• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel conditional diagnosability algorithm under the PMC model①

    2017-12-19 00:45:44GuoChenLiangJiarongLengMingPengShuo
    High Technology Letters 2017年4期

    Guo Chen (郭 晨), Liang Jiarong, Leng Ming, Peng Shuo

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    A novel conditional diagnosability algorithm under the PMC model①

    Guo Chen (郭 晨)*, Liang Jiarong②, Leng Ming***, Peng Shuo*

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. Therefore, it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and derive the corresponding conditional diagnosability and diagnosability. In the paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions are focused. Applying distinguishable function and decision function, it is determined whether a system is conditionally t-diagnosable (or t-diagnosable) or not under the PMC (Preparata, Metze, and Chien) model directly. Based on the decision function, a novel conditional diagnosability algorithm under the PMC model is introduced which can calculate conditional diagnosability rapidly.

    the PMC (Preparata, Metze, and Chien) model, conditionally t-diagnosable, conditional diagnosability, conditional diagnosability algorithm

    0 Introduction

    With the continuous development of large-scale integration, multiprocessor computer systems can consist of hundreds of processors. However, the high complexity of those systems may threaten their reliability. To resolve this issue, in 1967, Preparata, Metze, and Chien presented the definition of system level diagnosis and proposed a so-called PMC model and t-diagnosable[1]. In 1992, Sengupta and Dahbura proposed that the most important necessary and sufficient condition for t-diagnosable was that each pair of distinct faulty sets should be distinguishable, provided the number of faulty vertices was no more than t[2].

    Lai, et al.[3]introduced the conditional diagnosability based on the assumption that all neighbors of any processor in a multiprocessor system could not be fault simultaneously. A system is conditionally t-diagnosable if each pair of conditional faulty sets is distinguishable. Thus far, distinguishability of a pair of distinct faulty sets is widely adopted in the study of t-diagnosable[2,4,5], conditionally t-diagnosable[3,5-9], strong diagnosability[5,9]and g-good-neighbor conditional t-diagnosable[10]. However, lacking of distinguishable measures has caused bad influence.

    In this paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions is focused. After a distinguishable function and a decision function are constructed, how to identify whether a system is conditionally t-diagnosable (t-diagnosable) or not under the PMC model is studied. Finally, a novel algorithm is given to derive conditional diagnosability under the PMC model.

    1 Preliminaries

    A multiprocessor computer system consisting of n processors is modeled as a graph where each vertex represents a processor and each edge represents a link. Let G(V, E) be such a graph. An edge (u, v)∈E(G), with u, v∈V(G), is a test edge of G(V, E), which represents a test performed by u on v. The outcome of edge (u, v), denoted by σ(u, v), is “0” if u evaluates v as a pass and “1” if u evaluates v as a fault. An outcome is reliable only if the tester is fault-free. The collection of all test outcomes in G(V, E) is called a syndrome, denoted by σ. Each vertex has two states: fault-free and faulty. If vertex u is identified as fault-free, then denoted by u=0; otherwise u=1.

    In the PMC model, each vertex u is able to test another vertex if there is a link between them. The outcome of a test performed by a fault-free tester is 1 (respectively, 0) if the tested vertex is faulty (respectively, fault-free), whereas the outcome of a test performed by a faulty tester is unreliable. Table 1 summarizes the invalidation rules for the PMC model.

    Table 1 Invalidation rules for the PMC model

    Some known results about faulty set and t-diagnosable are listed below.

    Definition 1[4]: A subset F?V(G) is called a faulty set of a given syndrome σ, for any (u,v)∈E(G) and u∈V(G)-F, σ(u,v)=0 if v∈V(G)-F, σ(u,v)=1 if v∈F.

    For a given syndrome σ, a faulty set F?V(G) is said to be consistent with σ if F can produce σ. Let σ(F) represent the set of syndromes which can be produced if F is the set of faulty vertices.

    Definition 2[1]: A system is a t-diagnosable one if and only if, for a given syndrome σ, all the faulty vertices can be identified that the number of faulty vertices are not more than t.

    Definition 3[2]: Two distinct faulty sets F1and F2are said to be indistinguishable if σ(F1)∩σ(F2)≠?; otherwise, (F1, F2) is distinguishable.

