• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent

    2017-12-18 03:36:56LIGuoMinZHUBaoShunLIANGLiPingTIANYuMingBaoLiangWANGLianCheng
    物理化學學報 2017年8期
    關鍵詞:極化效應核殼輕質

    LI Guo-Min ZHU Bao-Shun LIANG Li-Ping TIAN Yu-Ming,* Lü Bao-Liang WANG Lian-Cheng,*

    ?

    Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent

    LI Guo-Min1ZHU Bao-Shun1LIANG Li-Ping1TIAN Yu-Ming1,*Lü Bao-Liang2WANG Lian-Cheng2,*

    (1;2)

    To reduce the density of the absorbent Co3Fe7, a core-shell Co3Fe7@C microwave absorbent was synthesized by preparing an iron/cobalt-containing carbon precursor followed by high-temperature carbonization. According to the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results, Co3Fe7particles were coated with graphitized carbon layers to form a core–shell structure. Furthermore, the Co3Fe7@C composite with a surface area and density of 358.5 m2·g?1and 2.25 g·cm?3, respectively, exhibited excellent microwave absorbability. A minimum reflection loss (RL) of ?43.5 dB and an effective bandwidth (RL below ?10 dB) of 4.1 GHz were obtained at the coating thickness of 2 mm, which could be mainly attributed to the effective impedance match and multiple interfacial polarizations. Owing to the low density and remarkable microwave absorption, we believe that the Co3Fe7@C composite can be a promising candidate for use as a lightweight and efficient microwave absorbent.

    Core-shell structure; Composite; Lightweight; Microwave absorption

    1 Introduction

    In recent years, much effort has been focused on microwave absorption materials (MAMs) not only for the sake of solving serious electromagnetic pollution arising from the daily communication and entertainmentbut also for the stealth of military equipment1,2. In general, MAMs can be categorized into dielectric loss and magnetic loss absorbents. Properties including thin thinness, low density, strong absorption and wide bandwidth are generally expected in MAMs3,4. While the traditional MAMs, such as magnetic absorbents composed of Fe, Co, Ni element and dielectric absorbents represented by TiO2, MnO2, BaTiO3are facing challenges because of their single loss mechanism. Meanwhile, the high specific gravity and low specific surface area restrict their practical applications. To solve the problem,great efforts have been focused on the magnetic-dielectric coupled MAMs5?7.

    As is well known, carbon materials including carbon black, graphene, carbon fibers, carbon nanotubes and carbon nanocoil have shown potential as novel carrier materials due to their low cost, large surface area and low density8,9.In addition, the carbon materials are typical dielectric absorbents, which attractwidespread attention. As a result, it is wise to incorporate carbon materials with magnetic constituents by different methods. And the synergetic effect between magnetic materials and carbon materials for the enhancement in microwave absorption has also been proved10,11. Liu.12have prepared the (Fe, Ni)/C nanocapsules, and the core-shell structure was proved to enhance the microwave absorption. The Fe3O4/graphene and Ni/graphene composites were synthesized by employing atomic layer deposition strategy and the as-prepared composites showed significantly improved microwave absorbility compared to the pristine graphene13. More recently, Li.14fabricated the CoFe2O4/GO and FeCo/G hybridsa facile one-pot polyol route combined withreduction, results showed that FeCo/G exhibited improved microwave absorption than CoFe2O4/GO for the effective impedance matching between graphene and magnetic particles.

    In view of the above-mentioned facts, we report the synthesis of core-shell Co3Fe7@C composite as efficient and lightweight absorbent. The Co3Fe7@C composite possesses high surface area of 358.5 m2·g?1, with alloy particles entirely coated in carbon matrix. The microwave absorption properties of as-prepared samples were studied based on the complex permittivity and permeability. The results show that the composite exhibits excellent microwave absorption, benefiting from the effective impedance match and multiple interfacial polarizations.

    2 Experimental

    2.1 Material preparation

    All the reagents were A.R. grade and were used in preparation without further purification. In a typical synthesis, Pluronic F127 (EO106PO70EO106,w= 12600, Sigma), 1,3,5-trimethylbenzene (TMB), hexamethylenetetramine (HMT), and resorcin were in turn dissolved in 18 mL distilled water under vigorous stirring at room temperature. After the formation of a homogenous solution with the molar ratio of F127, TMB, HMT and resorcin = 1 : 21 : 31.5 : 63, 0.2 mol·L?1Fe(NO3)3·9H2O and 0.1 mol·L?1Co(NO3)2·6H2O (other reagents were purchased from Sinopharm Chemical Reagent Co., Ltd.) were slowly added with the solution turning into bluish violet. It was then transferred into a Teflon-lined stainless autoclave, heated at 100 °C for 12 h. Afterwards, the resulting chocolate brown product was collected by filtration, washed with water several times and dried at 70 °C. Finally, the as-made sample was thermally treated at 900 °C for 3 h, at a heating rate of 1 °C·min?1in Ar atmosphere and then was ground in an agate mortar.

