• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于分析法的糧食逆流干燥系統(tǒng)能效評(píng)價(jià)與試驗(yàn)

      2017-12-15 02:40:42馬興灶方壯東李長(zhǎng)友
      關(guān)鍵詞:濕空氣干燥機(jī)稻谷

      馬興灶,方壯東,李長(zhǎng)友

      ?

      馬興灶1,2,方壯東2,李長(zhǎng)友2※

      (1. 嶺南師范學(xué)院機(jī)電工程學(xué)院,湛江 524048;2. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642)

      為客觀、合理地評(píng)價(jià)糧食逆流干燥系統(tǒng)的能效,實(shí)現(xiàn)糧食高效節(jié)能干燥,該文基于?分析法,從氣流狀態(tài)變化考察逆流連續(xù)式干燥工藝系統(tǒng)的能量利用程度。結(jié)果表明:在試驗(yàn)條件下,干燥機(jī)內(nèi)各干燥段能量利用效果較好。在高溫和低溫干燥段,排氣和干燥室熱損失率最高分別不超過(guò)6.68%、11.09%和21.26%、9.37%,熱效率和?效率不低于83.02%、68.1%和69.37%、56.22%;在冷卻段,由于糧溫比風(fēng)溫高,風(fēng)對(duì)稻谷有明顯的降溫去水作用。而系統(tǒng)的平均熱效率和?效率為80.24%和64.52%,表明系統(tǒng)能量匹配效果較好,稻谷的平均單位熱耗量為2 944.6 kJ/kg,與國(guó)標(biāo)≤7 400 kJ/kg相比,節(jié)能達(dá)到60.2%,節(jié)能效果明顯。研究結(jié)果為干燥工藝設(shè)計(jì)、探索節(jié)能的途徑和制定糧食干燥系統(tǒng)能效評(píng)價(jià)標(biāo)準(zhǔn)提供參考。

      0 引 言

      中國(guó)是世界上最大的糧食生產(chǎn)及消費(fèi)國(guó),2015年糧食總產(chǎn)量高達(dá)6.2億t,糧食干燥機(jī)械化需求迫切。然而截止2014年底,全國(guó)擁有的糧食干燥機(jī)達(dá)5.44萬(wàn)臺(tái),機(jī)械干燥糧食數(shù)量8 935.72萬(wàn)t[1],據(jù)此計(jì)算中國(guó)的糧食干燥機(jī)械化程度還不足15%,與美、日等發(fā)達(dá)國(guó)家20世紀(jì)80年代已達(dá)95%的水平相差甚遠(yuǎn),與目前全國(guó)農(nóng)作物耕種收綜合機(jī)械化率已達(dá)63.8%的水平相比,發(fā)展很不平衡[2]。近年,在國(guó)家良好的政策導(dǎo)向下,烘干機(jī)市場(chǎng)持續(xù)走熱,設(shè)備數(shù)量增長(zhǎng)很快,但整體市場(chǎng)比較混亂,新技術(shù)應(yīng)用不足,設(shè)備制造質(zhì)量不高、適應(yīng)性、通用性、可靠性、安全性差,能耗高、效率低、品質(zhì)不能保障。導(dǎo)致問(wèn)題的原因有多方面,其中設(shè)備能效評(píng)價(jià)標(biāo)準(zhǔn)不科學(xué)是問(wèn)題的根源之一。

      近年來(lái),國(guó)內(nèi)外學(xué)者基于特定干燥試驗(yàn),探討干燥工藝參數(shù)[3-8],分析了干燥系統(tǒng)能耗[9-13],提出了一些節(jié)能措施[14-18]。但迄今,研究人員設(shè)計(jì)、評(píng)價(jià)干燥系統(tǒng)的誤區(qū)之一是把注意力放在了提高人為提供的熱能消耗和干燥動(dòng)力上,忽視了客觀?的作用,評(píng)價(jià)標(biāo)準(zhǔn)不夠科學(xué)。充分利用客觀?,增大動(dòng)力系數(shù)是實(shí)現(xiàn)綠色、高效節(jié)能的關(guān)鍵。同一物料在同樣的干燥動(dòng)力條件下,采用不同的干燥工藝和處理方式,其能量的利用效果有很大差別[19-20]。?概念的引入,解決了利用一個(gè)單獨(dú)的物理量來(lái)揭示系統(tǒng)能量?jī)r(jià)值問(wèn)題,改變了人們對(duì)能的性質(zhì)、損失、轉(zhuǎn)換效率等傳統(tǒng)的看法,提供了用能分析的科學(xué)基礎(chǔ),能夠全面深刻地揭示系統(tǒng)內(nèi)部損失、能量的價(jià)值以及在各環(huán)節(jié)上損耗的特征?;诟稍?分析法[21-24],揭示糧食逆流干燥工藝系統(tǒng)的熱能結(jié)構(gòu),對(duì)評(píng)價(jià)干燥系統(tǒng)有效能利用效率具有較高的理論價(jià)值和重要的現(xiàn)實(shí)意義。