    According to Definition 2 and 3, the following two lemmas about t-diagnosable are proposed.

    Lemma 1[4]: For a pair of distinct faulty sets F1and F2, with F1?V(G) and F2?V(G), (F1, F2) is distinguishable if there exists at least one test from V(G)-(F1∪F2) to F1ΔF2. Operator Δ implies exclusive-or (XOR). Hence, F1ΔF2=(F1-F2)∪(F2-F1). The operator || implies cardinality. Then, |F1| is the cardinality of F1.

    Lemma 2[2]: A system is t-diagnosable if each pair of distinct faulty sets F1and F2is distinguishable, provided that |F1|≤t and |F2|≤t.

    Diagnosability is an important measure of self-diagnostic capability. The diagnosability of system G is the maximum value of t such that G is t-diagnosable, written as t(G).

    Motivated by the deficiency of classical measurement of diagnosability, Lai, et al. presented conditional diagnosability by claiming the property that each vertex had at least one fault-free neighbor[3]. Then, they introduced some useful definitions and lemmas as follows.

    Definition 4[3]: Faulty set F?V(G) is a conditional faulty set only if every vertex of the system has at least one fault-free neighbor.

    Lemma 3[3]: A system is conditionally t-diagnosable if each pair of distinct conditional faulty sets (F1, F2) is distinguishable, with |F1|≤t and |F2|≤t.

    Definition 5[3]: The conditional diagnosability of system G is the maximum value of t that G is conditionally t-diagnosable, denoted as tc(G).

    In this paper, an undirected diagnosable system is adopted, which assumes that every test edge is bidirectional. The undirected diagnosable system is a special diagnosable system. An arbitrary edge (u,v) of an undirected diagnosable system implies that u can test v and v can test u too.

    2 Distinguishable measure of pairs of distinct faulty sets

    As mentioned above, t-diagnosable and conditionally t-diagnosable are closely related to the distinguishability of pairs of distinct faulty sets. Therefore, an interesting question arises here: how to identify whether two distinct faulty sets are distinguishable or not. In this section, some important theorems and lemmas about distinguishable measures of two distinct faulty sets will be presented.

    Theorem 1: Let F1and F2be two distinct faulty sets of an undirected diagnosable system, (F1, F2) is distinguishable, then there exists at least one undirected edge (u, v), such (u+v)|F1+(u+v)|F2=1. (u+v)|Fxis the sum of u and v when Fxis the set of faulty vertices, (u+v)|Fx=(u)|Fx+(v)|Fx, (u)|Fx=0 if u?Fx, and (u)|Fx=1 if u∈Fx. According to the definition of (u+v)|Fx, (u+v)|F1=1 (or (u+v)|F2=1) implies that u+v=1, which means one of {u,v} is fault-free and the other is faulty, when F1(or F2) is the current faulty vertices set.

    Proof: This theorem is proved by contradiction. For each undirected edge (u,v) of the system, it is assumed (u+v)|F1+(u+v)|F2≠1. Without loss of generality, there exists 7 cases. As shown in Table 2, only case 2 lacks the possibility of satisfying σ(u,v)|F1=σ(u,v)|F2and σ(v,u)|F1=σ(v,u)|F2, which means σ(F1)∩σ(F2)=?.

    According to (u+v)|F1+(u+v)|F2≠1, case 2 will not appear in the system. Therefore, the system has the possibility of satisfying σ(u,v)|F1=σ(u, v)|F2and σ(v,u)|F1=σ(v,u)|F2, which implies σ(F1)∩σ(F2)≠?. According to Definition 3, (F1, F2) is an indistinguishable pair of faulty sets, which contradicts the assumption. The theorem follows.

    It is easy to prove that (u+v)|F1+(u+v)|F2=1 is another form of the existence of at least one test edge from V-(F1∪F2) to (F1△F2). Therefore, Theorem 1 is also proved by Lemma 1.

    Table 2 The value of (u+v)|F1+(u+v)|F2underall possible scenarios

    Case 1

    Case 2

    Case 3

    Case 4

    Case 5

    Case 6

    Case 7

    According to Theorem 1, an important distinguishable function is presented which can identify whether a pair of faulty sets is distinguishable or not.