    2.2 Material characterization

    To reveal the crystallization structures of the products, X-ray diffraction (XRD) measurement was carried out with a D8 Advance Bruker AXS diffractometer with Cu-Kradiation (= 0.15406 nm), in scan steps of 0.02° in a 2range of 10°?90°. The microscopic morphology of the samples was observed on transmission electron microscope (TEM, JEOL JEM-1011). The N2adsorption-desorption analysis was measured on a Micromeritics ASAP 2010 instrument. Raman spectra were recorded on a Horiba LabRAM HR800 spectrometer with an Ar+laser. The thermal stability of the composites was tested in a thermogravimetric differential analyser (METTLER TOLEDO 3+) under air atmosphere at a heating rate of 10 °C·min?1. The magnetic properties were measured on a vibrating sample magnetometer (VSM Lakeshore Model 7400) at room temperature.

    2.3 Electromagnetic parameter measurement

    The specimen for microwave absorption measurement were prepared by uniformly mixing the as-prepared composites in a paraffin matrix which is used as the binder and pressing the mixture into a cylindrical shaped compact (outer= 7.00 mm andinner= 3.04 mm). The relative complex permittivity and permeability values of the specimen with 15%() of the composite were measured in 2?18 GHz with a vector network analyzer (Agilent N5230). Based on the measured electromagnetic parameters, the RL coefficient of the electromagnetic wave (normal incidence) at the surface of a single-layer absorbent backed by a perfect conductor at certain frequency and layer thickness can be calculated according to transmission line theory.

    3 Results and discussion

    3.1 Phase, structure and morphology characterization

    As previously illustrated15, the content of metal ions plays an important role in the composition and microstructure of the composites during the synthesis procedures. Therefore, in this work the relative high concentration of multicomponent metal ion (Fe3+, Co2+) was adjusted to prevent the F127 forming integrated micelles in the solution. Accordingly, the F127 serve mainly as the carbon source as well as reducing agent in the carbonization process, during which the carbon atoms adsorbed onto and then moved along the Co3Fe7particles, leading to the formation of carbon-coated alloy particles on the basis of dissolution-precipitation mechanism16.

    Fig.1 shows the X-ray diffraction (XRD) patterns of the Co3Fe7@C composite. As can be seen, there are three main diffraction peaks at 44.67°, 65.02°, and 82.33°, which can be indexed as the crystalline planes of (110), (200) and (211), indicating the presence of Co3Fe7(JCPDS No. 48-1816). It should be mentioned that, based on the stoichiometric ratio, there should be Co in the XRD patterns of the composite, the absence of Co may be due to the amount of Co is too low to be detected. The same phenomenon was also reported in Co3Fe7/C microspheres17. Besides, a slight diffraction peak at 2≈ 26.5° is also observed, which corresponds to (002) plane of graphite.18This can be further confirmed by Raman spectroscopy. As shown in Fig.2, the spectra were collected within the range between 500 and 2000 cm?1, in which two characteristic bands appeared. That is the so-calledpeak at around 1350 cm-1and G peak at about 1590 cm?1, which represent the disordered carbon structure and graphite carbon, respectively. It is obvious that the high temperature and the existence of Co3Fe7particles promote the graphitization degree of Co3Fe7@C composite during the carbonization process. Additionally, the TG curve of the Co3Fe7@C composite is shown in Fig.S1 (in Supporting Information), from which the weight content of Co3Fe7is about 35% ().

    To explore the detailed microscopic structure and morphology of Co3Fe7@C, TEM is used to provide more detailed information, and the representative images are shown in Fig.3. As shown in Fig.3(a), the sample is mainly composed of well-dispersed ellipsoidal or spherical particles with size ranging from 20 to 200 nm. And the alloy particles are totally encapsulated in carbon matrix. In addition, the TEM image of typically isolated particles is shown in Fig.3(b), it is found that there exists a carbon shell of ~10 nm coated on the Co3Fe7particle, forming the core-shell structure. Meanwhile, the Co3Fe7@C composite exhibits high surface area of 358.5 m2·g?1, large pore volume of 0.5 m3·g?1and low apparent density of 2.25 g·cm?3, which implies that core-shell Co3Fe7@C composite is lightweight material.

