• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel conditional diagnosability algorithm under the PMC model①

    2017-12-19 00:45:44GuoChenLiangJiarongLengMingPengShuo
    High Technology Letters 2017年4期

    Guo Chen (郭 晨), Liang Jiarong, Leng Ming, Peng Shuo

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    A novel conditional diagnosability algorithm under the PMC model①

    Guo Chen (郭 晨)*, Liang Jiarong②, Leng Ming***, Peng Shuo*

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. Therefore, it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and derive the corresponding conditional diagnosability and diagnosability. In the paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions are focused. Applying distinguishable function and decision function, it is determined whether a system is conditionally t-diagnosable (or t-diagnosable) or not under the PMC (Preparata, Metze, and Chien) model directly. Based on the decision function, a novel conditional diagnosability algorithm under the PMC model is introduced which can calculate conditional diagnosability rapidly.

    the PMC (Preparata, Metze, and Chien) model, conditionally t-diagnosable, conditional diagnosability, conditional diagnosability algorithm

    0 Introduction

    With the continuous development of large-scale integration, multiprocessor computer systems can consist of hundreds of processors. However, the high complexity of those systems may threaten their reliability. To resolve this issue, in 1967, Preparata, Metze, and Chien presented the definition of system level diagnosis and proposed a so-called PMC model and t-diagnosable[1]. In 1992, Sengupta and Dahbura proposed that the most important necessary and sufficient condition for t-diagnosable was that each pair of distinct faulty sets should be distinguishable, provided the number of faulty vertices was no more than t[2].

    Lai, et al.[3]introduced the conditional diagnosability based on the assumption that all neighbors of any processor in a multiprocessor system could not be fault simultaneously. A system is conditionally t-diagnosable if each pair of conditional faulty sets is distinguishable. Thus far, distinguishability of a pair of distinct faulty sets is widely adopted in the study of t-diagnosable[2,4,5], conditionally t-diagnosable[3,5-9], strong diagnosability[5,9]and g-good-neighbor conditional t-diagnosable[10]. However, lacking of distinguishable measures has caused bad influence.

    In this paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions is focused. After a distinguishable function and a decision function are constructed, how to identify whether a system is conditionally t-diagnosable (t-diagnosable) or not under the PMC model is studied. Finally, a novel algorithm is given to derive conditional diagnosability under the PMC model.

    1 Preliminaries

    A multiprocessor computer system consisting of n processors is modeled as a graph where each vertex represents a processor and each edge represents a link. Let G(V, E) be such a graph. An edge (u, v)∈E(G), with u, v∈V(G), is a test edge of G(V, E), which represents a test performed by u on v. The outcome of edge (u, v), denoted by σ(u, v), is “0” if u evaluates v as a pass and “1” if u evaluates v as a fault. An outcome is reliable only if the tester is fault-free. The collection of all test outcomes in G(V, E) is called a syndrome, denoted by σ. Each vertex has two states: fault-free and faulty. If vertex u is identified as fault-free, then denoted by u=0; otherwise u=1.

    In the PMC model, each vertex u is able to test another vertex if there is a link between them. The outcome of a test performed by a fault-free tester is 1 (respectively, 0) if the tested vertex is faulty (respectively, fault-free), whereas the outcome of a test performed by a faulty tester is unreliable. Table 1 summarizes the invalidation rules for the PMC model.

    Table 1 Invalidation rules for the PMC model

    Some known results about faulty set and t-diagnosable are listed below.

    Definition 1[4]: A subset F?V(G) is called a faulty set of a given syndrome σ, for any (u,v)∈E(G) and u∈V(G)-F, σ(u,v)=0 if v∈V(G)-F, σ(u,v)=1 if v∈F.

    For a given syndrome σ, a faulty set F?V(G) is said to be consistent with σ if F can produce σ. Let σ(F) represent the set of syndromes which can be produced if F is the set of faulty vertices.

    Definition 2[1]: A system is a t-diagnosable one if and only if, for a given syndrome σ, all the faulty vertices can be identified that the number of faulty vertices are not more than t.

    Definition 3[2]: Two distinct faulty sets F1and F2are said to be indistinguishable if σ(F1)∩σ(F2)≠?; otherwise, (F1, F2) is distinguishable.

    According to Definition 2 and 3, the following two lemmas about t-diagnosable are proposed.

