control to maintain kinetic energy.The simulation results are shown as follows:

    From Fig.4,we can see that the flying-wing UAV has been reduced its height from1500 m to 500 m at the same speed.Flyingwing UAV has no side-slip phenomenon.With/without disturbances,it can be seen that the flying-wing UAV can follow flight instructions in the presence of disturbances.The system has good adaptability to disturbance.

    Typical maneuver action in the flight test process are as follows.Flying wing UAV Ranversman maneuver trajectory and attitude as shown in Fig.5.

    It can be seen from the flight test results that:the energy of the flying-wing UAV is rapidly transformed from the kinetic energy to the potential energy,and the direction of the nose pointing is changed.It can be known from the attitude figure that the turning process of the flying-wing UAV is coordinated.

    Another continuous maneuver flight is also shown in Fig.6.Its combined maneuver flight process is described as follows:Flying-wing UAV climbs rapidly to occupy the height advantage,so as transform the kinetic energy into potential energy,while changing the nose pointing.The Flying-wing UAV began to dive when the potential energy is the maximum,making the potential energy to be translated into kinetic energy and saving energy for the next maneuver flight.When the new flight mode is established,the Flying-wing UAV immediately jumps and turns,with its the nose pointing changing 180°.The continuous maneuver flight is equivalent to have an Immelmann maneuver followed by a Ranversman maneuver.The trajectory and attitude is shown in Fig.6.

    From Fig.6,we can see that,during the flight,the attitude and flight state of UAV is stable.As can be seen from the attitude,the veri fication UAV longitudinal channel and lateral channel is decoupled.The flight test show that the controller designed in this paper is effective.

    9.Conclusion

    With a fluid vector rudder flying-wing UAV as the designed object,this paper has studied the nonlinear design method and done the flight validation.According to maneuvering flight control of flying-wing UAV faces the problem of nonlinearity,unsteadiness and strong coupling,this paper presents a control scheme that uses the inner loop linearization decoupling methods to eliminate the known negative coupling,the outer loop backstepping methods for trajectory tracking control.The stability of the control structure is proved in this paper.Compared with the traditional backstepping control method,the controller increases the inner loop decoupling structure.and retains the aerodynamic damping term in the control structure,which makes the linearized system a weak nonlinear system.The structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.Simulation results show that the proposed control scheme is effective.

    The control process of the system is as follows:Firstly,according to the current flight status of UAV,the control input is obtained by linear modular to eliminate the non-linear and unsteady aerodynamic torque and the inertia coupling torque,and a pseudo linear system is obtained by the real time torque compensation.Then,a linear controller is designed to the compensated pseudo linear system.Finally,by using the expected reference model,the closed-loop controller of the flight quality and flight performance is designed with one robust control compensator,which makes the system to have good operation stability.From the snake maneuver simulation results,the design scheme is proved to be effective.The flight test indicates that the proposed control scheme is effective.

    [1]L.C.Edward,Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling form flight data[J],AIAA atmospheric flight mechanics conference and Exhibit,Monterey,CA,5-8Aug2002.

    [2]Alikhan Mir,Naba K,Peyada,Go TiauwHiong.Flight dynamics and optimization ofthree-dimensionalperchingmaneuver.JGuid ControlDyn 2013;36(6):1791-6.

    [3]Guo Yang,Yao Yu,Wang Shicheng.Maneuver control stratergies to maximaze prediction errors in ballistic middle phase.J Guid Control Dyn 2013;36(4):1225-34.

    [4]Zhi Qiang,Cai Yuanli.Energy-management steering maneuver for thrust vecor-controlled interceptors.J Guid Control Dyn 2012;35(6):1798-804.

    [5]Mueller JB,Paul R.Avoidance maneuver and planning incorporating stationkeeping constraints and automatic relaxation.J Aerosp Inf Syst 2013;10(6):306-22.

    [6]Andrew JN,Fernando NU,John Y.Performance studies of shock vector control Iluidic thrust vectoring[R].AIAA 2007:2007-5086.

    [7]Karen AD.Summary of fluidic thrust vectoring research conducted at NASA langley research center[R].AIAA-2003-3800.2003.