    3.2 Magnetic properties and microwave absorption analysis

    The magnetic hysteresis loop of the Co3Fe7@C composite at room temperature is shown in Fig.S2 (see Supporting Information). As shown in Fig.S2, the values ofsandr are 32.0 and 3.3 emu·g?1, respectively, demonstrating that the Co3Fe7@C is ferromagnetic. To reveal the microwave absorption of Co3Fe7@C, the theoretical RL was calculated through its measured complex permittivity (r=′ ? j″) and complex permeability (r=′ ? j″) at various coating thicknesses and frequencies, based on the following equations3,19:

    in= (r/r)1/2tanh[j(2π/)(rr)1/2] (1)

    RL(dB) = 20log|(in?0)/(in+0)|(2)

    whereinis the input impedance of the absorbent,is the frequency of microwave,is the velocity of light, andis the thickness of the absorbent. It is known that the coating thickness is one of the crucial parameters which affect RL intensity and the frequency position of minimum absorption dip20.Consequently, we calculated the RL at representative thicknesses of 1, 1.5, 2, 2.5, and 3 mm. Fig.4(a) shows the RL curves for the Co3Fe7@C composite. As can be seen, it is interesting to find that microwave frequency of the absorption dips shifts negatively with the increase of coating thickness. It can deduce that the coating thickness and the corresponding frequency of an absorption dips obey theequation=/2π″21, where″ is the imaginary part of complex permeability. That is, the microwave absorbing ability can be adjusted directly by changing the coating thickness of the absorbents for application in different frequency bands. Fig.4(b) shows the RL curves of pristine carbon material prepared by the same experimental process without adding iron nitrate and cobalt nitrate. The microwave absorption of pristine carbon mainly stems from dielectric loss, with a minimum RL value of ?9.1 dB. The RL properties of Co3Fe7@C composite are enhanced substantially in comparison with pristine carbon.

    Fig.1 X-ray diffraction patterns of core-shell Co3Fe7@C composite.

    Fig.2 Normal Raman spectra of core-shell Co3Fe7@C composite.

    Fig.3 TEM images of core-shell Co3Fe7@C composite.

    Moreover, the minimum RL of Co3Fe7@C composite is ?43.5 dB at 12.9 GHz with thickness of 2 mm. Generally, ?10 dB means 90% microwave absorption, which is the minimum requirement for absorbent in practical application. Besides, the effective bandwidth corresponding to the RL < ?10 dB can reach 4.1 GHz when the matching thickness is 2 mm for Co3Fe7@C composite. Compared with other composite absorbents11,22?27, the Co3Fe7@C exhibits lower filling content and thinner matching thickness with relatively wider effective bandwidth, as shown in Table 1. This further demonstrates thatthe core-shell Co3Fe7@C composite is lightweight and high-efficiency microwave absorbent.

    Fig.4 Microwave RL curves of (a) core-shell Co3Fe7@C composite and (b) pristine carbon.

    Table 1 Microwave absorption of some reported absorbents.

    3.3 Electromagnetic characteristics

    To disclose the intrinsic mechanism of microwave absorption of the Co3Fe7@C composite, the complex permittivity and complex permeability must be taken into consideration firstly. The complex permittivity spectra of the Co3Fe7@C composite is shown in Fig.5(a), from which it can be seen that the values ofand″ trend to decrease with increasing frequency and keep the coincident tendency in the whole frequency range (2?18 GHz). This shows frequency dependence and is the typical frequency dispersion behaviour28?30, leading to the enhancement of microwave absorption. Fig.5(b) shows′ and′′ of the Co3Fe7@C composite. As can be seen, the′ value keeps steady in the frequency of 2?10 GHz, followed by a fluctuation during high frequency region, varing in the range of 1.03?0.84. While the corresponding″ value increases slowly at low frequency region and then decreases, and there is a tiny resonance peak around 14 GHz which may be due to the exchange resonance according to Aharoni’s theory31,32, proven in ferromagnetic nanoparticles. Furthermore, the exist of eddy current loss can be decided by″ ≈ 2π0(′)22/3, where0is the permeability in vacuum,is electric conductivity andis the diameter of the nanoparticle. It is generally agreed that if the magnetic loss only originates from the eddy current loss, equation″(′)?2?1= 2π02/3 should be constant33. The plot of″(′)?2?1was shown in Fig.6. It is obvious that the value of″(′)?2?1exhibits evident fluctuations, implying that the eddy current loss is not the main contribution to the magnetic loss for Co3Fe7@C.

    For the other hand, the Co3Fe7particles are coated by graphitized carbon layer and encapsulated in carbon matrix for Co3Fe7@C composite (see Fig.3). As a result, there exists effective interface between the magnetic particles and the carbon matrix, with the charge transfer between carbon and Co3Fe7particles. Plot of″ for Co3Fe7@C composite is shown in Fig.S3 (in Supporting Information), from which two Cole-Cole semicircles as well as a linear curve are found. This may suggest that there exist dual relaxation processes and interface polarization effect in Co3Fe7@C composite32.

    Fig.6 Values of μ″(μ′)?2f?1 of core-shell Co3Fe7@C composite versus frequency.

    Fig.7 Frequency dependence of the loss tangent of core-shell Co3Fe7@C composite.