    Lemma 1[4]: For a pair of distinct faulty sets F1and F2, with F1?V(G) and F2?V(G), (F1, F2) is distinguishable if there exists at least one test from V(G)-(F1∪F2) to F1ΔF2. Operator Δ implies exclusive-or (XOR). Hence, F1ΔF2=(F1-F2)∪(F2-F1). The operator || implies cardinality. Then, |F1| is the cardinality of F1.

    Lemma 2[2]: A system is t-diagnosable if each pair of distinct faulty sets F1and F2is distinguishable, provided that |F1|≤t and |F2|≤t.

    Diagnosability is an important measure of self-diagnostic capability. The diagnosability of system G is the maximum value of t such that G is t-diagnosable, written as t(G).

    Motivated by the deficiency of classical measurement of diagnosability, Lai, et al. presented conditional diagnosability by claiming the property that each vertex had at least one fault-free neighbor[3]. Then, they introduced some useful definitions and lemmas as follows.

    Definition 4[3]: Faulty set F?V(G) is a conditional faulty set only if every vertex of the system has at least one fault-free neighbor.

    Lemma 3[3]: A system is conditionally t-diagnosable if each pair of distinct conditional faulty sets (F1, F2) is distinguishable, with |F1|≤t and |F2|≤t.

    Definition 5[3]: The conditional diagnosability of system G is the maximum value of t that G is conditionally t-diagnosable, denoted as tc(G).

    In this paper, an undirected diagnosable system is adopted, which assumes that every test edge is bidirectional. The undirected diagnosable system is a special diagnosable system. An arbitrary edge (u,v) of an undirected diagnosable system implies that u can test v and v can test u too.

    2 Distinguishable measure of pairs of distinct faulty sets

    As mentioned above, t-diagnosable and conditionally t-diagnosable are closely related to the distinguishability of pairs of distinct faulty sets. Therefore, an interesting question arises here: how to identify whether two distinct faulty sets are distinguishable or not. In this section, some important theorems and lemmas about distinguishable measures of two distinct faulty sets will be presented.

    Theorem 1: Let F1and F2be two distinct faulty sets of an undirected diagnosable system, (F1, F2) is distinguishable, then there exists at least one undirected edge (u, v), such (u+v)|F1+(u+v)|F2=1. (u+v)|Fxis the sum of u and v when Fxis the set of faulty vertices, (u+v)|Fx=(u)|Fx+(v)|Fx, (u)|Fx=0 if u?Fx, and (u)|Fx=1 if u∈Fx. According to the definition of (u+v)|Fx, (u+v)|F1=1 (or (u+v)|F2=1) implies that u+v=1, which means one of {u,v} is fault-free and the other is faulty, when F1(or F2) is the current faulty vertices set.

    Proof: This theorem is proved by contradiction. For each undirected edge (u,v) of the system, it is assumed (u+v)|F1+(u+v)|F2≠1. Without loss of generality, there exists 7 cases. As shown in Table 2, only case 2 lacks the possibility of satisfying σ(u,v)|F1=σ(u,v)|F2and σ(v,u)|F1=σ(v,u)|F2, which means σ(F1)∩σ(F2)=?.

    According to (u+v)|F1+(u+v)|F2≠1, case 2 will not appear in the system. Therefore, the system has the possibility of satisfying σ(u,v)|F1=σ(u, v)|F2and σ(v,u)|F1=σ(v,u)|F2, which implies σ(F1)∩σ(F2)≠?. According to Definition 3, (F1, F2) is an indistinguishable pair of faulty sets, which contradicts the assumption. The theorem follows.

    It is easy to prove that (u+v)|F1+(u+v)|F2=1 is another form of the existence of at least one test edge from V-(F1∪F2) to (F1△F2). Therefore, Theorem 1 is also proved by Lemma 1.

    Table 2 The value of (u+v)|F1+(u+v)|F2underall possible scenarios

    Case 1

    Case 2

    Case 3

    Case 4

    Case 5

    Case 6

    Case 7

    According to Theorem 1, an important distinguishable function is presented which can identify whether a pair of faulty sets is distinguishable or not.

    According to Definition 6, D(Fi, Fj)=D(Fj, Fi) is got. To avoid double-counting, i

    Lemma 4: D(F1,F2)=0 represents that (F1, F2) is distinguishable; otherwise, (F1, F2) is indistinguishable.