    According to Definition 6, D(Fi, Fj)=D(Fj, Fi) is got. To avoid double-counting, i

    Lemma 4: D(F1,F2)=0 represents that (F1, F2) is distinguishable; otherwise, (F1, F2) is indistinguishable.

    According to Lemma 2 and Lemma 3, t-diagnosable and conditionally t-diagnosable are tied to distinguishability of pairs of distinct faulty sets and conditional faulty sets, respectively.

    Next, a decision function will be provided which can decide whether the system is t-diagnosable (or conditionally t-diagnosable).

    Lemma 5: J(F1,F2,…,Fm)=0 represents the fact that the system is t-diagnosable (or conditionally t-diagnosable), where F1,F2,…,Fmare all the possible faulty sets (or conditional faulty sets) with |F1|,|F2|,…,|Fm|≤t; otherwise, the system is not t-diagnosable (or conditionally t-diagnosable).

    Proof: By Definition 7, J(F1,F2,…,Fm)=0 means D(Fi, Fj)=0 for 1≤i

    The decision function J(F1,F2,…,Fm) can be used in both t-diagnosable systems and conditionally t-diagnosable systems. The only difference is whether F1,F2,…,Fmare all the possible faulty sets or all the possible conditional faulty sets.

    3 A novel conditional diagnosability algorithm under the PMC model

    The conditional diagnosability algorithm under the proposed PMC model is based on Theorem 1 and decision function J(F1,F2,…,Fm). The effectiveness of this conditional diagnosability algorithm has been confirmed by Lemma 5. Above all, all the possible conditional faulty sets of the system must be derived. Then, the decision function J(F1,F2,…,Fm) is called to identify whether the system is conditionally t-diagnosable or not and then obtain conditional diagnosability. The new algorithm can be outlined as follows:

    Step 1: Construct conditional faulty set equations.

    For each vertex u∈V, we set Γ(u)={u′∈V|(u,u′)∈E}. According to the definition of conditional diagnosability, Γ(u) has at least one fault-free neighbor that can be denoted by Γ(u)=u1u2…uq=0. The equations of all the vertices in the system compose the conditional faulty set equations.

    Step 1 can be described by the following pseudocode.

    Input:G(V,E)Output:Theconditionalfaultysetequations1 foreveryvertexu∈V(G)2 ComputeΓ(u)={u1,u2,…,uq}3 Tobuildequation∏qi=1ui=04 endfor5 Collectsallequationstoformconditionalfaultysetequa?tions6 returntoStep2

    Step 2: Convert each equation of the conditional faulty set equations into a relational table.

    For example, the equation x1x2…xq=0 means that there exists at least one vertex “0”. The relational table corresponding to x1x2…xq=0 is Table 3, which consists of 2q-1 tuples.

    Table 3 The relational table corresponds to x1x2…xq=0

    Step 2 can be described as follows:

    Input:ConditionalfaultmodelequationsOutput:RelationaltablesX1,X2,…,Xm1 foreveryequationofequations2 TransformequationintoarelationtableXi3 i=i+14 endfor5 returntoStep3

    Step 3: Derive all the possible conditional faulty sets.

    After all the conditional faulty set equations have been converted into relational tables, all the possible conditional faulty sets in this step will be derived. Let all of the relational tables be X1, X2,…, Xr.

    First of all, empty relational table X is defined. If relational tables X and X1have one or more fields in common, then the two tables are joined as a new relational table X by natural join (??), denoted by X=X??X1, otherwise, they are joined by Cartesian product (×), denoted by X=X×X1. Repeat this step from X2to Xr. The final new relational table X is the set of all the possible conditional faulty sets, denoted by X={F1, F2,…,Fm}.

    The pseudocode of this step is described as follows:

    Input:RelationaltablesX1,X2,…,XrOutput:AllthepossibleconditionalfaultysetsX1 forifrom1tor2 IFthereexistscommonfieldsbetweenXandXi3ThenX=X??Xi4ElseX=X×Xi5 endif6 endfor7 returntoStep4

    Step 4: Calculate the sum of the two adjacent vertices of each undirected test edge under different conditional faulty sets and D(Fi,Fj).