    Lastly, there are other contributions for microwave absorption. That is dielectric loss (tane=″/′), magnetic loss (tanm=″/′) and matched characteristic impedance. Fig.7 shows the frequency dependence of the loss tangent for Co3Fe7@C composite. It can be clearly seen that the curves of dielectric and magnetic loss tangent coexist symmetrically and there are intersection points at specific frequencies. Therefore, in our case, the microwave absorption is ascribed to dielectric loss, magnetic loss and their better match. Also,it can be expected that the large surface area of Co3Fe7@C may offer additional pathway for the transmission of electromagnetic waves, benefiting to multiple reflections and enhancement of microwave absorption34,35.

    4 Conclusions

    The core-shell Co3Fe7@C absorbent was successfully obtained by polymerization of Fe3+-Co2+-containing carbon precursor and following high-temperature treatment. The composite possessed high specific surface area and exhibited outstanding microwave absorption, which resulted from multiple interfacial polarizations as well as the better match between magnetic and dielectric loss. This study showed that the Co3Fe7@C composite was promising lightweight and efficient microwave absorbent.

    Supporting Information:available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M.2012,, 1214. doi: 10.1002/smll.201102245

    (2) Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W.. 2011,, 1587. doi: 10.1021/cm103441u

    (3) Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L.. 2004,, 401. doi:10.1002/adma.200306460

    (4) Zhang, S. L.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Wu, Q.2014,, 18033. doi: 10.1039/C4TA04286G

    (5) Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K.2010,, 927. doi: 10.1021/am900893d

    (6) Pan, G. H.; Zhu, J.; Ma, S. L.; Sun, G. B.; Yang, X. J.2013,, 12716. doi: 10.1021/am404117v

    (7) Chen, Y. H.; Huang, Z. H.; Lu, M. M.; Cao, W. Q.; Yuan, J.; Zhang, D. Q.; Cao, M. S.2015,, 12621. doi:10.1039/C5TA02782A

    (8) Bai, X.; Zhai Y. H.; Zhang. Y.2011,, 11673. doi: 10.1021/jp202475m

    (9) Li, G. M.; Wang, L. C.; Li, W. X.; Ding, R. M.; Xu, Y.. 2014,, 12390. doi:10.1039/C4CP00647J

    (10) Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Shen, B. Z.; Jiang, Z. H. J2013,, 5446. doi: 10.1021/jp4000544

    (11) Wen, F. S.; Hou, H.; Xiang, J. Y.; Zhang, X. Y.; Su, Z. B.; Yuan, S. J.; Liu, Z. Y.2015,, 372. doi: 10.1016/j.carbon.2015.03.057

    (12) Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D.2009,, 470. doi: 10.1016/j.carbon.2008.10.028

    (13) Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y.. 2014,, 704. doi: 10.1007/s12274-014-0432-0

    (14) Li, X. H.; Feng, J.; Du, Y. P.; Bai, J. T.; Fan, H. M.; Zhang, H. L.; Peng, Y.; Li, F. S.2015,, 5535. doi: 10.1039/C4TA05718J

    (15) Li, G. M.; Wang, L. C.; Li, W. X.; Xu, Y.. 2015,, 197. doi: 10.1016/j.micromeso.2015.02.054

    (16) Wang, S. L.; Huang, X. L.; He, Y. H.; Huang, H.; Wu, Y. Q.; Hou, L. Z.; Liu, X. L.; Yang, T. M.; Zou, J.; Huang, H. Y.2012,, 2119. doi: 10.1016/j.carbon.2011.12.063

    (17) Li, W. X.; Wang, L. C.; Li, G. M.; Xu, Y.. 2015,, 431. doi: 10.1016/j.matchemphys.2015.07.062

    (18) Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Luo, S. L.; He, Z.; Chen, J. H.. 2012,, 1399. doi: 10.1002/adma.201290061

    (19) Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y.2012,, 11009. doi: 10.1021/nn304630h

    (20) Gu, X.; Zhu, W. M.; Jia, C. J.; Zhao, R.; Schmidt, W. G.; Wang, Y. Q.. 2011,, 5337. doi:10.1039/C0CC05800A

    (21) Kim, S. S.; Han, D. H.; Cho, S. B.. 1994,, 4554. doi: 10.1109/20.334146

    (22) Wang, L.; He, F.; Wan, Y. Z.. 2011,, 4726. doi: 10.1016/j.jallcom.2011.01.119

    (23) Li, N.; Hu, C. W.; Cao, M. H.. 2013,, 7685. doi:10.1039/C3CP50778E

    (24) Chen, Y.; Liu, X. Y.; Mao, X. Y.; Xie, Q. X.; Zhuang, Z.; Han, Z. W.2014,, 6440. doi: 10.1039/c4nr00353e

    (25) Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W.2015,, 4744. doi: 10.1021/am508438s

    (26) Li, W. X.; Wang, L. C.; Li, G. M.; Xu, Y.. 2015,, 259. doi: 10.1016/j.jmmm.2014.10.118

    (27) Wan, Y. Z.; Xiao, J.; Li, C. Z.; Xiong, G. Y.; Guo, R. S.; Li, L. L.; Han, M.; Luo, H. L.. 2016,, 252. doi: 10.1016/j.jmmm.2015.10.006