    According to Lemma 2 and Lemma 3, t-diagnosable and conditionally t-diagnosable are tied to distinguishability of pairs of distinct faulty sets and conditional faulty sets, respectively.

    Next, a decision function will be provided which can decide whether the system is t-diagnosable (or conditionally t-diagnosable).

    Lemma 5: J(F1,F2,…,Fm)=0 represents the fact that the system is t-diagnosable (or conditionally t-diagnosable), where F1,F2,…,Fmare all the possible faulty sets (or conditional faulty sets) with |F1|,|F2|,…,|Fm|≤t; otherwise, the system is not t-diagnosable (or conditionally t-diagnosable).

    Proof: By Definition 7, J(F1,F2,…,Fm)=0 means D(Fi, Fj)=0 for 1≤i

    The decision function J(F1,F2,…,Fm) can be used in both t-diagnosable systems and conditionally t-diagnosable systems. The only difference is whether F1,F2,…,Fmare all the possible faulty sets or all the possible conditional faulty sets.

    3 A novel conditional diagnosability algorithm under the PMC model

    The conditional diagnosability algorithm under the proposed PMC model is based on Theorem 1 and decision function J(F1,F2,…,Fm). The effectiveness of this conditional diagnosability algorithm has been confirmed by Lemma 5. Above all, all the possible conditional faulty sets of the system must be derived. Then, the decision function J(F1,F2,…,Fm) is called to identify whether the system is conditionally t-diagnosable or not and then obtain conditional diagnosability. The new algorithm can be outlined as follows:

    Step 1: Construct conditional faulty set equations.

    For each vertex u∈V, we set Γ(u)={u′∈V|(u,u′)∈E}. According to the definition of conditional diagnosability, Γ(u) has at least one fault-free neighbor that can be denoted by Γ(u)=u1u2…uq=0. The equations of all the vertices in the system compose the conditional faulty set equations.

    Step 1 can be described by the following pseudocode.

    Input:G(V,E)Output:Theconditionalfaultysetequations1 foreveryvertexu∈V(G)2 ComputeΓ(u)={u1,u2,…,uq}3 Tobuildequation∏qi=1ui=04 endfor5 Collectsallequationstoformconditionalfaultysetequa?tions6 returntoStep2

    Step 2: Convert each equation of the conditional faulty set equations into a relational table.

    For example, the equation x1x2…xq=0 means that there exists at least one vertex “0”. The relational table corresponding to x1x2…xq=0 is Table 3, which consists of 2q-1 tuples.

    Table 3 The relational table corresponds to x1x2…xq=0

    Step 2 can be described as follows:

    Input:ConditionalfaultmodelequationsOutput:RelationaltablesX1,X2,…,Xm1 foreveryequationofequations2 TransformequationintoarelationtableXi3 i=i+14 endfor5 returntoStep3

    Step 3: Derive all the possible conditional faulty sets.

    After all the conditional faulty set equations have been converted into relational tables, all the possible conditional faulty sets in this step will be derived. Let all of the relational tables be X1, X2,…, Xr.

    First of all, empty relational table X is defined. If relational tables X and X1have one or more fields in common, then the two tables are joined as a new relational table X by natural join (??), denoted by X=X??X1, otherwise, they are joined by Cartesian product (×), denoted by X=X×X1. Repeat this step from X2to Xr. The final new relational table X is the set of all the possible conditional faulty sets, denoted by X={F1, F2,…,Fm}.

    The pseudocode of this step is described as follows:

    Input:RelationaltablesX1,X2,…,XrOutput:AllthepossibleconditionalfaultysetsX1 forifrom1tor2 IFthereexistscommonfieldsbetweenXandXi3ThenX=X??Xi4ElseX=X×Xi5 endif6 endfor7 returntoStep4

    Step 4: Calculate the sum of the two adjacent vertices of each undirected test edge under different conditional faulty sets and D(Fi,Fj).

    The pseudocode of this step is given below.

    Input:AllthepossibleconditionalfaultysetsXOutput:Thesumofthetwoadjacentverticesofeachundi?rectedtestedgeunderdifferentconditionalfaultysetsandD(Fi,F(xiàn)j),1≤i

    Step 5: Call the decision function J(F1, F2,…,Fp) to determine whether the system is conditionally t-diagnosable or not and derive tc(G).