      因此,為客觀、合理地評(píng)價(jià)干燥系統(tǒng)的能效,實(shí)現(xiàn)糧食高效節(jié)能干燥,本文基于干燥系統(tǒng)熱質(zhì)衡算和熱效率與?效率分析方法,從逆流干燥系有效能動(dòng)態(tài)變化過(guò)程,考察逆流連續(xù)式干燥工藝系統(tǒng)的能量利用程度,利用5HNH-15型干燥機(jī)考證評(píng)價(jià)結(jié)果的可靠性,為提高糧食干燥效率和探索節(jié)能的途徑提供分析方法,為干燥工藝系統(tǒng)設(shè)計(jì)和制定糧食干燥能效評(píng)價(jià)標(biāo)準(zhǔn)提供一些參考。

      1 干燥系統(tǒng)熱質(zhì)衡算

      糧食干燥是一個(gè)輸入能量、介質(zhì)和濕糧,排出廢氣、得到干糧的開(kāi)口系統(tǒng),干燥過(guò)程必然要進(jìn)行物質(zhì)和熱量的交換,為準(zhǔn)確把握系統(tǒng)內(nèi)部能量消耗的本質(zhì),必須基于物質(zhì)守恒和能量守恒原則,對(duì)系統(tǒng)進(jìn)行計(jì)算。系統(tǒng)干燥過(guò)程的計(jì)算包括物料衡算和熱量衡算兩部分,圖1所示即為整個(gè)干燥過(guò)程的物料衡算和熱量衡算過(guò)程參數(shù)。糧食逆流干燥系統(tǒng)熱質(zhì)衡算示意圖如圖1所示。

      注:t0為空氣初始溫度,℃;d0為空氣初始含濕量,kg·kg-1;h0為空氣初始熱焓,kJ·kg-1;G為絕干空氣的質(zhì)量流量,kg·h-1;t1為加熱后空氣溫度,℃;d1為加熱后空氣含濕量,kg·kg-1;h1為加熱后空氣熱焓,kJ·kg-1;t2為排氣溫度,℃;d2為排氣濕含量,kg·kg-1;h2為排氣熱焓,kJ·kg-1;W1、W2分別為干燥前后糧食的質(zhì)量流量,kg·h-1;M0、M2分別為糧食初始和終了含水率,%;tm1、tm2分別為糧食干燥前后的溫度,℃。

      1.1 干燥過(guò)程的物料衡算

      1.1.1 糧食的去水量

      在糧食干燥過(guò)程中,糧食與干燥介質(zhì)進(jìn)行物質(zhì)與能量交換,在這個(gè)干燥過(guò)程中一直保持恒定不變的量為介質(zhì)中的絕干空氣量和進(jìn)入、輸出干燥室的絕干糧食量,以1,2表示干燥前后糧食的質(zhì)量流量,kg/h;以W表示干燥過(guò)程中絕干糧食的質(zhì)量流量,kg/h;以表示干燥過(guò)程中蒸發(fā)的水分的質(zhì)量流量,kg/h;則有:

      化簡(jiǎn)得:

      式中0,2為干燥前后糧食的濕基含水率,%。

      1.1.2 氣耗量

      環(huán)境空氣先經(jīng)過(guò)加熱器加熱后變?yōu)楦稍锟諝?,送入干燥室,與糧食接觸進(jìn)行熱質(zhì)交換后,排出干燥室;糧食經(jīng)輸送裝置進(jìn)入干燥室,與干燥空氣進(jìn)行熱質(zhì)交換后,排出干燥室。在這個(gè)過(guò)程中,對(duì)進(jìn)出干燥室的干燥空氣的水分進(jìn)行衡算,則有:

