• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent

    2017-12-18 03:36:56LIGuoMinZHUBaoShunLIANGLiPingTIANYuMingBaoLiangWANGLianCheng
    物理化學學報 2017年8期
    關鍵詞:極化效應核殼輕質

    LI Guo-Min ZHU Bao-Shun LIANG Li-Ping TIAN Yu-Ming,* Lü Bao-Liang WANG Lian-Cheng,*

    ?

    Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent

    LI Guo-Min1ZHU Bao-Shun1LIANG Li-Ping1TIAN Yu-Ming1,*Lü Bao-Liang2WANG Lian-Cheng2,*

    (1;2)

    To reduce the density of the absorbent Co3Fe7, a core-shell Co3Fe7@C microwave absorbent was synthesized by preparing an iron/cobalt-containing carbon precursor followed by high-temperature carbonization. According to the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results, Co3Fe7particles were coated with graphitized carbon layers to form a core–shell structure. Furthermore, the Co3Fe7@C composite with a surface area and density of 358.5 m2·g?1and 2.25 g·cm?3, respectively, exhibited excellent microwave absorbability. A minimum reflection loss (RL) of ?43.5 dB and an effective bandwidth (RL below ?10 dB) of 4.1 GHz were obtained at the coating thickness of 2 mm, which could be mainly attributed to the effective impedance match and multiple interfacial polarizations. Owing to the low density and remarkable microwave absorption, we believe that the Co3Fe7@C composite can be a promising candidate for use as a lightweight and efficient microwave absorbent.

    Core-shell structure; Composite; Lightweight; Microwave absorption

    1 Introduction

    In recent years, much effort has been focused on microwave absorption materials (MAMs) not only for the sake of solving serious electromagnetic pollution arising from the daily communication and entertainmentbut also for the stealth of military equipment1,2. In general, MAMs can be categorized into dielectric loss and magnetic loss absorbents. Properties including thin thinness, low density, strong absorption and wide bandwidth are generally expected in MAMs3,4. While the traditional MAMs, such as magnetic absorbents composed of Fe, Co, Ni element and dielectric absorbents represented by TiO2, MnO2, BaTiO3are facing challenges because of their single loss mechanism. Meanwhile, the high specific gravity and low specific surface area restrict their practical applications. To solve the problem,great efforts have been focused on the magnetic-dielectric coupled MAMs5?7.

    As is well known, carbon materials including carbon black, graphene, carbon fibers, carbon nanotubes and carbon nanocoil have shown potential as novel carrier materials due to their low cost, large surface area and low density8,9.In addition, the carbon materials are typical dielectric absorbents, which attractwidespread attention. As a result, it is wise to incorporate carbon materials with magnetic constituents by different methods. And the synergetic effect between magnetic materials and carbon materials for the enhancement in microwave absorption has also been proved10,11. Liu.12have prepared the (Fe, Ni)/C nanocapsules, and the core-shell structure was proved to enhance the microwave absorption. The Fe3O4/graphene and Ni/graphene composites were synthesized by employing atomic layer deposition strategy and the as-prepared composites showed significantly improved microwave absorbility compared to the pristine graphene13. More recently, Li.14fabricated the CoFe2O4/GO and FeCo/G hybridsa facile one-pot polyol route combined withreduction, results showed that FeCo/G exhibited improved microwave absorption than CoFe2O4/GO for the effective impedance matching between graphene and magnetic particles.

    In view of the above-mentioned facts, we report the synthesis of core-shell Co3Fe7@C composite as efficient and lightweight absorbent. The Co3Fe7@C composite possesses high surface area of 358.5 m2·g?1, with alloy particles entirely coated in carbon matrix. The microwave absorption properties of as-prepared samples were studied based on the complex permittivity and permeability. The results show that the composite exhibits excellent microwave absorption, benefiting from the effective impedance match and multiple interfacial polarizations.

    2 Experimental

    2.1 Material preparation

    All the reagents were A.R. grade and were used in preparation without further purification. In a typical synthesis, Pluronic F127 (EO106PO70EO106,w= 12600, Sigma), 1,3,5-trimethylbenzene (TMB), hexamethylenetetramine (HMT), and resorcin were in turn dissolved in 18 mL distilled water under vigorous stirring at room temperature. After the formation of a homogenous solution with the molar ratio of F127, TMB, HMT and resorcin = 1 : 21 : 31.5 : 63, 0.2 mol·L?1Fe(NO3)3·9H2O and 0.1 mol·L?1Co(NO3)2·6H2O (other reagents were purchased from Sinopharm Chemical Reagent Co., Ltd.) were slowly added with the solution turning into bluish violet. It was then transferred into a Teflon-lined stainless autoclave, heated at 100 °C for 12 h. Afterwards, the resulting chocolate brown product was collected by filtration, washed with water several times and dried at 70 °C. Finally, the as-made sample was thermally treated at 900 °C for 3 h, at a heating rate of 1 °C·min?1in Ar atmosphere and then was ground in an agate mortar.