    Let all those conditional faulty sets which have less than i faulty vertices be F1, F2,…, Fp. J(F1, F2,…, Fp)=0 represents the system is conditionally t-diagnosable, with t=i. tc(G) is the maximum value of t.

    Step 5 can be described by the following pseudocode.

    Input:D(Fi,F(xiàn)j),1≤i

    Illustrated by the example of Fig.1, conditional faulty set equations can be constructed as Eq.(1) then to obtain all the relational tables as shown in Table 4. Finally, the new relational table X can be got by X=X1×X2??X3??X4??X5. The result of X is shown in Table 5.

    As shown, there are 11 conditional faulty sets, where F1has no faulty vertex, each conditional faulty set of {F2, F3,…, F6} has only one faulty vertex, and each conditional faulty set of {F7, F8,…, F11} has two faulty vertices. The maximum number of faulty vertices of all the possible conditional faulty sets is 2. That is to say, tc(G)≤2. The sums of the two adjacent vertices of each undirected test edge under different conditional faulty sets are shown in Table 6. And D(Fi, Fj)=0 for 1≤i

    Fig.1 A system consisting of 5 vertices

    (1)

    Table 4 Relational tables corresponding to Eq. (1)

    4 Conclusion

    Conditional diagnosability is a new measure of diagnosability which claims that each vertex has at least one fault free neighbor. Therefore, all the fault processors can be identified if the number of fault processors in a system is less than the conditional diagnosability and any faulty set cannot contain all neighbors of any processor . As a result a conditional diagnosability algorithm is more important, which can determine conditional diagnosability of any system. With the continuous development of large-scale integration, multiprocessor systems may have hundreds of processors, especially in supercomputer systems,high-performance parallel computing systems and grid systems, which areusually based on an underlying bus structure, or a kind of interconnection networks. However, the high complexity of these systems may threaten their reliability. Hence, an efficient conditional diagnosability algorithm has important theoretical significance and application value, which can be used to evaluate the reliability of multiprocessor systems.

    Table 5 All the conditional faulty sets in X

    Table 6 The sums of the two incident vertices

    Table 7 The results of D(Fi, Fj), for 1≤i

    In this paper, the distinguishable measure of pairs of distinct faulty sets have be investigated. By theoretical deduction, an effective decision function J(F1,F2,…,Fm) and a novel conditional diagnosability algorithm are presented successfully which can identify whether the system is conditionally t-diagnosable or not directly and obtain tc(G) conveniently under the PMC model.

    [ 1] Preparata F P, Metze G, Chien R T . On the connection assignment problem of diagnosable systems. IEEE Transactions on Electronic Computers, 2006, 16(6): 848-854

    [ 2] Sengupta A, Dahbura A T. On self-diagnosable multiprocessor systems: diagnosis by the comparison approach. IEEE Transactions on Computers, 1992,41(11):1386-1396

    [ 3] Lai P L, Tan J J, Chang C P, et al. Conditional diagnosability measures for large multiprocessor systems. IEEE Transactions on Computers,2005, 54(2):165-175

    [ 4] Dahbura A T, Masson G M. An 0(n2.5) fault identification algorithm for diagnosable systems. IEEE Transactions on Computers, 1984, C-33(6):486-492

    [ 5] Zhu Q, Guo G D, Wang D. Relating diagnosability, strong diagnosability and conditional diagnosability of strong networks. IEEE Transactions on Computers, 2014,63(7):1847-1851

    [ 6] Yang M C. Analysis of conditional diagnosability for balanced hypercubes. In: Proceedings 2012 International Conference on IEEE, of the Information Science and Technology, Wuhan, China, 2012. 651-654

    [ 7] Xu M, Thulasiraman K, Hu X D. Conditional diagnosability of matching composition networks under the PMC model. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(11): 875-879

    [ 8] Zhu Q. On conditional diagnosability and reliability of the BC networks. The Journal of Supercomputing, 2008, 45(2):173-184

    [ 9] Hsieh S Y, Tsai C Y, Chen C A. Strong diagnosability and conditional diagnosability of multiprocessor systems and folded hypercubes. IEEE Transactions on Computers, 2013, 62(7):1472-1477

    [10] Peng S L, Lin C K, Jimmy J M, et al. The g-good-neighbor conditional diagnosability of hypercube under PMC model. Applied Mathematics and Computation, 2012,218(21):10406-10412

    Guo Chen, was born in 1979. He is a Ph.D candidate of Guangxi University. He received his M.S. degree in computer science from Guanxi University in 2005. He received his B.S. degree of computer science from Beijing Business and Technology University in 2001. His research interests include artificial intelligence and interconnection network.