    (28) Tang, N. J.; Zhong, W.; Au, C. T.; Yang, Y.; Han, M. G.; Lin, K. L.; Du, Y. W.2008,, 19316. doi:10.1021/jp808087n

    (29) Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J.2010,, 788. doi: 10.1016/j.carbon.2009.10.028

    (30) Du, Y. C.; Liu, T.; Yu, B.; Gao, H. B.; Xu, P.; Wang, J. Y.; Wang, X. H.; Han, X.. 2012,, 884. doi: 10.1016/j.matchemphys.2012.05.074

    (31) Wang, L.; Huang, Y.; Li, C.; Chen, J.; Sun, X.. 2015,, 2228. doi: 10.1039/c4cp04745a

    (32) Cole, K. S.; Cole, R. H.. 1941,, 341. doi: 10.1063/1.1750906

    (33) Frenkel, J.; Dorfman, J.1930,, 274. doi: 10.1038/126274a0

    (34) Watts, P. C. P.; Hsu, W. K.; Barnes, A.; Chambers, B.. 2003,, 600. doi: 10.1002/adma.200304485

    (35) Qing, Y. C.; Zhou, W. C.; Luo, F.; Zhu, D. M.2010,, 4074. doi: 10.1016/j.carbon.2010.07.014

    基于核殼結構Co3Fe7@C的高效微波吸收材料

    力國民1朱保順1梁麗萍1田玉明1,*呂寶亮2王連成2,*

    (1太原科技大學材料科學與工程學院,太原 030024;2中國科學院山西煤炭化學研究所,炭材料重點實驗室,太原 030001)

    為了降低吸波劑Co3Fe7的密度,本文采用原位聚合Fe3+-Co2+/碳前驅體及高溫碳化制備得到Co3Fe7@C復合微波吸收材料。X射線衍射(XRD)和掃描電子顯微鏡(SEM)測試結果表明Co3Fe7顆粒被石墨碳層包覆形成核殼結構,復合物的比表面積和表觀密度分別為358.5 m2·g?1、2.25 g·cm?3。核殼結構Co3Fe7@C復合物顯示出優(yōu)異的微波吸收性能,當涂層厚度為2 mm時,其最低反射損耗(RL)達到最低值?43.5 dB,對應的有效帶寬為4.1 GHz,歸因于復合物有效的阻抗匹配特性及多重界面極化效應。由于低密度及優(yōu)異的微波吸收性能,Co3Fe7@C復合物有望作為一種潛在的輕質、高效微波吸收材料。

    核殼結構;復合物;輕質;微波吸收

    O64;TQ050.4+3

    10.3866/PKU.WHXB201704174

    December 6, 2016;

    April 3, 2017;

    April 17, 2017.

    Corresponding authors.TIAN Yu-Ming, Email: tym1654@126.com; Tel: +86-0351-2161130. WANG Lian-Cheng, Email: wanglc@sxicc.ac.cn; Tel: +86-351- 4063121.

    The project was supported by the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology, China (20152030).