    2.2 Material characterization

    To reveal the crystallization structures of the products, X-ray diffraction (XRD) measurement was carried out with a D8 Advance Bruker AXS diffractometer with Cu-Kradiation (= 0.15406 nm), in scan steps of 0.02° in a 2range of 10°?90°. The microscopic morphology of the samples was observed on transmission electron microscope (TEM, JEOL JEM-1011). The N2adsorption-desorption analysis was measured on a Micromeritics ASAP 2010 instrument. Raman spectra were recorded on a Horiba LabRAM HR800 spectrometer with an Ar+laser. The thermal stability of the composites was tested in a thermogravimetric differential analyser (METTLER TOLEDO 3+) under air atmosphere at a heating rate of 10 °C·min?1. The magnetic properties were measured on a vibrating sample magnetometer (VSM Lakeshore Model 7400) at room temperature.

    2.3 Electromagnetic parameter measurement

    The specimen for microwave absorption measurement were prepared by uniformly mixing the as-prepared composites in a paraffin matrix which is used as the binder and pressing the mixture into a cylindrical shaped compact (outer= 7.00 mm andinner= 3.04 mm). The relative complex permittivity and permeability values of the specimen with 15%() of the composite were measured in 2?18 GHz with a vector network analyzer (Agilent N5230). Based on the measured electromagnetic parameters, the RL coefficient of the electromagnetic wave (normal incidence) at the surface of a single-layer absorbent backed by a perfect conductor at certain frequency and layer thickness can be calculated according to transmission line theory.

    3 Results and discussion

    3.1 Phase, structure and morphology characterization

    As previously illustrated15, the content of metal ions plays an important role in the composition and microstructure of the composites during the synthesis procedures. Therefore, in this work the relative high concentration of multicomponent metal ion (Fe3+, Co2+) was adjusted to prevent the F127 forming integrated micelles in the solution. Accordingly, the F127 serve mainly as the carbon source as well as reducing agent in the carbonization process, during which the carbon atoms adsorbed onto and then moved along the Co3Fe7particles, leading to the formation of carbon-coated alloy particles on the basis of dissolution-precipitation mechanism16.

    Fig.1 shows the X-ray diffraction (XRD) patterns of the Co3Fe7@C composite. As can be seen, there are three main diffraction peaks at 44.67°, 65.02°, and 82.33°, which can be indexed as the crystalline planes of (110), (200) and (211), indicating the presence of Co3Fe7(JCPDS No. 48-1816). It should be mentioned that, based on the stoichiometric ratio, there should be Co in the XRD patterns of the composite, the absence of Co may be due to the amount of Co is too low to be detected. The same phenomenon was also reported in Co3Fe7/C microspheres17. Besides, a slight diffraction peak at 2≈ 26.5° is also observed, which corresponds to (002) plane of graphite.18This can be further confirmed by Raman spectroscopy. As shown in Fig.2, the spectra were collected within the range between 500 and 2000 cm?1, in which two characteristic bands appeared. That is the so-calledpeak at around 1350 cm-1and G peak at about 1590 cm?1, which represent the disordered carbon structure and graphite carbon, respectively. It is obvious that the high temperature and the existence of Co3Fe7particles promote the graphitization degree of Co3Fe7@C composite during the carbonization process. Additionally, the TG curve of the Co3Fe7@C composite is shown in Fig.S1 (in Supporting Information), from which the weight content of Co3Fe7is about 35% ().

    To explore the detailed microscopic structure and morphology of Co3Fe7@C, TEM is used to provide more detailed information, and the representative images are shown in Fig.3. As shown in Fig.3(a), the sample is mainly composed of well-dispersed ellipsoidal or spherical particles with size ranging from 20 to 200 nm. And the alloy particles are totally encapsulated in carbon matrix. In addition, the TEM image of typically isolated particles is shown in Fig.3(b), it is found that there exists a carbon shell of ~10 nm coated on the Co3Fe7particle, forming the core-shell structure. Meanwhile, the Co3Fe7@C composite exhibits high surface area of 358.5 m2·g?1, large pore volume of 0.5 m3·g?1and low apparent density of 2.25 g·cm?3, which implies that core-shell Co3Fe7@C composite is lightweight material.

    3.2 Magnetic properties and microwave absorption analysis

    The magnetic hysteresis loop of the Co3Fe7@C composite at room temperature is shown in Fig.S2 (see Supporting Information). As shown in Fig.S2, the values ofsandr are 32.0 and 3.3 emu·g?1, respectively, demonstrating that the Co3Fe7@C is ferromagnetic. To reveal the microwave absorption of Co3Fe7@C, the theoretical RL was calculated through its measured complex permittivity (r=′ ? j″) and complex permeability (r=′ ? j″) at various coating thicknesses and frequencies, based on the following equations3,19:

    in= (r/r)1/2tanh[j(2π/)(rr)1/2] (1)