      式中為干燥過(guò)程中絕干空氣的質(zhì)量流量,kg/h;1,2為空氣進(jìn)入和排出干燥室時(shí)的含濕量,kg/kg。

      式中稱為比空氣用量或單位空氣消耗量,簡(jiǎn)稱氣耗量,即從濕物料中蒸發(fā)1 kg水分所需的干空氣量,kg/kg。由式(6)可見(jiàn),比空氣用量只與空氣的最初和最終濕度有關(guān),而與干燥過(guò)程所經(jīng)歷的途徑無(wú)關(guān)。

      1.2 干燥過(guò)程的熱量衡算

      糧食干燥過(guò)程的熱量衡算包括介質(zhì)的降溫增濕過(guò)程的熱量、糧食升溫去濕過(guò)程的熱量和系統(tǒng)損耗,其整個(gè)干燥過(guò)程中介質(zhì)和糧食組成的干燥系統(tǒng)的熱量衡算,如式(7)所示:

      環(huán)境空氣進(jìn)入空氣加熱器(換熱器)升溫過(guò)程,可用式(8)表示:

      式中1為加熱后干燥空氣的熱焓,kJ/kg。

      僅考察干燥室的熱量衡算表達(dá)式,根據(jù)能量守恒定律,則有:

      2 干燥系統(tǒng)能量結(jié)構(gòu)分析

      2.1 濕空氣狀態(tài)參數(shù)

      濕空氣中包含的水蒸氣質(zhì)量與其中的干空氣質(zhì)量之比為空氣的濕含量,在一定的大氣壓力下,濕空氣的含濕量可由式(10)計(jì)算[25]:

      其中

      式中為濕空氣含濕量,kg/kg;為空氣的相對(duì)濕度,%;P為環(huán)境溫度t下的濕空氣飽和蒸汽壓力,Pa;P為環(huán)境溫度t下的環(huán)境大氣壓力,Pa;t為濕空氣的溫度,℃。

      濕空氣的熱焓是指包含1 kg干空氣的濕空氣具有的熱焓量,即1 kg干空氣及與其混合的水蒸氣的焓之和,在濕空氣溫度t下,濕空氣的熱焓可由式(12)計(jì)算:

      =1.005t+(2 501+1.86t) (12)

      式中為濕空氣的熱焓,kJ/kg。

      2.2 干燥系統(tǒng)能效分析

      干燥系統(tǒng)的狀態(tài)變化和能量結(jié)構(gòu)如圖2所示。在干燥系統(tǒng)內(nèi)部,糧食的去水量等于介質(zhì)的增濕量,當(dāng)糧食水分蒸發(fā)消耗的汽化潛熱和谷物升溫、蒸發(fā)出的水分升溫、介質(zhì)流動(dòng)功損以及干燥室散熱熱損失完全來(lái)自進(jìn)入系統(tǒng)中介質(zhì)的顯熱時(shí),那么,在定壓狀態(tài)下,干燥介質(zhì)從加熱器中獲取的熱量則全部體現(xiàn)在自身焓的變化上。由圖2可以看出,介質(zhì)初始狀態(tài)為狀態(tài)點(diǎn)0,從狀態(tài)點(diǎn)0經(jīng)過(guò)人為供給熱量等濕加熱到狀態(tài)點(diǎn)1;假設(shè)介質(zhì)在干燥室內(nèi)與糧食自發(fā)地進(jìn)行熱質(zhì)交換后,從狀態(tài)點(diǎn)2排出干燥室,在此過(guò)程中,干燥介質(zhì)經(jīng)歷的是一個(gè)增濕降溫的過(guò)程,糧食經(jīng)歷的是一個(gè)去濕的過(guò)程,糧食本身溫度變化可以是升溫、等溫或者降溫,干燥過(guò)程中,糧食從初始狀態(tài)點(diǎn)4到達(dá)了狀態(tài)點(diǎn)3。