    [8]Sadiq MU.Performance analysis and flowfield characterization of secondary injection thrust vector control(SITVC)for a 2DCD nozzle[D].Los Angeles:University of Southern California;2007.

    [9]Mengjie WAND,Eriqitai,Qiang WAND.Numerical simulaton of nozzle pressure ratio effect on vector Performance and separation control for shock vector control nozzle.J Aerosp Power 2015;30(3):527-38.

    [10]Kiranyaz S,Ince T,Gabbouj M.Dynamic data clustering using stochastic approximation driven multi-dimensional particle swarm optimization.Lect Notes Comput Sci 2010;22(10):1448-62.

    [11]Yang Yi,Chen Xin.Transient performance improvement in model reference adaptive control using h? optimal method.J Frankl Inst 2015;(352):16-32.

    [12]Yang Yi,Chen Xin.Transient performance improvement in model reference adaptive control using h? optimal method.J Frankl Inst 2015;(352):16-32.

    [13]Zhu Jihong,Zhang Shangmin,et al.Dynamic characteristics and challenges for control system of super-maneuverable aircraft.Control Theory&Appl 2014;31(12):1650-62.

    [14]Wilson JR.UAV worldwide roundup.Aerosp Am 2005;43(9):26-34.

    [15]Osterhuber R.FCS requirements for combat aircraft-lessons learned for future Designs.STO-AVT-189.In:Workshop on Stability&Control,Portsmouth;October 2011.p.23-5.

    [16]van Soest WR,Chu QP.Combined feedback linearization and constrained model predictive control for entry flight.J Guid Control Dyn 2006;29(2):427-34.

    [17]Sonneveldt L,Chu QP.Nonlinear flight control design using constrained adaptive backstepping.J Guid Control Dyn 2007;30(2):322-36.

    [18]Lee Taeyoung,Kim Youdan.Nonlinear adaptive flight control using backstepping and neural networks controller.J Guid Control Dyn 2001;24(5):675-83.

    [19]Sieberling S,Chu QP.Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction.J Guid Control Dyn 2010;33(6):1732-42.

    [20]MacKunis W,Patre PM.Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods.IEEE Trans CONTROL Syst Technol 2010;18(6):1448-56.

    [21]Johnson Eric N,Michael A.Turbe.Modeling,control,and flight testing of a small ducted-fan aircraft.J Guid Control Dyn 2006;29(4):769-80.

    [22]Xu Bin,Huang Xiyuan,Wang Danwei.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation.Asian J Control 2014;16(1):162-74.

    [23]Li Jiguang,Chen Xin,et al.,Control system design study of nonlinear robust Method on Flying wing UAV,J Beijing Univ Aeronautics Astronautics,2017-05-31,Network first publishing.

    29 November 2016

    in revised form 31 May 2017 Accepted 14 June 2017 Available online 20 June 2017

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:912646963@qq.com(J.-g.LI).

    Peer review under responsibility of China Ordnance Society.