    太原科技大學博士科研啟動基金(20152030)資助項目

    猜你喜歡
    極化效應核殼輕質
    基于時域有限差分法的電性源感應極化效應三維數(shù)值模擬
    怎一個“輕質”了得
    輕質高強堇青石多孔陶瓷的制備與表征
    陶瓷學報(2021年4期)2021-10-14 08:57:40
    關于重芳烴輕質化與分離的若干思考
    科學家(2021年24期)2021-04-25 16:55:45
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應用
    金融集聚研究簡述
    智富時代(2016年12期)2016-12-01 13:00:19
    鄭州機場極化效應研究
    商(2016年22期)2016-07-08 22:03:51
    雙摻雜核殼結構ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    輕質材料彈射模型飛機
    尾随美女入室| 九色成人免费人妻av| 免费观看无遮挡的男女| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| av福利片在线观看| 日日撸夜夜添| 男人和女人高潮做爰伦理| 国产精品女同一区二区软件| 曰老女人黄片| av视频免费观看在线观看| 色网站视频免费| 亚洲精品日韩av片在线观看| 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 亚洲欧美日韩另类电影网站| 欧美丝袜亚洲另类| 国产一级毛片在线| 内地一区二区视频在线| 久久精品国产亚洲av天美| 一级爰片在线观看| 少妇的逼水好多| 欧美激情国产日韩精品一区| 免费看光身美女| 三级经典国产精品| 久久久久久久久久久免费av| 99视频精品全部免费 在线| 在线看a的网站| 一级,二级,三级黄色视频| av播播在线观看一区| 国产欧美日韩综合在线一区二区 | 热re99久久国产66热| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| a级毛片在线看网站| 亚洲国产欧美在线一区| 中文字幕精品免费在线观看视频 | 免费在线观看成人毛片| 亚洲精品乱码久久久v下载方式| 亚洲av在线观看美女高潮| 极品少妇高潮喷水抽搐| 久久久久久久亚洲中文字幕| 免费少妇av软件| 18+在线观看网站| 亚洲国产日韩一区二区| 夫妻性生交免费视频一级片| 久久久久久久久久久久大奶| 在线观看免费日韩欧美大片 | 亚洲综合色惰| 国产精品欧美亚洲77777| 一二三四中文在线观看免费高清| 精品人妻熟女av久视频| 亚洲国产精品国产精品| 日韩电影二区| 亚洲精华国产精华液的使用体验| 麻豆成人av视频| 伊人久久精品亚洲午夜| 欧美日韩综合久久久久久| 国产成人精品久久久久久| 日韩一本色道免费dvd| 一区在线观看完整版| www.色视频.com| 多毛熟女@视频| av在线播放精品| 一本一本综合久久| 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| 精品一品国产午夜福利视频| 亚洲,欧美,日韩| 内射极品少妇av片p| 国产精品不卡视频一区二区| 国产真实伦视频高清在线观看| 国产日韩一区二区三区精品不卡 | 三上悠亚av全集在线观看 | 久久久久网色| 日韩在线高清观看一区二区三区| 欧美日韩在线观看h| 欧美日韩视频高清一区二区三区二| 妹子高潮喷水视频| 亚洲欧美日韩东京热| 日韩伦理黄色片| 一二三四中文在线观看免费高清| 乱人伦中国视频| 黑丝袜美女国产一区| www.色视频.com| 亚洲欧美清纯卡通| 美女中出高潮动态图| 永久免费av网站大全| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 午夜日本视频在线| 久久 成人 亚洲| 亚洲图色成人| 成人毛片60女人毛片免费| 国产男女内射视频| 久久久久国产精品人妻一区二区| 欧美激情国产日韩精品一区| 99热国产这里只有精品6| 嫩草影院入口| 久久狼人影院| 日韩av在线免费看完整版不卡| 久久ye,这里只有精品| 国产视频内射| 成人亚洲精品一区在线观看| 久久久久久久久大av| 精品少妇久久久久久888优播| 成年人午夜在线观看视频| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 午夜影院在线不卡| 久久99一区二区三区| 97超视频在线观看视频| 少妇的逼好多水| 国精品久久久久久国模美| 欧美 亚洲 国产 日韩一| 国产视频内射| 伊人久久国产一区二区| 亚洲人成网站在线播| 亚洲美女搞黄在线观看| av视频免费观看在线观看| 黄色日韩在线| 中文欧美无线码| 日韩人妻高清精品专区| 亚洲av国产av综合av卡| 国产伦精品一区二区三区视频9| 亚洲欧洲精品一区二区精品久久久 | 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 亚洲精品视频女| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 欧美激情国产日韩精品一区| 中国三级夫妇交换| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 国产精品人妻久久久影院| 亚洲人与动物交配视频| 国产黄片美女视频| 国产欧美日韩综合在线一区二区 | 最近中文字幕高清免费大全6| 午夜91福利影院| 国产视频内射| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| a 毛片基地| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄| 美女内射精品一级片tv| 两个人免费观看高清视频 | videos熟女内射| 天天操日日干夜夜撸| 在线观看国产h片| 中文字幕免费在线视频6| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 久久久久精品性色| 97在线人人人人妻| 亚洲精品一二三| 久久女婷五月综合色啪小说| 两个人的视频大全免费| 亚洲欧美成人综合另类久久久| 亚洲内射少妇av| 免费观看的影片在线观看| 午夜视频国产福利| 国产精品秋霞免费鲁丝片| 美女cb高潮喷水在线观看| 18+在线观看网站| 视频区图区小说| 五月天丁香电影| 亚洲精品一二三| 草草在线视频免费看| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 妹子高潮喷水视频| 欧美精品人与动牲交sv欧美| 久久97久久精品| 午夜影院在线不卡| 免费播放大片免费观看视频在线观看| 亚洲精品第二区| av福利片在线观看| 天堂8中文在线网| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 亚洲av男天堂| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 美女福利国产在线| 国产伦在线观看视频一区| 一级毛片 在线播放| 中文乱码字字幕精品一区二区三区| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 超碰97精品在线观看| 九九在线视频观看精品| 黄色怎么调成土黄色| 少妇精品久久久久久久| 日韩伦理黄色片| a 毛片基地| 三级经典国产精品| 观看美女的网站| 又黄又爽又刺激的免费视频.