      注:0為初始狀態(tài)和環(huán)境態(tài),1和2為干燥室進(jìn)氣和排氣狀態(tài)點(diǎn),2′為介質(zhì)升溫?zé)釗p失狀態(tài)點(diǎn),3為干糧狀態(tài),4為濕糧狀態(tài);h0為空氣初始熱焓,kJ·kg-1;h1為加熱后空氣熱焓,kJ·kg-1;h2為實(shí)際進(jìn)氣熱焓,kJ·kg-1;h′2為排氣熱焓,kJ·kg-1;he0為零?點(diǎn)熱焓,kJ·kg-1;t0為空氣初始溫度,℃;t1為加熱后空氣溫度,℃;tg0、tg2分別為糧食初始溫度和終了溫度,℃;t2為排氣溫度,℃;t′為零?點(diǎn)溫度,℃;φ1、φ2分別是進(jìn)氣和排氣相對(duì)濕度,%;M0、M2分別為糧食初始和終了含水率,%;d0、d2分別為進(jìn)氣和排氣含濕量,kg·kg-1;t12表示介質(zhì)進(jìn)入干燥室實(shí)際溫度,℃。

      2.2.1 干燥室的熱效率

      如果糧食水分蒸發(fā)完全看作是換熱器提供給介質(zhì)的熱能產(chǎn)生的結(jié)果,則干燥室的熱效率可被表示為式(13)

      2.2.2 干燥室的?效率

      3 干燥效能的試驗(yàn)考證

      3.1 試驗(yàn)內(nèi)容與方法

      試驗(yàn)樣機(jī)為5HNH-15型多段逆流干燥緩蘇連續(xù)式干燥機(jī),機(jī)內(nèi)靜容積169 m3,標(biāo)準(zhǔn)機(jī)內(nèi)容量93 t稻谷,其結(jié)構(gòu)圖如圖3所示,各干燥段參數(shù)見(jiàn)文獻(xiàn)[29];糧食為湘早秈45號(hào),進(jìn)入干燥機(jī)前的平均濕基含水率為24.06%,試驗(yàn)地點(diǎn)為湖南省寧鄉(xiāng)縣衛(wèi)紅米業(yè)有限公司,試驗(yàn)時(shí)間為2015年7月25日,試驗(yàn)當(dāng)天天氣晴朗,試驗(yàn)時(shí)平均溫度為32.4 ℃,相對(duì)濕度平均值為55.74%,高溫風(fēng)機(jī)、低溫風(fēng)機(jī)和冷風(fēng)機(jī)的風(fēng)量分別為56 800、37 864和11 000 m3/h;干燥機(jī)平均排糧量約為12.5 t/h。試驗(yàn)主要測(cè)試儀器如表1所示。

      圖3 干燥機(jī)結(jié)構(gòu)圖

      試驗(yàn)過(guò)程中,自主開(kāi)發(fā)了實(shí)時(shí)跟蹤記錄從換熱器進(jìn)入風(fēng)道的高溫干燥段(HDS,High drying segment)、低溫干燥段(LDS,Low drying segment)與冷卻段(CS,Cooling segment)的進(jìn)風(fēng)溫度、各干燥段排氣溫濕度和環(huán)境溫濕度的數(shù)據(jù)采集系統(tǒng),系統(tǒng)界面如圖4所示,系統(tǒng)每隔5 min保存數(shù)據(jù)一次。待工作穩(wěn)定后,連續(xù)采集干燥機(jī)的氣流狀態(tài)變化數(shù)據(jù),同時(shí)分時(shí)段對(duì)各干燥段和排糧口的糧食采樣進(jìn)行含水率和糧溫測(cè)定,采樣點(diǎn)位置如圖4所示。

      表1 試驗(yàn)測(cè)試儀器

      圖4 數(shù)據(jù)采集系統(tǒng)界面

      3.2 試驗(yàn)結(jié)果及分析

      由于連續(xù)式干燥機(jī)內(nèi)糧食經(jīng)歷所有干燥過(guò)程的時(shí)長(zhǎng)約為5~10 h,為準(zhǔn)確、客觀地分析干燥系統(tǒng)能效,需連續(xù)記錄足夠的過(guò)程參數(shù)求平均。因此,待干燥機(jī)達(dá)到穩(wěn)定工作狀態(tài)后,連續(xù)3 d跟蹤記錄干燥現(xiàn)場(chǎng)數(shù)據(jù),記錄數(shù)據(jù)按每小時(shí)求平均,隨機(jī)選取2015年7月25日10:00-20:00連續(xù)10 h干燥現(xiàn)場(chǎng)數(shù)據(jù)進(jìn)行分析,試驗(yàn)結(jié)果如表2和表3所示。