    The pseudocode of this step is given below.

    Input:AllthepossibleconditionalfaultysetsXOutput:Thesumofthetwoadjacentverticesofeachundi?rectedtestedgeunderdifferentconditionalfaultysetsandD(Fi,F(xiàn)j),1≤i

    Step 5: Call the decision function J(F1, F2,…,Fp) to determine whether the system is conditionally t-diagnosable or not and derive tc(G).

    Let all those conditional faulty sets which have less than i faulty vertices be F1, F2,…, Fp. J(F1, F2,…, Fp)=0 represents the system is conditionally t-diagnosable, with t=i. tc(G) is the maximum value of t.

    Step 5 can be described by the following pseudocode.

    Input:D(Fi,F(xiàn)j),1≤i

    Illustrated by the example of Fig.1, conditional faulty set equations can be constructed as Eq.(1) then to obtain all the relational tables as shown in Table 4. Finally, the new relational table X can be got by X=X1×X2??X3??X4??X5. The result of X is shown in Table 5.

    As shown, there are 11 conditional faulty sets, where F1has no faulty vertex, each conditional faulty set of {F2, F3,…, F6} has only one faulty vertex, and each conditional faulty set of {F7, F8,…, F11} has two faulty vertices. The maximum number of faulty vertices of all the possible conditional faulty sets is 2. That is to say, tc(G)≤2. The sums of the two adjacent vertices of each undirected test edge under different conditional faulty sets are shown in Table 6. And D(Fi, Fj)=0 for 1≤i

    Fig.1 A system consisting of 5 vertices

    (1)

    Table 4 Relational tables corresponding to Eq. (1)

    4 Conclusion

    Conditional diagnosability is a new measure of diagnosability which claims that each vertex has at least one fault free neighbor. Therefore, all the fault processors can be identified if the number of fault processors in a system is less than the conditional diagnosability and any faulty set cannot contain all neighbors of any processor . As a result a conditional diagnosability algorithm is more important, which can determine conditional diagnosability of any system. With the continuous development of large-scale integration, multiprocessor systems may have hundreds of processors, especially in supercomputer systems,high-performance parallel computing systems and grid systems, which areusually based on an underlying bus structure, or a kind of interconnection networks. However, the high complexity of these systems may threaten their reliability. Hence, an efficient conditional diagnosability algorithm has important theoretical significance and application value, which can be used to evaluate the reliability of multiprocessor systems.

    Table 5 All the conditional faulty sets in X

    Table 6 The sums of the two incident vertices

    Table 7 The results of D(Fi, Fj), for 1≤i

    In this paper, the distinguishable measure of pairs of distinct faulty sets have be investigated. By theoretical deduction, an effective decision function J(F1,F2,…,Fm) and a novel conditional diagnosability algorithm are presented successfully which can identify whether the system is conditionally t-diagnosable or not directly and obtain tc(G) conveniently under the PMC model.

    [ 1] Preparata F P, Metze G, Chien R T . On the connection assignment problem of diagnosable systems. IEEE Transactions on Electronic Computers, 2006, 16(6): 848-854

    [ 2] Sengupta A, Dahbura A T. On self-diagnosable multiprocessor systems: diagnosis by the comparison approach. IEEE Transactions on Computers, 1992,41(11):1386-1396

    [ 3] Lai P L, Tan J J, Chang C P, et al. Conditional diagnosability measures for large multiprocessor systems. IEEE Transactions on Computers,2005, 54(2):165-175

    [ 4] Dahbura A T, Masson G M. An 0(n2.5) fault identification algorithm for diagnosable systems. IEEE Transactions on Computers, 1984, C-33(6):486-492

    [ 5] Zhu Q, Guo G D, Wang D. Relating diagnosability, strong diagnosability and conditional diagnosability of strong networks. IEEE Transactions on Computers, 2014,63(7):1847-1851

    [ 6] Yang M C. Analysis of conditional diagnosability for balanced hypercubes. In: Proceedings 2012 International Conference on IEEE, of the Information Science and Technology, Wuhan, China, 2012. 651-654

    [ 7] Xu M, Thulasiraman K, Hu X D. Conditional diagnosability of matching composition networks under the PMC model. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(11): 875-879