    10.3772/j.issn.1006-6748.2017.04.006

    ①Supported by the National Natural Science Foundation of China (No. 61562046) and Science and Technology Project of Jiangxi Provincial Education Department (No. GJJ150777, GJJ160742).

    ②To whom correspondence should be addressed. E-mail: 13977106752@163.com

    on Mar. 6, 2017**

    久久午夜福利片| 免费高清在线观看视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人免费观看视频高清| 久热这里只有精品99| 久久久久久人妻| 一级a爱视频在线免费观看| 国精品久久久久久国模美| 久久青草综合色| 免费不卡的大黄色大毛片视频在线观看| 日韩精品有码人妻一区| av免费观看日本| 国产 一区精品| 夫妻性生交免费视频一级片| 国产精品一区二区在线观看99| 不卡视频在线观看欧美| 1024香蕉在线观看| 青春草视频在线免费观看| 日韩制服丝袜自拍偷拍| 久久久久久人妻| 在线观看www视频免费| 人妻少妇偷人精品九色| 免费在线观看视频国产中文字幕亚洲 | 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 欧美人与善性xxx| 亚洲成人av在线免费| 深夜精品福利| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久男人| 成年美女黄网站色视频大全免费| 肉色欧美久久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 午夜福利在线观看免费完整高清在| 国产有黄有色有爽视频| 色网站视频免费| 国产成人精品在线电影| 大香蕉久久网| 色网站视频免费| 免费观看av网站的网址| 欧美精品一区二区大全| 美女福利国产在线| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲国产一区二区在线观看 | 老熟女久久久| 久久久久久久国产电影| 国产爽快片一区二区三区| 欧美日韩亚洲高清精品| 午夜精品国产一区二区电影| 18禁动态无遮挡网站| 在线亚洲精品国产二区图片欧美| 18禁观看日本| www.自偷自拍.com| 亚洲少妇的诱惑av| 精品视频人人做人人爽| 日韩一区二区视频免费看| 熟女av电影| 免费在线观看完整版高清| 亚洲国产精品999| 老汉色av国产亚洲站长工具| 在线精品无人区一区二区三| 美女高潮到喷水免费观看| 国产熟女欧美一区二区| 久久久久国产网址| 午夜福利在线免费观看网站| 黑丝袜美女国产一区| 久久女婷五月综合色啪小说| 免费女性裸体啪啪无遮挡网站| 天堂中文最新版在线下载| 丝袜人妻中文字幕| 中文欧美无线码| 哪个播放器可以免费观看大片| 国产麻豆69| 亚洲伊人久久精品综合| 一本色道久久久久久精品综合| 少妇的丰满在线观看| 久久久久国产一级毛片高清牌| 熟女少妇亚洲综合色aaa.| 2018国产大陆天天弄谢| www.精华液| 亚洲av电影在线观看一区二区三区| 人人澡人人妻人| av国产精品久久久久影院| 亚洲成人手机| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 人妻少妇偷人精品九色| 国产 精品1| 成年av动漫网址| 少妇精品久久久久久久| videos熟女内射| 欧美在线黄色| 精品国产一区二区三区四区第35| 日韩电影二区| 日韩在线高清观看一区二区三区| 高清视频免费观看一区二区| 国产白丝娇喘喷水9色精品| 成人亚洲精品一区在线观看| 色网站视频免费| 欧美xxⅹ黑人| 一区二区三区精品91| 欧美日韩精品成人综合77777| 亚洲av.av天堂| 午夜激情久久久久久久| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 久久97久久精品| 咕卡用的链子| 欧美精品亚洲一区二区| 妹子高潮喷水视频| 久久精品国产亚洲av天美| 午夜影院在线不卡| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看| 国产福利在线免费观看视频| 汤姆久久久久久久影院中文字幕| 日本午夜av视频| 久久久久久伊人网av| 自拍欧美九色日韩亚洲蝌蚪91| 9色porny在线观看| 国产精品 欧美亚洲| 观看美女的网站| 一本久久精品| 日韩 亚洲 欧美在线| 性色av一级| 精品99又大又爽又粗少妇毛片| 精品一区二区三卡| 亚洲,欧美精品.