    RL(dB) = 20log|(in?0)/(in+0)|(2)

    whereinis the input impedance of the absorbent,is the frequency of microwave,is the velocity of light, andis the thickness of the absorbent. It is known that the coating thickness is one of the crucial parameters which affect RL intensity and the frequency position of minimum absorption dip20.Consequently, we calculated the RL at representative thicknesses of 1, 1.5, 2, 2.5, and 3 mm. Fig.4(a) shows the RL curves for the Co3Fe7@C composite. As can be seen, it is interesting to find that microwave frequency of the absorption dips shifts negatively with the increase of coating thickness. It can deduce that the coating thickness and the corresponding frequency of an absorption dips obey theequation=/2π″21, where″ is the imaginary part of complex permeability. That is, the microwave absorbing ability can be adjusted directly by changing the coating thickness of the absorbents for application in different frequency bands. Fig.4(b) shows the RL curves of pristine carbon material prepared by the same experimental process without adding iron nitrate and cobalt nitrate. The microwave absorption of pristine carbon mainly stems from dielectric loss, with a minimum RL value of ?9.1 dB. The RL properties of Co3Fe7@C composite are enhanced substantially in comparison with pristine carbon.

    Fig.1 X-ray diffraction patterns of core-shell Co3Fe7@C composite.

    Fig.2 Normal Raman spectra of core-shell Co3Fe7@C composite.

    Fig.3 TEM images of core-shell Co3Fe7@C composite.

    Moreover, the minimum RL of Co3Fe7@C composite is ?43.5 dB at 12.9 GHz with thickness of 2 mm. Generally, ?10 dB means 90% microwave absorption, which is the minimum requirement for absorbent in practical application. Besides, the effective bandwidth corresponding to the RL < ?10 dB can reach 4.1 GHz when the matching thickness is 2 mm for Co3Fe7@C composite. Compared with other composite absorbents11,22?27, the Co3Fe7@C exhibits lower filling content and thinner matching thickness with relatively wider effective bandwidth, as shown in Table 1. This further demonstrates thatthe core-shell Co3Fe7@C composite is lightweight and high-efficiency microwave absorbent.

    Fig.4 Microwave RL curves of (a) core-shell Co3Fe7@C composite and (b) pristine carbon.

    Table 1 Microwave absorption of some reported absorbents.

    3.3 Electromagnetic characteristics

    To disclose the intrinsic mechanism of microwave absorption of the Co3Fe7@C composite, the complex permittivity and complex permeability must be taken into consideration firstly. The complex permittivity spectra of the Co3Fe7@C composite is shown in Fig.5(a), from which it can be seen that the values ofand″ trend to decrease with increasing frequency and keep the coincident tendency in the whole frequency range (2?18 GHz). This shows frequency dependence and is the typical frequency dispersion behaviour28?30, leading to the enhancement of microwave absorption. Fig.5(b) shows′ and′′ of the Co3Fe7@C composite. As can be seen, the′ value keeps steady in the frequency of 2?10 GHz, followed by a fluctuation during high frequency region, varing in the range of 1.03?0.84. While the corresponding″ value increases slowly at low frequency region and then decreases, and there is a tiny resonance peak around 14 GHz which may be due to the exchange resonance according to Aharoni’s theory31,32, proven in ferromagnetic nanoparticles. Furthermore, the exist of eddy current loss can be decided by″ ≈ 2π0(′)22/3, where0is the permeability in vacuum,is electric conductivity andis the diameter of the nanoparticle. It is generally agreed that if the magnetic loss only originates from the eddy current loss, equation″(′)?2?1= 2π02/3 should be constant33. The plot of″(′)?2?1was shown in Fig.6. It is obvious that the value of″(′)?2?1exhibits evident fluctuations, implying that the eddy current loss is not the main contribution to the magnetic loss for Co3Fe7@C.

    For the other hand, the Co3Fe7particles are coated by graphitized carbon layer and encapsulated in carbon matrix for Co3Fe7@C composite (see Fig.3). As a result, there exists effective interface between the magnetic particles and the carbon matrix, with the charge transfer between carbon and Co3Fe7particles. Plot of″ for Co3Fe7@C composite is shown in Fig.S3 (in Supporting Information), from which two Cole-Cole semicircles as well as a linear curve are found. This may suggest that there exist dual relaxation processes and interface polarization effect in Co3Fe7@C composite32.

    Fig.6 Values of μ″(μ′)?2f?1 of core-shell Co3Fe7@C composite versus frequency.

    Fig.7 Frequency dependence of the loss tangent of core-shell Co3Fe7@C composite.

    Lastly, there are other contributions for microwave absorption. That is dielectric loss (tane=″/′), magnetic loss (tanm=″/′) and matched characteristic impedance. Fig.7 shows the frequency dependence of the loss tangent for Co3Fe7@C composite. It can be clearly seen that the curves of dielectric and magnetic loss tangent coexist symmetrically and there are intersection points at specific frequencies. Therefore, in our case, the microwave absorption is ascribed to dielectric loss, magnetic loss and their better match. Also,it can be expected that the large surface area of Co3Fe7@C may offer additional pathway for the transmission of electromagnetic waves, benefiting to multiple reflections and enhancement of microwave absorption34,35.