    [ 8] Zhu Q. On conditional diagnosability and reliability of the BC networks. The Journal of Supercomputing, 2008, 45(2):173-184

    [ 9] Hsieh S Y, Tsai C Y, Chen C A. Strong diagnosability and conditional diagnosability of multiprocessor systems and folded hypercubes. IEEE Transactions on Computers, 2013, 62(7):1472-1477

    [10] Peng S L, Lin C K, Jimmy J M, et al. The g-good-neighbor conditional diagnosability of hypercube under PMC model. Applied Mathematics and Computation, 2012,218(21):10406-10412

    Guo Chen, was born in 1979. He is a Ph.D candidate of Guangxi University. He received his M.S. degree in computer science from Guanxi University in 2005. He received his B.S. degree of computer science from Beijing Business and Technology University in 2001. His research interests include artificial intelligence and interconnection network.

    10.3772/j.issn.1006-6748.2017.04.006

    ①Supported by the National Natural Science Foundation of China (No. 61562046) and Science and Technology Project of Jiangxi Provincial Education Department (No. GJJ150777, GJJ160742).

    ②To whom correspondence should be addressed. E-mail: 13977106752@163.com

    on Mar. 6, 2017**

    又黄又爽又免费观看的视频| 99国产精品免费福利视频| 久久中文字幕人妻熟女| 亚洲五月天丁香| av片东京热男人的天堂| 麻豆一二三区av精品| 在线观看www视频免费| 99re在线观看精品视频| 久久精品影院6| 亚洲精品久久国产高清桃花| 亚洲男人的天堂狠狠| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 国产精品一区二区三区四区久久 | 欧美成人一区二区免费高清观看 | 欧美黄色片欧美黄色片| 日日干狠狠操夜夜爽| 性少妇av在线| 日日爽夜夜爽网站| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜 | 一边摸一边抽搐一进一小说| 免费不卡黄色视频| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| 老司机靠b影院| 搡老岳熟女国产| 欧美在线黄色| 国产精品爽爽va在线观看网站 | av视频在线观看入口| 99久久精品国产亚洲精品| 日日摸夜夜添夜夜添小说| 身体一侧抽搐| 日韩欧美三级三区| 午夜福利在线观看吧| 精品日产1卡2卡| 9191精品国产免费久久| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 日韩高清综合在线| 亚洲第一电影网av| 97人妻天天添夜夜摸| 一级a爱片免费观看的视频| 久久久精品欧美日韩精品| bbb黄色大片| 国产精品电影一区二区三区| 欧美亚洲日本最大视频资源| 91精品三级在线观看| 91国产中文字幕| av天堂久久9| 在线观看66精品国产| 婷婷六月久久综合丁香| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 色播在线永久视频| 午夜免费成人在线视频| 大陆偷拍与自拍| 热99re8久久精品国产| 真人做人爱边吃奶动态| 男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 91字幕亚洲| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| 级片在线观看| 亚洲三区欧美一区| 亚洲男人天堂网一区| 男人的好看免费观看在线视频 | 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 一a级毛片在线观看| av视频在线观看入口| 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 国产又爽黄色视频| 亚洲av熟女| 午夜福利成人在线免费观看| 国产精品98久久久久久宅男小说| 黄色女人牲交| 日本 欧美在线| 成人18禁在线播放| 麻豆成人av在线观看| 国产精品久久久久久精品电影 | 久久婷婷成人综合色麻豆| 99热只有精品国产| tocl精华| 