| 免费观看在线日韩| 91aial.com中文字幕在线观看| 国产麻豆69| 欧美精品av麻豆av| 高清欧美精品videossex| 秋霞在线观看毛片| 男人舔女人的私密视频| 久久国产精品男人的天堂亚洲| 一区二区日韩欧美中文字幕| 中文字幕人妻丝袜一区二区 | 男女无遮挡免费网站观看| 日韩精品免费视频一区二区三区| 尾随美女入室| 国产成人免费无遮挡视频| av电影中文网址| 日韩一区二区三区影片| 亚洲伊人色综图| 人妻 亚洲 视频| 久久精品人人爽人人爽视色| 亚洲精品久久久久久婷婷小说| 国产麻豆69| 男女高潮啪啪啪动态图| 少妇猛男粗大的猛烈进出视频| 欧美国产精品va在线观看不卡| 亚洲精品中文字幕在线视频| tube8黄色片| 国产精品不卡视频一区二区| 国产一区二区激情短视频 | 亚洲人成网站在线观看播放| 免费大片黄手机在线观看| 一区二区日韩欧美中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | h视频一区二区三区| 91精品三级在线观看| 人体艺术视频欧美日本| 伊人亚洲综合成人网| 一区二区av电影网| 国产激情久久老熟女| 啦啦啦中文免费视频观看日本| 2021少妇久久久久久久久久久| 欧美成人午夜精品| 亚洲av在线观看美女高潮| 成人午夜精彩视频在线观看| 大陆偷拍与自拍| 最近最新中文字幕大全免费视频 | 2021少妇久久久久久久久久久| 少妇熟女欧美另类| 精品亚洲成a人片在线观看| 亚洲精华国产精华液的使用体验| 国产精品av久久久久免费| 日韩av不卡免费在线播放| 国产精品亚洲av一区麻豆 | 成人漫画全彩无遮挡| 嫩草影院入口| 在线免费观看不下载黄p国产| 亚洲成人一二三区av| 国产野战对白在线观看| 欧美+日韩+精品| 亚洲欧美一区二区三区黑人 | 久久久久久免费高清国产稀缺| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 满18在线观看网站| 亚洲美女黄色视频免费看| 少妇的丰满在线观看| 精品少妇久久久久久888优播| 久久国内精品自在自线图片| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 亚洲欧洲国产日韩| 国产精品一区二区在线不卡| 咕卡用的链子| 婷婷色av中文字幕| 国产亚洲av片在线观看秒播厂| 免费在线观看完整版高清| 欧美在线黄色| 午夜激情av网站| 午夜福利视频精品| 亚洲av电影在线观看一区二区三区| 搡女人真爽免费视频火全软件| 这个男人来自地球电影免费观看 | 狂野欧美激情性bbbbbb| 国产av国产精品国产| 观看美女的网站| 激情五月婷婷亚洲| 美女国产视频在线观看| 91国产中文字幕| 亚洲av电影在线进入| 欧美日韩综合久久久久久| 亚洲视频免费观看视频| 亚洲欧美色中文字幕在线| 国产色婷婷99| 国产精品麻豆人妻色哟哟久久| 麻豆精品久久久久久蜜桃| 丝袜脚勾引网站| 啦啦啦视频在线资源免费观看| av天堂久久9| 最近中文字幕高清免费大全6| 日本欧美国产在线视频| 国产精品蜜桃在线观看| 国产又爽黄色视频| 捣出白浆h1v1| 亚洲av中文av极速乱| 可以免费在线观看a视频的电影网站 | 亚洲精品美女久久av网站| 最新的欧美精品一区二区| 中国三级夫妇交换| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说| 91午夜精品亚洲一区二区三区| 观看av在线不卡| 多毛熟女@视频| 国产精品嫩草影院av在线观看| 999久久久国产精品视频| 精品亚洲成国产av| 久久久久精品人妻al黑| 欧美日韩成人在线一区二区| 在线观看三级黄色| 亚洲成人手机| 欧美成人午夜精品| 青春草视频在线免费观看| 大香蕉久久网| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 国产激情久久老熟女| 好男人视频免费观看在线| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 亚洲,欧美,日韩| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 伦理电影免费视频| 老司机亚洲免费影院| 中文字幕制服av| 亚洲国产看品久久| av.在线天堂| 婷婷色综合大香蕉| 男女高潮啪啪啪动态图| 99久国产av精品国产电影| 国产乱人偷精品视频| 九草在线视频观看| 天堂中文最新版在线下载| 国产熟女欧美一区二区| 永久网站在线| 国产免费福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产高清不卡午夜福利| 看十八女毛片水多多多| 人体艺术视频欧美日本| 欧美xxⅹ黑人| av网站免费在线观看视频| 亚洲av欧美aⅴ国产| 婷婷色麻豆天堂久久| 日韩av在线免费看完整版不卡| 久久99蜜桃精品久久| 中文欧美无线码| 男女啪啪激烈高潮av片| 精品福利永久在线观看| 久久精品国产亚洲av高清一级| 国产精品 国内视频| 婷婷色综合大香蕉| 男女高潮啪啪啪动态图| 最近的中文字幕免费完整| 久久精品aⅴ一区二区三区四区 | 熟妇人妻不卡中文字幕| 男女边吃奶边做爰视频| 欧美亚洲 丝袜 人妻 在线| 五月开心婷婷网| 欧美97在线视频| 狠狠精品人妻久久久久久综合| 久久国产精品男人的天堂亚洲| 久久女婷五月综合色啪小说| 最新中文字幕久久久久| 黄色毛片三级朝国网站| 亚洲精品国产av蜜桃| 