    亚洲激情五月婷婷啪啪| 美女大奶头视频| 老司机午夜福利在线观看视频| av天堂在线播放| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 一夜夜www| 黄色一级大片看看| 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站| 精品国产三级普通话版| 成人毛片a级毛片在线播放| 久久久久精品国产欧美久久久| 夜夜爽天天搞| 在线免费观看的www视频| 高清午夜精品一区二区三区 | 三级国产精品欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 最近2019中文字幕mv第一页| 波多野结衣高清无吗| 国产男靠女视频免费网站| 久久久久久九九精品二区国产| 自拍偷自拍亚洲精品老妇| 能在线免费观看的黄片| 日韩一本色道免费dvd| 韩国av在线不卡| av国产免费在线观看| 99热这里只有精品一区| 国产私拍福利视频在线观看| 亚洲av成人精品一区久久| 国产成人福利小说| 欧美日本视频| 69人妻影院| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 97热精品久久久久久| 亚洲欧美精品自产自拍| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| 变态另类丝袜制服| 国产精品不卡视频一区二区| 69av精品久久久久久| 日本-黄色视频高清免费观看| 成人性生交大片免费视频hd| 亚洲精品一区av在线观看| 亚洲人成网站在线播| 精品午夜福利在线看| 在线播放无遮挡| 欧美在线一区亚洲| 久久精品91蜜桃| 国产中年淑女户外野战色| 深夜a级毛片| 天堂影院成人在线观看| 有码 亚洲区| 不卡视频在线观看欧美| 亚洲精品久久国产高清桃花| 欧美一区二区亚洲| 少妇熟女aⅴ在线视频| 最后的刺客免费高清国语| 老熟妇仑乱视频hdxx| 一级av片app| 97超视频在线观看视频| 18+在线观看网站| 亚洲精品影视一区二区三区av| 91久久精品电影网| 91精品国产九色| 亚洲国产欧洲综合997久久,| 亚洲在线观看片| 日韩制服骚丝袜av| 国产综合懂色| 深夜a级毛片| 亚洲最大成人手机在线| 亚洲乱码一区二区免费版| 天堂影院成人在线观看| 嫩草影院精品99| .国产精品久久| 最近的中文字幕免费完整| avwww免费| 亚洲人成网站在线观看播放| av在线播放精品| 91久久精品电影网| 成年av动漫网址| 国产一区二区亚洲精品在线观看| 看免费成人av毛片| 在线免费十八禁| 搡女人真爽免费视频火全软件 | 精品福利观看| 九九在线视频观看精品| 97超碰精品成人国产| 国产乱人偷精品视频| 久久精品国产亚洲网站| 色播亚洲综合网| 久久热精品热| 国产色爽女视频免费观看| 亚洲av熟女| 此物有八面人人有两片| 99久久成人亚洲精品观看| 深爱激情五月婷婷| 身体一侧抽搐| 又爽又黄a免费视频| 嫩草影院新地址| 国产乱人视频| 日韩欧美 国产精品| 国产精品99久久久久久久久| 亚洲人成网站高清观看| 校园春色视频在线观看| 97超级碰碰碰精品色视频在线观看| 免费观看的影片在线观看| 少妇人妻一区二区三区视频| 赤兔流量卡办理| 精品一区二区三区视频在线| 久久精品国产自在天天线| 人人妻人人看人人澡| 日本欧美国产在线视频| 3wmmmm亚洲av在线观看| 日韩欧美在线乱码| 最近在线观看免费完整版| 婷婷六月久久综合丁香| av在线亚洲专区| 国产精华一区二区三区| avwww免费| 国产成人freesex在线 | 久久久久久久久久成人| 国产淫片久久久久久久久| 久久99热这里只有精品18| 免费看光身美女| 热99re8久久精品国产| 精品乱码久久久久久99久播| 日韩,欧美,国产一区二区三区 | 综合色av麻豆| av在线播放精品| 日本成人三级电影网站| 国产精品一区www在线观看| 91麻豆精品激情在线观看国产| 久久亚洲国产成人精品v| 成人av在线播放网站| 亚洲av免费在线观看| 国产高清不卡午夜福利| 欧美成人免费av一区二区三区| 91久久精品国产一区二区三区| 1000部很黄的大片| 国产色爽女视频免费观看| 亚洲国产精品成人综合色| av.