国内精品久久久久精免费| 亚洲国产欧美日韩在线播放| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 级片在线观看| 身体一侧抽搐| 视频区欧美日本亚洲| 国产成人av教育| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 国产成人精品在线电影| 女警被强在线播放| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| av天堂在线播放| videosex国产| 97超级碰碰碰精品色视频在线观看| 欧美乱码精品一区二区三区| 欧美亚洲日本最大视频资源| 美女午夜性视频免费| 国产精品,欧美在线| 国产精品二区激情视频| 制服丝袜大香蕉在线| 一级,二级,三级黄色视频| 一本久久中文字幕| x7x7x7水蜜桃| 日本在线视频免费播放| 热re99久久国产66热| 精品久久久精品久久久| 在线观看www视频免费| 国产野战对白在线观看| 91麻豆精品激情在线观看国产| 国产精品九九99| 制服丝袜大香蕉在线| 久久性视频一级片| 亚洲第一欧美日韩一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 日韩国内少妇激情av| 身体一侧抽搐| 国产精品久久久久久精品电影 | 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 日本a在线网址| 成人亚洲精品av一区二区| 国产乱人伦免费视频| 午夜福利,免费看| 99香蕉大伊视频| 热re99久久国产66热| 丁香欧美五月| 欧美成人一区二区免费高清观看 | 男女之事视频高清在线观看| √禁漫天堂资源中文www| 亚洲欧美激情在线| 琪琪午夜伦伦电影理论片6080| 很黄的视频免费| 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 欧美色视频一区免费| 看黄色毛片网站| 巨乳人妻的诱惑在线观看| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 韩国精品一区二区三区| а√天堂www在线а√下载| 成人18禁在线播放| 男人舔女人的私密视频| 亚洲一码二码三码区别大吗| xxx96com| 午夜福利18| a级毛片在线看网站| 精品一区二区三区av网在线观看| 999精品在线视频| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 久久天堂一区二区三区四区| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 中文字幕人成人乱码亚洲影| 国产成人影院久久av| 看免费av毛片| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| av天堂久久9| 韩国精品一区二区三区| 亚洲五月天丁香| 日日摸夜夜添夜夜添小说| 美女大奶头视频| a在线观看视频网站| 亚洲精品av麻豆狂野| 美女大奶头视频| 午夜福利视频1000在线观看 | 亚洲一码二码三码区别大吗| 免费观看精品视频网站| 国产成人系列免费观看| 午夜免费激情av| 看黄色毛片网站| 国产高清激情床上av| av福利片在线| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 国产av精品麻豆| 精品日产1卡2卡| 黄色 视频免费看| 日本免费a在线| 级片在线观看| 久久久国产欧美日韩av| 香蕉国产在线看| 欧美日本视频| 美女高潮喷水抽搐中文字幕| 国产97色在线日韩免费| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 欧美国产日韩亚洲一区| 韩国精品一区二区三区| 亚洲人成电影观看| 亚洲专区字幕在线| 免费在线观看完整版高清| 国内精品久久久久久久电影| 一级黄色大片毛片| 极品教师在线免费播放| 亚洲精品国产色婷婷电影| 91字幕亚洲| a级毛片在线看网站| 成人精品一区二区免费| 99国产精品一区二区蜜桃av| 真人一进一出gif抽搐免费| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 亚洲欧美激情综合另类| 亚洲电影在线观看av| 91av网站免费观看| 高潮久久久久久久久久久不卡| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 亚洲午夜精品一区,二区,三区| 亚洲精品粉嫩美女一区| 欧美中文综合在线视频| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看 | 色精品久久人妻99蜜桃| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 欧美成人免费av一区二区三区| 久久婷婷成人综合色麻豆| 国产成人精品无人区| 真人做人爱边吃奶动态| 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 亚洲三区欧美一区| 亚洲国产精品成人综合色| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 国产成人欧美在线观看| 好男人电影高清在线观看| 人成视频在线观看免费观看| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 丝袜美足系列| 91精品三级在线观看| 午夜久久久在线观看| 此物有八面人人有两片| 国产精华一区二区三区| 国产精品1区2区在线观看.