      表2 5HNH-15型連續(xù)式干燥機(jī)熱風(fēng)干燥試驗(yàn)測(cè)試數(shù)據(jù)

      表3 5HNH-15型連續(xù)式干燥機(jī)能效評(píng)價(jià)

      由表2和表3可以看出:

      1)在試驗(yàn)條件下,干燥機(jī)內(nèi)各干燥段能量利用效果較好。在高溫干燥段,排氣熱損失率和干燥室熱損失率最高不超過(guò)6.68%和11.09%,干燥室熱效率和?效率不低于83.02%和68.10%;在低溫干燥段,排氣熱損失率和干燥室熱損失率最高不超過(guò)21.26%和9.37%,干燥室熱效率和?效率不低于69.37%和56.22%;而在冷卻段,由于糧溫比風(fēng)溫高,風(fēng)對(duì)稻谷有明顯的降溫去水作用。從表2和表3可以看出,干燥室的平均熱效率和?效率分別為80.24%和64.52%,說(shuō)明干燥過(guò)程的能量匹配比較理想,但仍有一定的提升空間。

      2)從最初干燥室的熱損失率為1.86%,而在干燥后期為21.26%,對(duì)應(yīng)的干燥室的熱效率由最初的89.09%降低到了69.37%,干燥室的?效率由最初的72.55%降低到56.22%,證實(shí)了糧食熱風(fēng)干燥消耗的能量中不僅有主觀?,也包含有客觀?,評(píng)價(jià)干燥能效不能忽視客觀干燥?的作用。

      3)整個(gè)干燥過(guò)程,稻谷的平均單位熱耗量為 2 944.6 kJ/kg,與國(guó)標(biāo)≤7 400 kJ/kg相比,節(jié)能達(dá)到60.2%,系統(tǒng)節(jié)能效果明顯。

      4)稻谷在干燥機(jī)內(nèi)經(jīng)歷的是先升溫再降溫的過(guò)程,在冷卻段,經(jīng)過(guò)常溫空氣的冷卻,稻谷得到了很好降溫。在整個(gè)干燥過(guò)程中,糧溫隨含水率的降低而緩慢升高,最高不超過(guò)38.0 ℃,溫度基本接近或者低于稻谷玻璃態(tài)轉(zhuǎn)化溫度[30],較好的保證了稻谷干燥品質(zhì)。

      4 結(jié) 論

      1)在試驗(yàn)條件下,干燥機(jī)內(nèi)各干燥段能量利用效果較好。在高溫和低溫干燥段,排氣和干燥室熱損失率最高分別不超過(guò)6.68%、11.09%和21.26%、9.37%,熱效率和?效率不低于83.02%、68.1%和69.37%、56.22%;在冷卻段,由于糧溫比風(fēng)溫高,風(fēng)對(duì)稻谷有明顯的降溫去水作用。

      2)稻谷的平均單位熱耗量為2 944.6 kJ/kg,與國(guó)標(biāo)≤7 400 kJ/kg相比,節(jié)能達(dá)到60.2%,系統(tǒng)節(jié)能效果明顯。

      3)合理設(shè)計(jì)稻谷干燥工藝過(guò)程,可使稻谷溫度基本接近或者低于稻谷玻璃態(tài)轉(zhuǎn)化溫度,較好的保證了稻谷干燥品質(zhì)。

      [1] 孫超,耿楷敏. 糧食干燥技術(shù)裝備發(fā)展現(xiàn)狀及建議[J]. 農(nóng)機(jī)質(zhì)量與監(jiān)督,2015(12):18-19.

      [2] 李長(zhǎng)友. 廣東省糧食干燥機(jī)械化裝備技術(shù)發(fā)展研討[J]. 現(xiàn)代農(nóng)業(yè)裝備,2014(1):41-48.

      [3] 陳坤杰,李娟玲,楊明毅,等. 稻谷固定床式深層干燥試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(2):58-61.