    4 Conclusions

    The core-shell Co3Fe7@C absorbent was successfully obtained by polymerization of Fe3+-Co2+-containing carbon precursor and following high-temperature treatment. The composite possessed high specific surface area and exhibited outstanding microwave absorption, which resulted from multiple interfacial polarizations as well as the better match between magnetic and dielectric loss. This study showed that the Co3Fe7@C composite was promising lightweight and efficient microwave absorbent.

    Supporting Information:available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M.2012,, 1214. doi: 10.1002/smll.201102245

    (2) Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W.. 2011,, 1587. doi: 10.1021/cm103441u

    (3) Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L.. 2004,, 401. doi:10.1002/adma.200306460

    (4) Zhang, S. L.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Wu, Q.2014,, 18033. doi: 10.1039/C4TA04286G

    (5) Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K.2010,, 927. doi: 10.1021/am900893d

    (6) Pan, G. H.; Zhu, J.; Ma, S. L.; Sun, G. B.; Yang, X. J.2013,, 12716. doi: 10.1021/am404117v

    (7) Chen, Y. H.; Huang, Z. H.; Lu, M. M.; Cao, W. Q.; Yuan, J.; Zhang, D. Q.; Cao, M. S.2015,, 12621. doi:10.1039/C5TA02782A

    (8) Bai, X.; Zhai Y. H.; Zhang. Y.2011,, 11673. doi: 10.1021/jp202475m

    (9) Li, G. M.; Wang, L. C.; Li, W. X.; Ding, R. M.; Xu, Y.. 2014,, 12390. doi:10.1039/C4CP00647J

    (10) Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Shen, B. Z.; Jiang, Z. H. J2013,, 5446. doi: 10.1021/jp4000544

    (11) Wen, F. S.; Hou, H.; Xiang, J. Y.; Zhang, X. Y.; Su, Z. B.; Yuan, S. J.; Liu, Z. Y.2015,, 372. doi: 10.1016/j.carbon.2015.03.057

    (12) Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D.2009,, 470. doi: 10.1016/j.carbon.2008.10.028

    (13) Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y.. 2014,, 704. doi: 10.1007/s12274-014-0432-0

    (14) Li, X. H.; Feng, J.; Du, Y. P.; Bai, J. T.; Fan, H. M.; Zhang, H. L.; Peng, Y.; Li, F. S.2015,, 5535. doi: 10.1039/C4TA05718J

    (15) Li, G. M.; Wang, L. C.; Li, W. X.; Xu, Y.. 2015,, 197. doi: 10.1016/j.micromeso.2015.02.054

    (16) Wang, S. L.; Huang, X. L.; He, Y. H.; Huang, H.; Wu, Y. Q.; Hou, L. Z.; Liu, X. L.; Yang, T. M.; Zou, J.; Huang, H. Y.2012,, 2119. doi: 10.1016/j.carbon.2011.12.063

    (17) Li, W. X.; Wang, L. C.; Li, G. M.; Xu, Y.. 2015,, 431. doi: 10.1016/j.matchemphys.2015.07.062

    (18) Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Luo, S. L.; He, Z.; Chen, J. H.. 2012,, 1399. doi: 10.1002/adma.201290061

    (19) Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y.2012,, 11009. doi: 10.1021/nn304630h

    (20) Gu, X.; Zhu, W. M.; Jia, C. J.; Zhao, R.; Schmidt, W. G.; Wang, Y. Q.. 2011,, 5337. doi:10.1039/C0CC05800A

    (21) Kim, S. S.; Han, D. H.; Cho, S. B.. 1994,, 4554. doi: 10.1109/20.334146

    (22) Wang, L.; He, F.; Wan, Y. Z.. 2011,, 4726. doi: 10.1016/j.jallcom.2011.01.119

    (23) Li, N.; Hu, C. W.; Cao, M. H.. 2013,, 7685. doi:10.1039/C3CP50778E

    (24) Chen, Y.; Liu, X. Y.; Mao, X. Y.; Xie, Q. X.; Zhuang, Z.; Han, Z. W.2014,, 6440. doi: 10.1039/c4nr00353e

    (25) Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W.2015,, 4744. doi: 10.1021/am508438s

    (26) Li, W. X.; Wang, L. C.; Li, G. M.; Xu, Y.. 2015,, 259. doi: 10.1016/j.jmmm.2014.10.118

    (27) Wan, Y. Z.; Xiao, J.; Li, C. Z.; Xiong, G. Y.; Guo, R. S.; Li, L. L.; Han, M.; Luo, H. L.. 2016,, 252. doi: 10.1016/j.jmmm.2015.10.006

    (28) Tang, N. J.; Zhong, W.; Au, C. T.; Yang, Y.; Han, M. G.; Lin, K. L.; Du, Y. W.2008,, 19316. doi:10.1021/jp808087n

    (29) Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J.2010,, 788. doi: 10.1016/j.carbon.2009.10.028

    (30) Du, Y. C.; Liu, T.; Yu, B.; Gao, H. B.; Xu, P.; Wang, J. Y.; Wang, X. H.; Han, X.. 2012,, 884. doi: 10.1016/j.matchemphys.2012.05.074