| 99国产综合亚洲精品| 国产99久久九九免费精品| 国产免费av片在线观看野外av| 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情在线| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 变态另类丝袜制服| 伦理电影免费视频| 亚洲国产精品sss在线观看| 亚洲人成电影免费在线| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频 | 亚洲中文日韩欧美视频| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 国产又爽黄色视频| 97超级碰碰碰精品色视频在线观看| 999精品在线视频| 中国美女看黄片| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 看免费av毛片| 99精品欧美一区二区三区四区| www.精华液| 亚洲欧美日韩无卡精品| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 午夜免费激情av| 手机成人av网站| 久久中文字幕人妻熟女| 看黄色毛片网站| 久久精品影院6| 国产aⅴ精品一区二区三区波| 丁香欧美五月| 亚洲成国产人片在线观看| 日韩精品青青久久久久久| 好男人在线观看高清免费视频 | 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 伊人久久大香线蕉亚洲五| 好男人在线观看高清免费视频 | 国产精品二区激情视频| 成人18禁高潮啪啪吃奶动态图| 男人舔女人下体高潮全视频| 国产成人欧美在线观看| 午夜福利18| 久久这里只有精品19| 黄色 视频免费看| 一本久久中文字幕| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| av电影中文网址| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 久久人人精品亚洲av| 免费在线观看黄色视频的| 国产成人欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 亚洲色图 男人天堂 中文字幕| 侵犯人妻中文字幕一二三四区| 18禁美女被吸乳视频| 在线观看舔阴道视频| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 欧美日本中文国产一区发布| 中文字幕久久专区| 久久久水蜜桃国产精品网| 久久人人爽av亚洲精品天堂| 亚洲男人天堂网一区| 午夜久久久久精精品| 久久亚洲精品不卡| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片 | 亚洲国产精品sss在线观看| 亚洲成a人片在线一区二区| 亚洲 国产 在线| av福利片在线| 成人国产一区最新在线观看| bbb黄色大片| 亚洲全国av大片| av福利片在线| 97碰自拍视频| 非洲黑人性xxxx精品又粗又长| 午夜精品国产一区二区电影| 一进一出抽搐动态| 999久久久国产精品视频| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 在线观看日韩欧美| 日本免费一区二区三区高清不卡 | 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 婷婷六月久久综合丁香| 欧美大码av| 国产精品,欧美在线| 久久影院123| 国产私拍福利视频在线观看| 午夜久久久久精精品| 宅男免费午夜| 精品国产乱子伦一区二区三区| 亚洲av美国av| 高潮久久久久久久久久久不卡| 天堂动漫精品| 精品久久久久久久人妻蜜臀av | 黑人欧美特级aaaaaa片| 亚洲熟妇中文字幕五十中出| 中文字幕av电影在线播放| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 久久中文字幕一级| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 国产野战对白在线观看| 成人三级做爰电影| 一进一出好大好爽视频| 精品国产乱子伦一区二区三区| АⅤ资源中文在线天堂| 黄色毛片三级朝国网站| 久久精品影院6| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲精品国产色婷小说| 大型av网站在线播放| 欧美日韩精品网址| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 成人国语在线视频| 中文字幕人成人乱码亚洲影| 亚洲欧洲精品一区二区精品久久久| 国产私拍福利视频在线观看| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 香蕉久久夜色| 狠狠狠狠99中文字幕| 午夜激情av网站| 18禁裸乳无遮挡免费网站照片 | 国产三级在线视频| 亚洲avbb在线观看| 99热只有精品国产| 热re99久久国产66热| 99国产综合亚洲精品| 亚洲最大成人中文| 99riav亚洲国产免费| 老汉色∧v一级毛片| bbb黄色大片| 91成人精品电影| 99久久综合精品五月天人人| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 黄色视频不卡| 又黄又粗又硬又大视频| 久久精品91无色码中文字幕| 