黄色配什么色好看| 国产欧美日韩综合在线一区二区| 卡戴珊不雅视频在线播放| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 久久这里只有精品19| videossex国产| 久久久久久久亚洲中文字幕| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 最近2019中文字幕mv第一页| 在线观看一区二区三区激情| 免费高清在线观看日韩| 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 国产xxxxx性猛交| 这个男人来自地球电影免费观看 | 成人漫画全彩无遮挡| 香蕉精品网在线| av有码第一页| 日本午夜av视频| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 国产极品粉嫩免费观看在线| av在线播放精品| 十八禁高潮呻吟视频| 最近最新中文字幕大全免费视频 | 免费在线观看完整版高清| 制服诱惑二区| 卡戴珊不雅视频在线播放| av在线app专区| 国产女主播在线喷水免费视频网站| 男女高潮啪啪啪动态图| 丰满饥渴人妻一区二区三| 日韩视频在线欧美| 成人亚洲欧美一区二区av| 有码 亚洲区| 韩国av在线不卡| 国产成人精品福利久久| 日日撸夜夜添| 亚洲欧美精品综合一区二区三区 | 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 精品亚洲乱码少妇综合久久| 肉色欧美久久久久久久蜜桃| 精品久久蜜臀av无| 狂野欧美激情性bbbbbb| 久久av网站| 精品国产一区二区久久| av不卡在线播放| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 91在线精品国自产拍蜜月| 在线亚洲精品国产二区图片欧美| 五月开心婷婷网| 777米奇影视久久| 韩国av在线不卡| 国产成人精品福利久久| 99久久中文字幕三级久久日本| 免费日韩欧美在线观看| 午夜福利乱码中文字幕| 69精品国产乱码久久久| videossex国产| 国产又色又爽无遮挡免| 中文欧美无线码| av卡一久久| 亚洲国产精品国产精品| 国产成人精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 久久99一区二区三区| 欧美国产精品一级二级三级| 精品少妇一区二区三区视频日本电影 | 日日撸夜夜添| 在线 av 中文字幕| 国产av一区二区精品久久| 久久99蜜桃精品久久| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 国产极品粉嫩免费观看在线| 婷婷色综合www| 国产不卡av网站在线观看| 亚洲欧美成人综合另类久久久| 亚洲四区av| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 9191精品国产免费久久| 午夜福利乱码中文字幕| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 亚洲第一av免费看| 一级,二级,三级黄色视频| 久久青草综合色| 久久久a久久爽久久v久久| 久久免费观看电影| 看免费av毛片| 日韩视频在线欧美| 香蕉国产在线看| 日韩欧美精品免费久久| 亚洲第一av免费看| 超色免费av| av国产久精品久网站免费入址| 久久精品aⅴ一区二区三区四区 | 日韩制服骚丝袜av| 亚洲四区av| 另类亚洲欧美激情| 99热国产这里只有精品6| 美国免费a级毛片| 国产又色又爽无遮挡免| 五月伊人婷婷丁香| 国产成人aa在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 日本欧美视频一区| 哪个播放器可以免费观看大片| 久久国内精品自在自线图片| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 一区二区三区激情视频| 国产有黄有色有爽视频| 制服人妻中文乱码| 高清在线视频一区二区三区| a级毛片在线看网站| 好男人视频免费观看在线| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 欧美激情高清一区二区三区 | 91久久精品国产一区二区三区| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| av视频免费观看在线观看| 99热网站在线观看| 国产精品国产三级国产专区5o| 国产高清不卡午夜福利| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 亚洲av免费高清在线观看| 成年人免费黄色播放视频| 熟女少妇亚洲综合色aaa.| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 久久久久精品性色| 人人妻人人爽人人添夜夜欢视频| 啦啦啦在线观看免费高清www| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 久久久久精品久久久久真实原创| 亚洲三区欧美一区| 欧美激情高清一区二区三区 | 黄片播放在线免费| 国产淫语在线视频| 亚洲综合色惰| 欧美亚洲日本最大视频资源| 男女免费视频国产| av天堂久久9| 伊人久久大香线蕉亚洲五| 成人毛片a级毛片在线播放| 国产av国产精品国产| 久久久欧美国产精品| 亚洲成国产人片在线观看| 婷婷色av中文字幕| 日韩一本色道免费dvd| 日韩免费高清中文字幕av| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 一区二区av电影网| 青春草国产在线视频| 久久免费观看电影| 国语对白做爰xxxⅹ性视频网站| 亚洲精华国产精华液的使用体验| 大码成人一级视频| 晚上一个人看的免费电影| 国产精品成人在线| 国产精品久久久久成人av| 成年人免费黄色播放视频| 国产片内射在线| 日韩电影二区| 色吧在线观看| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 九色亚洲精品在线播放| 美女脱内裤让男人舔精品视频| 国产成人av激情在线播放| 一区福利在线观看| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄片播放在线免费| 精品一区二区三卡| 精品午夜福利在线看| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 我要看黄色一级片免费的| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| www.精华液| 成年女人在线观看亚洲视频| 一级片'在线观看视频| 亚洲欧美色中文字幕在线| 日韩一卡2卡3卡4卡2021年| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 三级国产精品片| 老鸭窝网址在线观看| 国产成人aa在线观看| 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av高清一级| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频 | 99九九在线精品视频| 亚洲成人av在线免费| 亚洲欧美清纯卡通| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 久久久国产精品麻豆| 99久久综合免费| 久久久久久久久久久免费av| 美女福利国产在线| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 久久久国产精品麻豆| 色播在线永久视频| 亚洲成色77777| 日日摸夜夜添夜夜爱| 老汉色av国产亚洲站长工具| 天美传媒精品一区二区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 18+在线观看网站| 亚洲欧洲日产国产| 另类亚洲欧美激情| 搡老乐熟女国产| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| 亚洲国产精品999| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 成人漫画全彩无遮挡| 亚洲成av片中文字幕在线观看 | 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 高清黄色对白视频在线免费看| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 午夜激情av网站| 日韩人妻精品一区2区三区| 亚洲欧美一区二区三区国产| 免费高清在线观看视频在线观看| 久久精品久久久久久久性| 久久99蜜桃精品久久| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 超碰97精品在线观看| 日本av免费视频播放| 久久久久久免费高清国产稀缺| 成人手机av| 天堂俺去俺来也www色官网| 国产 一区精品| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 国产精品成人在线| 在线观看www视频免费| 欧美日韩精品成人综合77777| 熟妇人妻不卡中文字幕| 国产精品秋霞免费鲁丝片| 丁香六月天网| 国产男人的电影天堂91| 日韩欧美一区视频在线观看| 久久久久人妻精品一区果冻| a级片在线免费高清观看视频| 黑人欧美特级aaaaaa片| 亚洲中文av在线| 国产免费一区二区三区四区乱码| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美软件| 欧美精品一区二区大全| 韩国av在线不卡| 波多野结衣一区麻豆| 狠狠精品人妻久久久久久综合| av免费在线看不卡| 美女中出高潮动态图| 欧美另类一区| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 一区二区三区精品91| 丝袜在线中文字幕| freevideosex欧美| 韩国av在线不卡| 一区在线观看完整版|