    (31) Wang, L.; Huang, Y.; Li, C.; Chen, J.; Sun, X.. 2015,, 2228. doi: 10.1039/c4cp04745a

    (32) Cole, K. S.; Cole, R. H.. 1941,, 341. doi: 10.1063/1.1750906

    (33) Frenkel, J.; Dorfman, J.1930,, 274. doi: 10.1038/126274a0

    (34) Watts, P. C. P.; Hsu, W. K.; Barnes, A.; Chambers, B.. 2003,, 600. doi: 10.1002/adma.200304485

    (35) Qing, Y. C.; Zhou, W. C.; Luo, F.; Zhu, D. M.2010,, 4074. doi: 10.1016/j.carbon.2010.07.014

    基于核殼結構Co3Fe7@C的高效微波吸收材料

    力國民1朱保順1梁麗萍1田玉明1,*呂寶亮2王連成2,*

    (1太原科技大學材料科學與工程學院,太原 030024;2中國科學院山西煤炭化學研究所,炭材料重點實驗室,太原 030001)

    為了降低吸波劑Co3Fe7的密度,本文采用原位聚合Fe3+-Co2+/碳前驅體及高溫碳化制備得到Co3Fe7@C復合微波吸收材料。X射線衍射(XRD)和掃描電子顯微鏡(SEM)測試結果表明Co3Fe7顆粒被石墨碳層包覆形成核殼結構,復合物的比表面積和表觀密度分別為358.5 m2·g?1、2.25 g·cm?3。核殼結構Co3Fe7@C復合物顯示出優(yōu)異的微波吸收性能,當涂層厚度為2 mm時,其最低反射損耗(RL)達到最低值?43.5 dB,對應的有效帶寬為4.1 GHz,歸因于復合物有效的阻抗匹配特性及多重界面極化效應。由于低密度及優(yōu)異的微波吸收性能,Co3Fe7@C復合物有望作為一種潛在的輕質、高效微波吸收材料。

    核殼結構;復合物;輕質;微波吸收

    O64;TQ050.4+3

    10.3866/PKU.WHXB201704174

    December 6, 2016;

    April 3, 2017;

    April 17, 2017.

    Corresponding authors.TIAN Yu-Ming, Email: tym1654@126.com; Tel: +86-0351-2161130. WANG Lian-Cheng, Email: wanglc@sxicc.ac.cn; Tel: +86-351- 4063121.

    The project was supported by the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology, China (20152030).