在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影院精品99| 久久热精品热| 午夜精品一区二区三区免费看| 国产精品久久视频播放| 欧美bdsm另类| 久久久久国产网址| 非洲黑人性xxxx精品又粗又长| 男女边吃奶边做爰视频| 身体一侧抽搐| 亚洲在线观看片| 久久午夜亚洲精品久久| 国产精品,欧美在线| 插逼视频在线观看| 国内久久婷婷六月综合欲色啪| 久久韩国三级中文字幕| 色噜噜av男人的天堂激情| 成人永久免费在线观看视频| 99热全是精品| 我要看日韩黄色一级片| 久久欧美精品欧美久久欧美| 午夜日韩欧美国产| 乱系列少妇在线播放| 99在线人妻在线中文字幕| 国产精品久久久久久久电影| 国产在视频线在精品| 18禁裸乳无遮挡免费网站照片| 婷婷六月久久综合丁香| av天堂中文字幕网| 级片在线观看| 免费观看的影片在线观看| 深夜精品福利| 国产精品一区二区性色av| 午夜精品一区二区三区免费看| 1024手机看黄色片| 国产黄a三级三级三级人| 精品人妻偷拍中文字幕| 亚洲人成网站在线观看播放| 麻豆精品久久久久久蜜桃| 免费观看人在逋| 亚洲欧美日韩无卡精品| 成人高潮视频无遮挡免费网站| 中出人妻视频一区二区| 欧美激情在线99| 久久精品国产亚洲av香蕉五月| 精品不卡国产一区二区三区| 午夜久久久久精精品| 亚洲最大成人手机在线| 国产黄a三级三级三级人| 日本免费a在线| 日韩av在线大香蕉| 国产高清有码在线观看视频| 91久久精品国产一区二区成人| 18禁在线无遮挡免费观看视频 | 在线国产一区二区在线| 日本黄色片子视频| 18禁在线无遮挡免费观看视频 | 极品教师在线视频| 99国产精品一区二区蜜桃av| 3wmmmm亚洲av在线观看| 熟女电影av网| 日日摸夜夜添夜夜添小说| 国产精品一二三区在线看| 两个人视频免费观看高清| 日韩欧美一区二区三区在线观看| 久久精品国产清高在天天线| 综合色丁香网| 18禁在线播放成人免费| 中文字幕熟女人妻在线| 一夜夜www| 最后的刺客免费高清国语| a级毛片a级免费在线| 精品国产三级普通话版| 亚洲一区二区三区色噜噜| 国产亚洲精品av在线| 别揉我奶头 嗯啊视频| 好男人在线观看高清免费视频| 18禁在线播放成人免费| 丰满的人妻完整版| 久久久久久九九精品二区国产| 搞女人的毛片| 别揉我奶头 嗯啊视频| 国产精品美女特级片免费视频播放器| a级毛片a级免费在线| 久久这里只有精品中国| 欧美一区二区精品小视频在线| 国产探花极品一区二区| 男女那种视频在线观看| 国产麻豆成人av免费视频| 91久久精品国产一区二区成人| 精品午夜福利在线看| 久久人人精品亚洲av| 亚洲人成网站在线播放欧美日韩| 午夜视频国产福利| 蜜桃久久精品国产亚洲av| 99久久精品国产国产毛片| 床上黄色一级片| 日韩精品有码人妻一区| 国产极品精品免费视频能看的| 91在线观看av| 久久久a久久爽久久v久久| 亚洲成a人片在线一区二区| av卡一久久| 我要看日韩黄色一级片| 高清日韩中文字幕在线| 午夜福利在线在线| 成人亚洲欧美一区二区av| 中文字幕av在线有码专区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美中文字幕日韩二区| 久久6这里有精品| 国产一区二区激情短视频| 黄片wwwwww| 国产精品久久久久久亚洲av鲁大| 欧美最新免费一区二区三区| 91在线观看av| 国产在线精品亚洲第一网站| 国产精品久久久久久久久免| 禁无遮挡网站| 久久久精品欧美日韩精品| 亚洲成人久久性| 国产高清三级在线| 亚洲成a人片在线一区二区| 国产亚洲av嫩草精品影院| 女人十人毛片免费观看3o分钟| 国产精品日韩av在线免费观看| 国产高清激情床上av| 99国产极品粉嫩在线观看| 亚洲国产高清在线一区二区三| 天天一区二区日本电影三级| 尤物成人国产欧美一区二区三区| 日本撒尿小便嘘嘘汇集6| 99久久精品国产国产毛片| 久久6这里有精品| 亚洲性夜色夜夜综合| 99在线人妻在线中文字幕| 欧美日韩在线观看h| 亚洲精品亚洲一区二区| 99久久九九国产精品国产免费| 亚洲精华国产精华液的使用体验 | 国产精品嫩草影院av在线观看| 夜夜爽天天搞| 午夜亚洲福利在线播放| 成年女人永久免费观看视频| 一进一出好大好爽视频| 婷婷色综合大香蕉| 午夜福利在线在线| 亚洲电影在线观看av| 老熟妇乱子伦视频在线观看| 国产精品不卡视频一区二区| 国产精品电影一区二区三区| 最近最新中文字幕大全电影3| 成年av动漫网址| 女人被狂操c到高潮| 精品无人区乱码1区二区| 久久久国产成人免费| 国产黄a三级三级三级人| 国产精品一区二区三区四区久久| 精品一区二区免费观看| 18禁黄网站禁片免费观看直播| 日日啪夜夜撸| 97碰自拍视频| 1000部很黄的大片| 日本-黄色视频高清免费观看| 大香蕉久久网| 久久鲁丝午夜福利片| 国产精品99久久久久久久久| 午夜视频国产福利| 亚洲经典国产精华液单| www.