      Chen Kunjie, Li Juanling, Yang Mingyi, et al. Drying experiments of paddy in a deep fixed-bed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 58-61. (in Chinese with English abstract)

      [4] 胡萬(wàn)里,李長(zhǎng)友,徐鳳英. 稻谷薄層快速干燥工藝的試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(4):103-106.

      Hu Wanli, Li Changyou, Xu Fengying. Experimental study on fast dry craft of rough rice thin layer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(4): 103-106. (in Chinese with English abstract)

      [5] 殷麗春,毛志懷. 玉米薄層干燥的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2005(1):197-198.

      Yin Lichun, Mao Zhihuai. Research on thin-layer maize drying[J]. Journal of Agricultural Mechanization Research, 2005(1): 197-198.(in Chinese with English abstract)

      [6] 馬興灶,李長(zhǎng)友,張曉立,等. 溫度勢(shì)差驅(qū)動(dòng)玉米去水試驗(yàn)研究[J]. 農(nóng)產(chǎn)品加工:學(xué)刊,2010(10):8-10.

      Ma Xingzao, Li Changyou, Zhang Xiaoli, et al. Dehydration of maize by temperature difference [J]. Academic Periodical of Farm Products Processing, 2010(10): 8-10. (in Chinese with English abstract)

      [7] 劉啟覺(jué). 高水分稻谷干燥工藝試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(2):135-139.

      Liu Qijue. Experimental research on drying technology for high moisture content paddy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 135-139. (in Chinese with English abstract)

      [8] 鄭先哲,夏吉慶,楊悅乾. 增濕加熱稻谷干燥工藝的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(3):81-83.

      Zheng Xianzhe, Xia Jiqing, Yang Yueqian. Experimental study on paddy drying technology by using humidified and heated air[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 81-83. (in Chinese with English abstract)

      [9] 王潤(rùn)發(fā),方壯東,王鵬程,等. 稻谷多場(chǎng)協(xié)同干燥系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2017,39(6):96-100.

      Wang Runfa, Fang Zhuangdong, Wang Pengcheng, et al. Design and experiment of multi-field synergy drying system for paddy[J]. Journal of Agricultural Mechanization Research, 2017, 39(6): 96-100. (in Chinese with English abstract)

      [10] 王丹陽(yáng),李成華,佟玲,等. 深床干燥工藝參數(shù)對(duì)稻谷干燥比能耗的影響[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,39(5):593-597.

      Wang Danyang, Li Chenghua, Tong Ling, et al. Influence of drying parameters on efficiency rate of rice in a deep fixed-bed [J]. Journal of Shenyang Agricultural University, 2008, 39(5): 593-597. (in Chinese with English abstract)

      [11] Motevali Ali, Minaei Saeid, Khoshtagaza Mohammad Hadi. Evaluation of energy consumption in different drying methods [J]. Energy Conversion & Management, 2011, 52(2): 1192-1199.

      [12] Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles[J]. Exergy An International Journal, 2002, 2(2): 87-98.

      [13] Sarker Md Sazzat Hossain, Ibrahim Mohd Nordin, Aziz Norashikin Abdul, et al. Energy and exergy analysis of industrial fluidized bed drying of paddy[J]. Energy, 2015, 84: 131-138.

      [14] 李長(zhǎng)友,麥智煒,方壯東,等. 種子循環(huán)干燥系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):242-248.

      Li Changyou, Mai Zhiwei, Fang Zhuangdong, et al. Development of seed circulation drying system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 242-248. (in Chinese with English abstract)

      [15] 邸坤,李杰,馬云霞,等. 我國(guó)糧食干燥節(jié)能途徑[J]. 干燥技術(shù)與設(shè)備,2005,3(4):207-210.

      Di Kun, Li Jie, Ma Yunxia, et al. Approaches to energy saving in grain drying process[J]. Drying Technology & Equipment,2005, 3(4): 207-210. (in Chinese with English abstract)

      [16] 王德華,董殿文,汪喜波,等. 干燥系統(tǒng)節(jié)能減排技術(shù)研究與實(shí)施[J]. 糧食加工,2009,34(3):63-77.

      [17] 尹曉慧,尹思萬(wàn). 順流連續(xù)式糧食干燥機(jī)節(jié)能工藝探討[J]. 現(xiàn)代化農(nóng)業(yè),2009(4):42.