    太原科技大學博士科研啟動基金(20152030)資助項目

    猜你喜歡
    極化效應核殼輕質
    基于時域有限差分法的電性源感應極化效應三維數(shù)值模擬
    怎一個“輕質”了得
    輕質高強堇青石多孔陶瓷的制備與表征
    陶瓷學報(2021年4期)2021-10-14 08:57:40
    關于重芳烴輕質化與分離的若干思考
    科學家(2021年24期)2021-04-25 16:55:45
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應用
    金融集聚研究簡述
    智富時代(2016年12期)2016-12-01 13:00:19
    鄭州機場極化效應研究
    商(2016年22期)2016-07-08 22:03:51
    雙摻雜核殼結構ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    輕質材料彈射模型飛機
    久久久久久久久大av| 国产精品人妻久久久久久| aaaaa片日本免费| 狂野欧美白嫩少妇大欣赏| 51国产日韩欧美| 别揉我奶头~嗯~啊~动态视频| 日本免费a在线| 亚洲七黄色美女视频| 波多野结衣高清作品| 亚洲av成人av| 亚洲自偷自拍三级| 欧美一区二区国产精品久久精品| 亚洲av成人av| 99九九线精品视频在线观看视频| 成年女人永久免费观看视频| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区三区四区久久| 久久久久久久久久黄片| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 国产男人的电影天堂91| 午夜福利欧美成人| 日本 av在线| 久久精品国产亚洲av香蕉五月| www.色视频.com| 婷婷六月久久综合丁香| 日韩欧美一区二区三区在线观看| 99热网站在线观看| 日本精品一区二区三区蜜桃| 精品乱码久久久久久99久播| 午夜福利欧美成人| 色吧在线观看| 麻豆国产97在线/欧美| 亚洲精品色激情综合| 欧美黑人欧美精品刺激| 亚洲综合色惰| 精品一区二区免费观看| 男女做爰动态图高潮gif福利片| 久久精品国产自在天天线| 一进一出好大好爽视频| 久久婷婷人人爽人人干人人爱| 91麻豆精品激情在线观看国产| 亚洲18禁久久av| 亚洲内射少妇av| 欧美性感艳星| 俄罗斯特黄特色一大片| 国产国拍精品亚洲av在线观看| 久久中文看片网| 国产av不卡久久| 少妇的逼好多水| 国产av不卡久久| 国产精品爽爽va在线观看网站| 听说在线观看完整版免费高清| 日本a在线网址| 午夜福利在线观看吧| 成年人黄色毛片网站| 国产麻豆成人av免费视频| 99久国产av精品| 精品久久久久久成人av| 成人美女网站在线观看视频| 免费在线观看日本一区| 中文字幕av在线有码专区| 亚洲欧美日韩东京热| av福利片在线观看| 国产免费一级a男人的天堂| 国产爱豆传媒在线观看| 国产精品无大码| 国产伦精品一区二区三区视频9| 国产精品一区二区三区四区久久| 深爱激情五月婷婷| 91在线精品国自产拍蜜月| 久久天躁狠狠躁夜夜2o2o| 久久久国产成人免费| 女人被狂操c到高潮| 国产精品一区二区免费欧美| 免费观看精品视频网站| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 在线观看免费视频日本深夜| 一进一出抽搐gif免费好疼| 色在线成人网| 国产精品免费一区二区三区在线| 色哟哟·www| 91在线精品国自产拍蜜月| 国产精品久久视频播放| 精品一区二区三区视频在线| 国产精品一区www在线观看 | 国产老妇女一区| 免费在线观看影片大全网站| 国产午夜精品久久久久久一区二区三区 | 国产伦精品一区二区三区视频9| 五月玫瑰六月丁香| 舔av片在线| 欧美日韩乱码在线| 亚洲精品影视一区二区三区av| 国产精品一区www在线观看 | 国产男靠女视频免费网站| 男女下面进入的视频免费午夜| 日本与韩国留学比较| 精品一区二区三区视频在线观看免费| 中国美白少妇内射xxxbb| 亚洲欧美日韩东京热| 成年女人看的毛片在线观看| 欧美日本亚洲视频在线播放| 久久亚洲精品不卡| 色综合亚洲欧美另类图片| 国产亚洲91精品色在线| av在线天堂中文字幕| 天天躁日日操中文字幕| 别揉我奶头~嗯~啊~动态视频| 特大巨黑吊av在线直播| 久久久久精品国产欧美久久久| 午夜视频国产福利| 韩国av一区二区三区四区| 黄色日韩在线| 麻豆久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 18禁黄网站禁片免费观看直播| 99热网站在线观看| or卡值多少钱| 亚洲精品久久国产高清桃花| 熟女人妻精品中文字幕| 久久草成人影院| 观看免费一级毛片| 亚洲中文日韩欧美视频| 网址你懂的国产日韩在线| 在线观看av片永久免费下载| 亚洲乱码一区二区免费版| 草草在线视频免费看| 成年女人永久免费观看视频| 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线| 欧美3d第一页| 校园春色视频在线观看| 最近最新中文字幕大全电影3| 国产亚洲精品综合一区在线观看| 99久久九九国产精品国产免费| 永久网站在线| 最好的美女福利视频网| 草草在线视频免费看| 舔av片在线| 日本一二三区视频观看| 精品午夜福利视频在线观看一区| 观看免费一级毛片| 亚洲,欧美,日韩| 亚洲中文字幕一区二区三区有码在线看| av天堂在线播放| 99热只有精品国产| 露出奶头的视频| 69av精品久久久久久| 欧美xxxx性猛交bbbb| 亚洲不卡免费看| 99精品在免费线老司机午夜| 欧美高清成人免费视频www| 黄色配什么色好看| 身体一侧抽搐| av国产免费在线观看| 亚洲av美国av| 日韩欧美免费精品| 久久久久国内视频| 久久久久性生活片| 亚洲在线自拍视频| 内射极品少妇av片p| 国产精品98久久久久久宅男小说| 久久热精品热| 国产私拍福利视频在线观看| 天堂√8在线中文| 天美传媒精品一区二区| 午夜精品久久久久久毛片777| 日本在线视频免费播放| 搡老熟女国产l中国老女人| 小说图片视频综合网站| 3wmmmm亚洲av在线观看| 欧美一区二区国产精品久久精品| 国产成人影院久久av| 九九爱精品视频在线观看| 国产亚洲精品综合一区在线观看| 欧美三级亚洲精品| 欧美日本亚洲视频在线播放| 琪琪午夜伦伦电影理论片6080| 免费观看人在逋| 日本欧美国产在线视频| 亚洲精品456在线播放app | 日韩精品有码人妻一区| 国产成人福利小说| 制服丝袜大香蕉在线| 99精品久久久久人妻精品| 亚洲在线自拍视频| 亚洲电影在线观看av| 久久这里只有精品中国| 免费看美女性在线毛片视频| 日本欧美国产在线视频| 黄色丝袜av网址大全| 亚洲最大成人中文| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 欧美成人一区二区免费高清观看| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 老熟妇乱子伦视频在线观看| 搡老岳熟女国产| 99九九线精品视频在线观看视频| 禁无遮挡网站| 日本在线视频免费播放| 可以在线观看毛片的网站| 亚洲中文字幕日韩| 男女下面进入的视频免费午夜| 嫩草影院新地址| 久99久视频精品免费| 又黄又爽又刺激的免费视频.