色视频.com| 亚洲av一区综合| 日本一二三区视频观看| 晚上一个人看的免费电影| 日韩一区二区视频免费看| 国产视频一区二区在线看| 中文字幕av成人在线电影| 欧美+亚洲+日韩+国产| 久久精品人妻少妇| 亚洲精品在线观看二区| 人人妻,人人澡人人爽秒播| 久久热精品热| 神马国产精品三级电影在线观看| 国产爱豆传媒在线观看| 国产爱豆传媒在线观看| 又粗又爽又猛毛片免费看| 男女啪啪激烈高潮av片| 久久精品人妻少妇| 欧美又色又爽又黄视频| 神马国产精品三级电影在线观看| 国产一区二区在线av高清观看| 国产精品精品国产色婷婷| 久久久国产成人免费| 精品久久久久久久久久久久久| 91狼人影院| 男女啪啪激烈高潮av片| 亚洲熟妇中文字幕五十中出| 日韩欧美精品免费久久| av卡一久久| 午夜精品在线福利| 国产成人aa在线观看| 午夜爱爱视频在线播放| 中文字幕精品亚洲无线码一区| aaaaa片日本免费| 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添小说| 亚洲精华国产精华液的使用体验 | 亚洲久久久久久中文字幕| 午夜久久久久精精品| 国产色婷婷99| 成人欧美大片| 色5月婷婷丁香| 欧美激情久久久久久爽电影| 成人亚洲欧美一区二区av| 国产一级毛片七仙女欲春2| 在线观看av片永久免费下载| 国产男靠女视频免费网站| 91av网一区二区| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区视频9| 精品午夜福利在线看| 欧美性感艳星| 久久久久国内视频| 三级毛片av免费| 欧美中文日本在线观看视频| 成人亚洲精品av一区二区| 成人美女网站在线观看视频| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区免费观看 | 久久久国产成人免费| 性欧美人与动物交配| 久久久a久久爽久久v久久| 97超碰精品成人国产| 欧美最新免费一区二区三区| 精品人妻偷拍中文字幕| 男人舔女人下体高潮全视频| 五月玫瑰六月丁香| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 成人鲁丝片一二三区免费| 亚洲天堂国产精品一区在线| 亚洲成av人片在线播放无| 网址你懂的国产日韩在线| 中文字幕av成人在线电影| 精品国产三级普通话版| 亚洲国产欧美人成| 69av精品久久久久久| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 国产 一区 欧美 日韩| 亚洲人成网站高清观看| 可以在线观看毛片的网站| 搞女人的毛片| 亚洲欧美精品自产自拍| 欧美日韩在线观看h| 亚洲精品色激情综合| 欧美一区二区亚洲| 午夜福利视频1000在线观看| aaaaa片日本免费| 在线播放国产精品三级| 麻豆一二三区av精品| 内射极品少妇av片p| 日本-黄色视频高清免费观看| 久久人人精品亚洲av| 91久久精品国产一区二区成人| 亚洲欧美中文字幕日韩二区| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩无卡精品| 亚洲熟妇中文字幕五十中出| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 亚洲美女搞黄在线观看 | 成人国产麻豆网| 露出奶头的视频| 春色校园在线视频观看| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| 日韩精品中文字幕看吧| 天天躁夜夜躁狠狠久久av| 国产成人91sexporn| 国产黄色小视频在线观看| 亚洲国产精品成人久久小说 | 国产精品嫩草影院av在线观看| 欧美成人免费av一区二区三区| 午夜视频国产福利| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 露出奶头的视频| 日本欧美国产在线视频| 亚洲国产精品久久男人天堂| 国产亚洲精品av在线| 我的老师免费观看完整版| 免费人成在线观看视频色| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 能在线免费观看的黄片| 久久久久久久久久成人| 国产精品,欧美在线| 国产精品久久久久久av不卡| 99久国产av精品| 欧美日韩国产亚洲二区| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 日韩欧美精品免费久久| 中文字幕免费在线视频6| 伦精品一区二区三区| 亚洲av中文av极速乱| 天堂动漫精品| 亚洲欧美清纯卡通| 日本在线视频免费播放| 久久鲁丝午夜福利片| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器| 国产在线精品亚洲第一网站| av天堂在线播放| 