      [18] 李長(zhǎng)友,張燁,麥智煒. 高濕糧食貯藏干燥機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(4):231-235.

      Li Changyou, Zhang Ye, Mai Zhiwei. Design and experiment of dryer for high moisture grain storage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 231-235. (in Chinese with English abstract)

      [19] 李長(zhǎng)友,馬興灶,麥智煒. 糧食熱風(fēng)干燥含水率在線模型解析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):10-20.

      Li Changyou, Ma Xingzao, Mai Zhiwei. Analytical study on on-line model of moisture in hot air drying process of grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 10-20. (in Chinese with English abstract)

      [20] 李長(zhǎng)友,方壯東. 高濕稻谷多段逆流干燥緩蘇解析模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):179-184.

      Li Changyou, Fang Zhuangdong. Analytical models of multistage counter flow drying and tempering process of grain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 179-184. (in Chinese with English abstract)

      [21] 李長(zhǎng)友,麥智煒,方壯東. 糧食水分結(jié)合能與熱風(fēng)干燥動(dòng)力解析法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):236-242.

      Li Changyou, Mai Zhiwei, Fang Zhuangdong. Analytical study of grain moisture binding energy and hot air drying dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 236-242. (in Chinese with English abstract)

      [22] 李長(zhǎng)友,馬興灶,方壯東,等. 糧食熱風(fēng)干燥熱能結(jié)構(gòu)與解析法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):220-228.

      Li Changyou, Ma Xingzao, Fang Zhuangdong, et al. Thermal energy structure of grain hot air drying and analytical method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 220-228. (in Chinese with English abstract)

      [23] 李長(zhǎng)友. 糧食熱風(fēng)干燥系統(tǒng)?評(píng)價(jià)理論研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):1-6.

      Li Changyou. Exergy evaluation theory of hot air drying system for grains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 1-6. (in Chinese with English abstract)

      [24] 馬興灶. 糧食干燥水分在線解析與能效評(píng)價(jià)研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2016.

      Ma Xingzao. Moisture Online Analysis and Energy Efficiency Evaluation of Grain Drying[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract)

      [25] 李長(zhǎng)友. 熱工基礎(chǔ)[M]. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2011.

      [26] Midilli A, Kucuk H. Energy and exergy analyses of solar drying process of pistachio[J]. Energy, 2003(28): 539-556.

      [27] Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles[J]. Exergy 2002(2): 87-98.

      [28] 張燁. 高濕糧食集中干燥裝備工藝系統(tǒng)設(shè)計(jì)與試驗(yàn)[D]. 廣州:華南農(nóng)業(yè)大學(xué), 2015.

      Zhang Ye. Designing and Testing on Concentrated Drying Equipment Process System of High Moisture Grain[D]. Guangzhou: South China Agricultural University, 2015. (in Chinese with English abstract)

      [29] 李長(zhǎng)友,麥智煒,方壯東,等. 高濕稻谷節(jié)能干燥工藝系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):1-9.

      Li Changyou, Mai Zhiwei, Fang Zhuangdong, et al. Design and test on energy-saving drying system for paddy with high moisture content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 1-9. (in Chinese with English abstract)

      [30] 劉木華. 水稻干燥品質(zhì)的模擬和控制機(jī)理研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2000.

      Liu Muhua. Study on Simulation and Control Mechanism of Rice Drying Quality[D]. Beijing: China Agricultural University, 2000. (in Chinese with English abstract)

      Ma Xingzao, Fang Zhuangdong, Li Changyou. Energy efficiency evaluation and experiment on grain counter-flow drying system based on exergy analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 285-291. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.037 http://www.tcsae.org

      Energy efficiency evaluation and experiment on grain counter-flow drying system based on exergy analysis

      Ma Xingzao1,2, Fang Zhuangdong2, Li Changyou2※

      (1.524048,; 2.510642,)