| 欧美激情久久久久久爽电影| 精品久久久久久,| 日韩人妻高清精品专区| 少妇丰满av| 精品久久国产蜜桃| 国产日本99.免费观看| 国产欧美日韩精品一区二区| 12—13女人毛片做爰片一| 一a级毛片在线观看| 免费观看人在逋| 亚洲一区高清亚洲精品| 国产午夜精品论理片| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 国产精品野战在线观看| 午夜免费成人在线视频| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 久久精品国产亚洲av涩爱 | 乱码一卡2卡4卡精品| 国产午夜福利久久久久久| 少妇的逼好多水| 51国产日韩欧美| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 亚洲18禁久久av| 精品午夜福利视频在线观看一区| av天堂在线播放| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | 97热精品久久久久久| 在线国产一区二区在线| 天堂动漫精品| 国产 一区 欧美 日韩| 国产真实伦视频高清在线观看 | 亚洲精品在线观看二区| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 国产成人福利小说| 精品久久久久久久久久免费视频| 久久久久久伊人网av| 两人在一起打扑克的视频| 亚洲一区二区三区色噜噜| 亚洲国产精品成人综合色| a级一级毛片免费在线观看| 国产精品,欧美在线| 成人鲁丝片一二三区免费| 亚洲中文字幕一区二区三区有码在线看| 女人十人毛片免费观看3o分钟| 在线国产一区二区在线| 精品久久国产蜜桃| 免费在线观看日本一区| 深夜精品福利| 国产色爽女视频免费观看| 欧美bdsm另类| 啦啦啦啦在线视频资源| 精品人妻1区二区| 欧美色视频一区免费| 免费无遮挡裸体视频| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 免费电影在线观看免费观看| 亚洲不卡免费看| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在 | 精品久久久久久,| 可以在线观看的亚洲视频| 全区人妻精品视频| 日本爱情动作片www.在线观看 | 亚洲av中文av极速乱 | 人人妻人人澡欧美一区二区| 国产人妻一区二区三区在| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| 国模一区二区三区四区视频| 亚洲色图av天堂| 99九九线精品视频在线观看视频| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 深夜精品福利| 久久久精品大字幕| 午夜福利在线在线| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩高清专用| 美女cb高潮喷水在线观看| 日韩国内少妇激情av| 亚洲自偷自拍三级| 1024手机看黄色片| 亚洲国产日韩欧美精品在线观看| 日韩欧美三级三区| 国产v大片淫在线免费观看| 国产精品亚洲一级av第二区| 淫秽高清视频在线观看| 欧美国产日韩亚洲一区| 国内久久婷婷六月综合欲色啪| 尤物成人国产欧美一区二区三区| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 一本久久中文字幕| 日韩欧美在线乱码| 午夜福利18| 69人妻影院| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉精品热| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 色av中文字幕| 日本黄大片高清| 精品免费久久久久久久清纯| 日本三级黄在线观看| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 日日夜夜操网爽| 免费看a级黄色片| 嫁个100分男人电影在线观看| a级一级毛片免费在线观看| 久久这里只有精品中国| 热99re8久久精品国产| 在线a可以看的网站| 18禁在线播放成人免费| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 国产亚洲av嫩草精品影院| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 不卡一级毛片| a在线观看视频网站| 国产精品亚洲一级av第二区| 毛片一级片免费看久久久久 | 久久精品人妻少妇| 一级黄片播放器| 久久欧美精品欧美久久欧美| 国产在视频线在精品| 久久精品国产亚洲av香蕉五月| 免费黄网站久久成人精品| 亚洲真实伦在线观看| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类 | 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 如何舔出高潮| 99久久精品热视频| xxxwww97欧美| 欧美最黄视频在线播放免费| 少妇裸体淫交视频免费看高清| 性色avwww在线观看| 麻豆一二三区av精品| 国产一级毛片七仙女欲春2| 国产精品自产拍在线观看55亚洲| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 国产真实伦视频高清在线观看 | 中文字幕久久专区| 午夜福利在线在线| 久久九九热精品免费| 国产免费男女视频| 99在线人妻在线中文字幕| 日本三级黄在线观看| 午夜福利在线在线| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 亚洲精品成人久久久久久| 