亚洲成人久久性| 热99re8久久精品国产| 村上凉子中文字幕在线| 欧美中文综合在线视频| 亚洲久久久国产精品| 久久 成人 亚洲| 亚洲九九香蕉| 9热在线视频观看99| 久久精品成人免费网站| 麻豆久久精品国产亚洲av| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 午夜久久久在线观看| 免费在线观看完整版高清| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 婷婷丁香在线五月| 亚洲激情在线av| 多毛熟女@视频| 亚洲国产毛片av蜜桃av| 国产成人啪精品午夜网站| 国产一卡二卡三卡精品| 脱女人内裤的视频| 国产亚洲精品久久久久5区| 日韩精品中文字幕看吧| 日本免费a在线| 国产亚洲精品综合一区在线观看 | 韩国精品一区二区三区| 欧美色欧美亚洲另类二区 | 黄色a级毛片大全视频| 国产一区二区激情短视频| 亚洲国产日韩欧美精品在线观看 | 国产精品久久电影中文字幕| 黄色丝袜av网址大全| 精品人妻在线不人妻| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 免费无遮挡裸体视频| 男人的好看免费观看在线视频 | 国产亚洲av高清不卡| av福利片在线| 久久国产精品男人的天堂亚洲| 级片在线观看| 亚洲无线在线观看| 久久精品亚洲精品国产色婷小说| 免费看十八禁软件| 成人国产一区最新在线观看| 美女扒开内裤让男人捅视频| 国产精品一区二区三区四区久久 | 老司机在亚洲福利影院| 真人一进一出gif抽搐免费| av中文乱码字幕在线| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 中出人妻视频一区二区| 88av欧美| 成人永久免费在线观看视频| 这个男人来自地球电影免费观看| 国产欧美日韩一区二区三区在线| 久久久国产成人精品二区| 亚洲视频免费观看视频| 中文字幕高清在线视频| 色播亚洲综合网| 老司机靠b影院| 久久精品国产99精品国产亚洲性色 | 高清黄色对白视频在线免费看| 国产亚洲精品久久久久久毛片| 国产成人一区二区三区免费视频网站| 精品一品国产午夜福利视频| 免费在线观看日本一区| 香蕉丝袜av| 女同久久另类99精品国产91| 国内精品久久久久久久电影| 国产蜜桃级精品一区二区三区| 国产精品野战在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲五月色婷婷综合| 99久久国产精品久久久| 精品一品国产午夜福利视频| 一级毛片精品| 亚洲黑人精品在线| 日本免费一区二区三区高清不卡 | 91精品三级在线观看| 无限看片的www在线观看| 黄片大片在线免费观看| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 亚洲av美国av| 超碰成人久久| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区 | 亚洲无线在线观看| 亚洲精品一卡2卡三卡4卡5卡| bbb黄色大片| 一区二区日韩欧美中文字幕| 看黄色毛片网站| 国产精品久久视频播放| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 亚洲人成77777在线视频| 午夜激情av网站| 国产极品粉嫩免费观看在线| 国产不卡一卡二| 一级毛片精品| 亚洲国产欧美一区二区综合| 日韩欧美国产一区二区入口| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 精品少妇一区二区三区视频日本电影| 99久久精品国产亚洲精品| 欧美老熟妇乱子伦牲交| 久久精品亚洲精品国产色婷小说| 午夜精品在线福利| 亚洲国产看品久久| 窝窝影院91人妻| 一级片免费观看大全| 天天躁夜夜躁狠狠躁躁| 黄色丝袜av网址大全| 嫩草影院精品99| 夜夜看夜夜爽夜夜摸| 女人精品久久久久毛片| 国产精品二区激情视频| 欧美激情久久久久久爽电影 | 中文字幕人成人乱码亚洲影| 丁香六月欧美| 1024视频免费在线观看| 神马国产精品三级电影在线观看 | 婷婷丁香在线五月| 国产三级黄色录像| 午夜激情av网站| 日韩一卡2卡3卡4卡2021年| 欧美激情 高清一区二区三区| 欧美乱色亚洲激情| 99在线视频只有这里精品首页| 国产精品香港三级国产av潘金莲| 可以在线观看毛片的网站| 最近最新免费中文字幕在线| 男女午夜视频在线观看| 精品国产乱子伦一区二区三区| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 91大片在线观看| 亚洲七黄色美女视频| 亚洲专区中文字幕在线| 国产高清videossex| 免费观看人在逋| 女人被躁到高潮嗷嗷叫费观| 欧洲精品卡2卡3卡4卡5卡区| 亚洲性夜色夜夜综合| 不卡一级毛片| 日韩欧美在线二视频| 日韩视频一区二区在线观看| 国产99白浆流出| 婷婷丁香在线五月| 成人亚洲精品一区在线观看| 一区二区三区激情视频| 黑人欧美特级aaaaaa片| 亚洲一码二码三码区别大吗| 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 亚洲全国av大片| 最近最新中文字幕大全电影3 | 制服诱惑二区| 亚洲国产看品久久| netflix在线观看网站| 禁无遮挡网站| 午夜a级毛片| 国产熟女xx| 亚洲成av人片免费观看| 久久国产精品男人的天堂亚洲| 99国产精品99久久久久| 久久性视频一级片| 欧美黑人精品巨大| 亚洲专区字幕在线|