      Grain drying is not only restrained by human operation behavior, but also influenced by a lot of objective factors, such as environmental factors, grain physical properties, and grain flow characteristics, as well as the processing technology and geometry of the dryer. In order to objectively and rationally evaluate the energy efficiency of the drying system, and realize the high efficiency and energy saving of grain drying, based on the heat and mass balance calculation of drying system, as well as the evaluation method of thermal efficiency and exergy efficiency, the energy utilization degree of counter-flow continuous drying process system was investigated under the change of airflow condition. The test results showed that the energy utilization effect of each drying segment in the dryer was better under the experimental condition. In high temperature drying segment, the exhaust gas heat loss and heat loss of drying chamber were not higher than 6.68% and 11.09%, respectively, and the thermal efficiency and exergy efficiency were not less than 83.02% and 68.1%, respectively. In low temperature drying segment, the exhaust gas heat loss and heat loss of drying chamber were not higher than 21.26% and 9.37%, respectively, and the thermal efficiency and exergy efficiency were not less than 69.37% and 56.22%, respectively. In cooling segment, due to that the grain temperature was higher than air temperature, which meant that the air had obvious cooling and dehydration effect on the grain. The average thermal efficiency and exergy efficiency of drying system were 80.24% and 64.52% respectively, which showed that the energy matching effect during grain drying process was good. The heat loss of drying chamber initially was 1.86% while 21.26% in later stage. The corresponding thermal efficiency of drying chamber reduced from 89.09% to 69.37%. The exergy efficiency of drying chamber reduced from 72.55% to 56.22%, which indicated that the energy consumption of grain drying not only had subjective exergy, but also contained objective exergy, and the evaluation of drying process and dryer energy utilization efficiency could not just stay on the subjective thermal efficiency, and should consider the effect of objective energy. Test showed that the average unit heat consumption of grain was 2 944.6 kJ/kg, and compared with the national standard, which was less than 7 400 kJ/kg, the highest energy saving could reached 60.2%. At the same time, the grain temperature was raised slowly with the moisture content decreasing during grain drying, and the highest temperature did not exceed 38.0 ℃, close to or below the glass transition temperature of grain, which showed that with the reasonable design of the grain drying process, the drying quality of grain could be better ensured. The results provide an analytical reference to improve grain drying efficiency and explore the ways of energy saving drying, as well as provide reference to design the grain drying process system and establish energy efficiency evaluation standard for grain drying.

      energy conservation; drying; system analysis; grain; energy efficiency evaluation; exergy analysis

      10.11975/j.issn.1002-6819.2017.22.037

      S226.6

      A

      1002-6819(2017)-22-0285-07

      2017-08-18

      2017-11-09

      國(guó)家自然科學(xué)基金(31371871;31671783),廣東省科技計(jì)劃項(xiàng)目(2014B020207001),湛江市非資助科技攻關(guān)計(jì)劃項(xiàng)目(2017B01095)。

      馬興灶,廣東汕頭人,講師,博士,主要從事農(nóng)產(chǎn)品干燥和智能裝備技術(shù)研究。Email:mxz2004350118@163.com。

      李長(zhǎng)友,陜西蒲城人,教授,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備技術(shù)研究。Email:lichyx@scau.edu.cn。

      中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員(B041100045S)

      猜你喜歡
      濕空氣干燥機(jī)稻谷
      風(fēng)洞內(nèi)氣象要素對(duì)濕空氣含鹽濃度的影響規(guī)律
      謙卑的稻谷
      干燥機(jī)槳葉軸焊接變形控制及耐壓試驗(yàn)研究
      玉米價(jià)瘋漲 稻谷也湊熱鬧
      用濕空氣燒飯
      少兒科技(2020年2期)2020-05-13 14:34:55
      蒸汽干燥機(jī)轉(zhuǎn)速控制
      用濕空氣做飯
      田野稻谷香
      春節(jié)過(guò)后 稻谷行情穩(wěn)中趨弱
      滾筒式干燥機(jī)嚴(yán)重振動(dòng)大修處理
      铁力市| 清远市| 泾阳县| 太保市| 五台县| 荃湾区| 永丰县| 枣强县| 从化市| 建水县| 婺源县| 永胜县| 盱眙县| 西宁市| 宁安市| 拜城县| 德惠市| 仙桃市| 扶绥县| 邹城市| 东兰县| 隆昌县| 合作市| 星座| 兰西县| 许昌县| 喀喇沁旗| 星子县| 雷州市| 双城市| 阿拉善左旗| 乳山市| 晋州市| 洮南市| 财经| 城固县| 普宁市| 永年县| 博湖县| 宁南县| 林周县|