一本久久中文字幕| 少妇熟女aⅴ在线视频| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 99精品久久久久人妻精品| 一区二区三区激情视频| 99国产精品一区二区蜜桃av| 18+在线观看网站| 香蕉av资源在线| 极品教师在线视频| 男人舔奶头视频| 男人和女人高潮做爰伦理| 变态另类成人亚洲欧美熟女| 一个人免费在线观看电影| 国产在线男女| 国产精品人妻久久久影院| 黄色丝袜av网址大全| 日本色播在线视频| 久9热在线精品视频| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 亚州av有码| 真实男女啪啪啪动态图| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | 国产精品国产三级国产av玫瑰| 最近最新中文字幕大全电影3| 长腿黑丝高跟| 久久久久免费精品人妻一区二区| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 精品人妻熟女av久视频| 国产三级在线视频| 免费黄网站久久成人精品| 国产精品一及| 淫妇啪啪啪对白视频| 免费高清视频大片| 色5月婷婷丁香| 丝袜美腿在线中文| 永久网站在线| 51国产日韩欧美| 少妇人妻一区二区三区视频| 精品久久久久久久久久久久久| 国产男人的电影天堂91| 亚洲三级黄色毛片| 国产一区二区在线av高清观看| 国内精品久久久久精免费| 成年女人永久免费观看视频| 不卡视频在线观看欧美| 18禁裸乳无遮挡免费网站照片| 免费在线观看影片大全网站| 成年人黄色毛片网站| 中文亚洲av片在线观看爽| 成人无遮挡网站| 国产伦在线观看视频一区| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 一级毛片久久久久久久久女| av专区在线播放| 99久久中文字幕三级久久日本| 欧美色欧美亚洲另类二区| 国产老妇女一区| 欧美在线一区亚洲| 国产成人一区二区在线| 国国产精品蜜臀av免费| 亚洲男人的天堂狠狠| 精品人妻1区二区| 真人一进一出gif抽搐免费| 国产老妇女一区| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 在线观看免费视频日本深夜| 男女视频在线观看网站免费| 伊人久久精品亚洲午夜| 美女xxoo啪啪120秒动态图| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 美女免费视频网站| 又爽又黄无遮挡网站| 午夜福利18| 亚洲一区高清亚洲精品| 色在线成人网| 国产精品伦人一区二区| 免费看a级黄色片| 很黄的视频免费| 男女下面进入的视频免费午夜| 99热这里只有是精品50| 免费看美女性在线毛片视频| 熟女电影av网| 在线免费观看不下载黄p国产 | 日韩欧美国产在线观看| 亚洲精品国产成人久久av| 国产精品一区二区三区四区免费观看 | 国产成人影院久久av| 亚洲 国产 在线| 麻豆av噜噜一区二区三区| 日本 av在线| 啦啦啦韩国在线观看视频| 俄罗斯特黄特色一大片| 九九在线视频观看精品| 99热这里只有是精品在线观看| 少妇丰满av| 国产探花在线观看一区二区| 亚洲七黄色美女视频| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 国产精品,欧美在线| 欧美高清成人免费视频www| 男女视频在线观看网站免费| 亚洲专区中文字幕在线| 日韩欧美在线二视频| 十八禁网站免费在线| 内射极品少妇av片p| 国产亚洲av嫩草精品影院| 最好的美女福利视频网| 国产 一区 欧美 日韩| 黄色视频,在线免费观看| 在线a可以看的网站| 在线免费观看不下载黄p国产 | 99久久精品一区二区三区| 我要搜黄色片| 日本成人三级电影网站| 欧美色欧美亚洲另类二区| 免费av毛片视频| 99热这里只有是精品50| 一夜夜www| 全区人妻精品视频| 成人鲁丝片一二三区免费| 久久久久久久久久黄片| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 成人欧美大片| 毛片一级片免费看久久久久 | 久久亚洲真实| 欧美+亚洲+日韩+国产| 别揉我奶头 嗯啊视频| 十八禁网站免费在线| 日韩国内少妇激情av| 精品欧美国产一区二区三| 日韩精品青青久久久久久| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 真实男女啪啪啪动态图| 88av欧美| 又爽又黄a免费视频| 91麻豆精品激情在线观看国产| 内地一区二区视频在线| 久久人人精品亚洲av| 麻豆av噜噜一区二区三区| 日日啪夜夜撸| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 男插女下体视频免费在线播放| 不卡一级毛片| 国产美女午夜福利| 日韩人妻高清精品专区| 国产成人aa在线观看| 人人妻人人澡欧美一区二区| 成人二区视频| 久久精品久久久久久噜噜老黄 | 亚洲经典国产精华液单| 午夜免费激情av| 欧美一区二区精品小视频在线| 久久久久性生活片| 精品久久久久久久久亚洲 | 成人国产麻豆网| av在线老鸭窝| 成年女人永久免费观看视频| 搡老熟女国产l中国老女人| 最近中文字幕高清免费大全6 | 在线免费观看的www视频| 精品久久久久久久久久免费视频| 国产伦人伦偷精品视频| av在线蜜桃| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 亚洲成人免费电影在线观看| 国产69精品久久久久777片| 免费高清视频大片| 亚洲经典国产精华液单| 桃色一区二区三区在线观看| 十八禁网站免费在线| 白带黄色成豆腐渣| 在线看三级毛片| 国产高清视频在线观看网站| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲网站| 精品午夜福利在线看| 免费无遮挡裸体视频| 在线看三级毛片| 波多野结衣高清作品| h日本视频在线播放| 色视频www国产| 五月玫瑰六月丁香| 看十八女毛片水多多多| 桃色一区二区三区在线观看| 长腿黑丝高跟| av福利片在线观看| 国产精品伦人一区二区| 欧美一区二区国产精品久久精品| 亚洲成人免费电影在线观看| 女的被弄到高潮叫床怎么办 | 久久久久久久久久成人| 国产精品一区www在线观看 | netflix在线观看网站| 亚洲精华国产精华精| 深夜a级毛片| 国产在线男女| 亚洲av免费高清在线观看| 久久婷婷人人爽人人干人人爱| 特级一级黄色大片| 18禁黄网站禁片午夜丰满|