精品久久久久久久末码| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 午夜老司机福利剧场| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 性色avwww在线观看| 午夜日韩欧美国产| 看非洲黑人一级黄片| 嫩草影院新地址| 99久国产av精品| 久久鲁丝午夜福利片| 搡老岳熟女国产| 一区二区三区四区激情视频 | 一级毛片我不卡| 天堂影院成人在线观看| 在线a可以看的网站| 免费av毛片视频| 亚洲va在线va天堂va国产| 国产综合懂色| 午夜福利在线观看免费完整高清在 | 国产av一区在线观看免费| av福利片在线观看| 亚洲综合色惰| 亚洲va在线va天堂va国产| 精品人妻一区二区三区麻豆 | 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 亚洲成a人片在线一区二区| 久久亚洲国产成人精品v| 亚洲成人精品中文字幕电影| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 男女下面进入的视频免费午夜| 毛片一级片免费看久久久久| 日本三级黄在线观看| 国产精品亚洲一级av第二区| 免费不卡的大黄色大毛片视频在线观看 | 成熟少妇高潮喷水视频| 欧美不卡视频在线免费观看| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 天堂√8在线中文| 午夜激情欧美在线| 成人永久免费在线观看视频| 黄片wwwwww| 性色avwww在线观看| 国内精品久久久久精免费| 国产乱人视频| 一夜夜www| 直男gayav资源| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇熟女久久| 色视频www国产| 一个人看的www免费观看视频| 久久中文看片网| 久99久视频精品免费| 伦精品一区二区三区| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 真人做人爱边吃奶动态| 深夜a级毛片| videossex国产| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 97碰自拍视频| 欧美激情在线99| 久久久久久久亚洲中文字幕| 日韩精品青青久久久久久| а√天堂www在线а√下载| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| 免费大片18禁| 午夜久久久久精精品| 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 婷婷精品国产亚洲av在线| 国产精品久久久久久av不卡| 成人综合一区亚洲| 精品人妻视频免费看| 亚洲高清免费不卡视频| 淫妇啪啪啪对白视频| 日本与韩国留学比较| 99riav亚洲国产免费| a级一级毛片免费在线观看| 国产不卡一卡二| 国产真实乱freesex| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 1000部很黄的大片| 69av精品久久久久久| 可以在线观看毛片的网站| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| 国产成人freesex在线 | 99久国产av精品| 12—13女人毛片做爰片一| 69av精品久久久久久| 欧美潮喷喷水| 久久久成人免费电影| 久久久久性生活片| 亚洲电影在线观看av| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址| 久久国产乱子免费精品| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 舔av片在线| 亚洲av不卡在线观看| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 中文资源天堂在线| 在线免费观看的www视频| 精品日产1卡2卡| 欧美+亚洲+日韩+国产| 一本久久中文字幕| 国产探花极品一区二区| 精品久久国产蜜桃| 国产 一区 欧美 日韩| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 欧美区成人在线视频| 国产黄色小视频在线观看| 日韩欧美在线乱码| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 日本黄色片子视频| 男人舔奶头视频| av女优亚洲男人天堂| 熟女电影av网| videossex国产| 亚洲经典国产精华液单| 亚洲aⅴ乱码一区二区在线播放| 亚洲性久久影院|