| 亚洲av国产av综合av卡| 五月天丁香电影| 久久久久国产网址| 精品久久久久久久久av| 高清在线视频一区二区三区| 在线观看免费日韩欧美大片 | 99热这里只有是精品50| 又大又黄又爽视频免费| 欧美丝袜亚洲另类| 国产熟女欧美一区二区| av国产精品久久久久影院| 美女中出高潮动态图| 看非洲黑人一级黄片| 男人爽女人下面视频在线观看| 亚洲国产日韩一区二区| 亚洲国产精品一区三区| 国产淫语在线视频| 97超视频在线观看视频| 极品教师在线视频| 国产极品天堂在线| 麻豆成人午夜福利视频| 全区人妻精品视频| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 一级片'在线观看视频| 内地一区二区视频在线| 欧美亚洲 丝袜 人妻 在线| 我要看黄色一级片免费的| 99国产精品免费福利视频| 桃花免费在线播放| 另类精品久久| 大香蕉久久网| 国产熟女午夜一区二区三区 | 欧美少妇被猛烈插入视频| 春色校园在线视频观看| 精品久久久噜噜| 欧美xxⅹ黑人| 色哟哟·www| 欧美精品亚洲一区二区| 亚洲丝袜综合中文字幕| av有码第一页| 国产极品粉嫩免费观看在线 | 五月伊人婷婷丁香| 国国产精品蜜臀av免费| 麻豆乱淫一区二区| 人妻 亚洲 视频| 国产亚洲5aaaaa淫片| 欧美成人午夜免费资源| 欧美日韩综合久久久久久| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 丝瓜视频免费看黄片| .国产精品久久| 日韩精品有码人妻一区| 天堂8中文在线网| 自线自在国产av| 国产成人一区二区在线| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 美女中出高潮动态图| 国产一区二区在线观看av| 性色av一级| 天天操日日干夜夜撸| 成人无遮挡网站| 十八禁网站网址无遮挡 | 国产探花极品一区二区| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| av免费在线看不卡| 国产深夜福利视频在线观看| 又大又黄又爽视频免费| 国产欧美日韩一区二区三区在线 | 久久影院123| 美女中出高潮动态图| 美女国产视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲欧美精品专区久久| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 丰满乱子伦码专区| 精品亚洲成a人片在线观看| 亚洲精品久久久久久婷婷小说| 国产综合精华液| 一级黄片播放器| 尾随美女入室| 蜜臀久久99精品久久宅男| av天堂久久9| 婷婷色av中文字幕| 人人妻人人爽人人添夜夜欢视频 | 青青草视频在线视频观看| 国产精品国产三级国产专区5o| 黄色配什么色好看| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 黑人高潮一二区| 99久久人妻综合| 如日韩欧美国产精品一区二区三区 | 国产成人免费无遮挡视频| 中文资源天堂在线| 伦理电影免费视频| 人妻 亚洲 视频| 亚洲av福利一区| 十八禁高潮呻吟视频 | 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 人妻人人澡人人爽人人| 99久久人妻综合| 精品酒店卫生间| 亚洲自偷自拍三级| a级毛色黄片| 亚洲,欧美,日韩| 观看av在线不卡| 国产成人免费无遮挡视频| 乱人伦中国视频| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 国产高清国产精品国产三级| 亚洲欧美成人精品一区二区| 久久影院123| 蜜桃在线观看..| 97在线视频观看| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 新久久久久国产一级毛片| 亚洲怡红院男人天堂| 精品99又大又爽又粗少妇毛片| 精华霜和精华液先用哪个| 成人二区视频| 少妇人妻一区二区三区视频| 免费看日本二区| 如日韩欧美国产精品一区二区三区 | 嫩草影院入口| 99视频精品全部免费 在线| 精品国产国语对白av| 人人妻人人澡人人爽人人夜夜| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 9色porny在线观看| 不卡视频在线观看欧美| 91久久精品国产一区二区成人| 黄色一级大片看看| 热re99久久国产66热| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 欧美三级亚洲精品| 亚洲国产色片| 国产黄色免费在线视频| 免费在线观看成人毛片| 国产 一区精品| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 男人狂女人下面高潮的视频| av福利片在线| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 秋霞伦理黄片| 成人漫画全彩无遮挡| 人妻一区二区av| 人人澡人人妻人| 国产精品99久久久久久久久| av在线播放精品| 岛国毛片在线播放| 亚洲国产最新在线播放| 亚洲国产精品一区二区三区在线| 人妻少妇偷人精品九色| 只有这里有精品99| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 精品一区二区三区视频在线| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| a 毛片基地| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 成人二区视频| 天堂中文最新版在线下载| 多毛熟女@视频| 内地一区二区视频在线| 亚洲精品自拍成人| 久久 成人 亚洲| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 国产美女午夜福利| 国产精品一区二区在线观看99| 亚洲av福利一区| 中文字幕制服av| 永久网站在线| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 国产真实伦视频高清在线观看| 国产亚洲精品久久久com| 一个人看视频在线观看www免费| 18禁裸乳无遮挡动漫免费视频| 亚洲av成人精品一区久久| 久久久国产一区二区| 国产在线男女| 国产精品女同一区二区软件| 日韩熟女老妇一区二区性免费视频| 国产免费一区二区三区四区乱码| 大话2 男鬼变身卡| 99热全是精品| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 亚洲av男天堂| 日韩精品免费视频一区二区三区 | 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 亚洲av综合色区一区| 十八禁高潮呻吟视频 | 一级黄片播放器| 免费观看av网站的网址| 18禁在线无遮挡免费观看视频| 不卡视频在线观看欧美| 亚洲欧洲日产国产| 97在线人人人人妻| 国产熟女午夜一区二区三区 | 自线自在国产av| 久久国产乱子免费精品| 亚洲欧美日韩另类电影网站| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 中文资源天堂在线| av一本久久久久| av专区在线播放| 亚洲av福利一区| 国产一区有黄有色的免费视频| 国产成人91sexporn| 久久精品国产a三级三级三级| 亚洲精品日韩av片在线观看| 婷婷色综合www| 久久人人爽人人片av| 人体艺术视频欧美日本| 在线观看人妻少妇| 国产黄色免费在线视频| 简卡轻食公司| 高清午夜精品一区二区三区| 午夜福利视频精品| 黄色一级大片看看| 久久99热这里只频精品6学生| 在线播放无遮挡| 高清av免费在线| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 久久久久久人妻| 99热国产这里只有精品6| 亚洲av不卡在线观看| 亚洲熟女精品中文字幕| 三级国产精品片| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 97超碰精品成人国产| 国产高清国产精品国产三级| 欧美高清成人免费视频www| 亚洲精品国产成人久久av| 人妻 亚洲 视频| 多毛熟女@视频| 久久这里有精品视频免费| 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 我要看黄色一级片免费的| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 欧美区成人在线视频| 少妇的逼好多水| 国产亚洲91精品色在线| 99九九在线精品视频 | 麻豆精品久久久久久蜜桃| 男人添女人高潮全过程视频| 亚洲欧美精品自产自拍| 黄色欧美视频在线观看| 69精品国产乱码久久久| 美女视频免费永久观看网站| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 婷婷色麻豆天堂久久| a级毛色黄片| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 国产精品无大码| 热re99久久精品国产66热6| 国产黄频视频在线观看| 亚洲成人一二三区av| 国产熟女午夜一区二区三区 | 国产成人精品一,二区| 大码成人一级视频| 免费人成在线观看视频色| 一边亲一边摸免费视频| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 久久ye,这里只有精品| 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 亚洲不卡免费看| 精品国产一区二区久久| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 国产片特级美女逼逼视频| 国产成人精品福利久久| 大片免费播放器 马上看| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 欧美性感艳星| 欧美人与善性xxx| 啦啦啦视频在线资源免费观看| 91精品一卡2卡3卡4卡| 综合色丁香网| 大香蕉久久网| 国产一区二区在线观看av| 爱豆传媒免费全集在线观看| 亚洲av在线观看美女高潮| 精品少妇黑人巨大在线播放| 最近中文字幕高清免费大全6| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 伊人久久国产一区二区| 老司机影院毛片| 99久久精品国产国产毛片| 成人毛片a级毛片在线播放| 日韩一区二区三区影片| 我的老师免费观看完整版| 搡老乐熟女国产| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| 国产日韩欧美在线精品| 97在线视频观看| 国产成人一区二区在线| 精华霜和精华液先用哪个| 一级毛片 在线播放| 能在线免费看毛片的网站| 男女免费视频国产| 日韩一区二区三区影片| 国产成人精品无人区| 一级黄片播放器| 深夜a级毛片| 一级毛片我不卡| 人体艺术视频欧美日本| 简卡轻食公司| 22中文网久久字幕| 观看美女的网站| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 青青草视频在线视频观看| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 在线亚洲精品国产二区图片欧美 | 成人国产麻豆网| 免费在线观看成人毛片| 免费黄频网站在线观看国产| 成人特级av手机在线观看| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精华国产精华液的使用体验| 最近中文字幕高清免费大全6| 青青草视频在线视频观看| 免费av不卡在线播放| 久久久久精品性色| 国产午夜精品久久久久久一区二区三区| 中文字幕免费在线视频6| 黑人高潮一二区| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 99热这里只有精品一区| 日韩中文字幕视频在线看片| 国产精品不卡视频一区二区| 人人妻人人添人人爽欧美一区卜| 亚洲久久久国产精品| 人妻人人澡人人爽人人| 亚洲精品日韩在线中文字幕| videossex国产| 久久热精品热| 三上悠亚av全集在线观看 | 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看| 日韩在线高清观看一区二区三区| 国产免费视频播放在线视频| 久久av网站| 精品久久久精品久久久| 国产精品久久久久久久电影| 春色校园在线视频观看| 亚洲真实伦在线观看| 极品少妇高潮喷水抽搐| 成人特级av手机在线观看| 不卡视频在线观看欧美| 中文字幕精品免费在线观看视频 | 中文字幕av电影在线播放|