張帥堂,王紫煙,鄒修國(guó),錢 燕,余 磊
?
基于高光譜圖像和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的茶葉病斑識(shí)別
張帥堂,王紫煙,鄒修國(guó)※,錢 燕,余 磊
(南京農(nóng)業(yè)大學(xué)工學(xué)院/江蘇省智能化農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,南京 210031)
為實(shí)現(xiàn)茶葉病害的快速高效識(shí)別,提出了基于高光譜成像技術(shù)和圖像處理技術(shù)融合的茶葉病斑識(shí)別方法。利用高光譜成像技術(shù)采集了炭疽病、赤葉斑病、茶白星病、健康葉片等4類樣本的高光譜圖像。提取感興趣區(qū)域敏感波段的相對(duì)光譜反射率作為光譜特征。通過2次主成分分析,確定第二次主成分分析后的第二主成分圖像為特征圖像,基于顏色矩和灰度共生矩陣提取特征圖像的顏色特征和紋理特征。利用BP神經(jīng)網(wǎng)絡(luò)對(duì)顏色、紋理和光譜特征向量融合數(shù)據(jù)進(jìn)行檢驗(yàn),識(shí)別率為89.59%;為提高識(shí)別率,提出遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的方法,使病斑識(shí)別率提高到94.17%,建模時(shí)間也縮短至1.7s。試驗(yàn)結(jié)果表明:高光譜成像技術(shù)和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)可以快速準(zhǔn)確的實(shí)現(xiàn)對(duì)茶葉病斑的識(shí)別,可為植保無人機(jī)超低空遙感病害監(jiān)測(cè)提供參考。
算法;優(yōu)化;神經(jīng)網(wǎng)絡(luò);高光譜成像技術(shù);主成分分析;光譜特征
茶葉作為一種多年生經(jīng)濟(jì)作物,在中國(guó)有著悠久的歷史,因其具有抗菌、消炎、防輻射、調(diào)血脂等多種功效而深受消費(fèi)者的青睞[1]。但在茶葉的種植和生產(chǎn)過程中,病害問題極大影響了茶葉的品質(zhì)和產(chǎn)量,損失了經(jīng)濟(jì)效益,如何準(zhǔn)確及時(shí)的發(fā)現(xiàn)病害并加以防治是解決問題的關(guān)鍵所在。目前對(duì)于植物病害的檢測(cè)方法主要有感官判斷、理化檢驗(yàn)、常規(guī)機(jī)器視覺等方法[2],這些方法誤判率高,易造成農(nóng)藥噴灑浪費(fèi)和環(huán)境污染,并且對(duì)于大面積的茶園病害識(shí)別耗費(fèi)時(shí)間長(zhǎng)、成本高,不能滿足快速、高效的要求。因此,尋找一種快速、高效的識(shí)別方法對(duì)農(nóng)業(yè)植保具有重要意義。
近年來,融合了光譜信息和圖像信息的高光譜成像技術(shù)在無損檢測(cè)、農(nóng)產(chǎn)品分級(jí)、安全評(píng)定等方面顯示出了極大的優(yōu)越性[3]。國(guó)內(nèi)外學(xué)者也已經(jīng)取得了一些研究成果[4-6]。Bravo等[7]利用可見光以及近紅外波段的光譜反射率對(duì)小麥進(jìn)行了早期黃銹病的診斷;李錦衛(wèi)等[8]基于2種顏色空間對(duì)馬鈴薯表面缺陷進(jìn)行了分割識(shí)別,效果顯著;Leckie等[9]利用可見光以及近紅外內(nèi)7個(gè)特征波段的光譜圖像對(duì)松樹蚜蟲侵害進(jìn)行了檢測(cè)。馮雷等[10]利用茄子葉片高光譜圖像數(shù)據(jù)提取了3個(gè)特征波段下的特征圖像,并基于最小二乘支持向量機(jī)構(gòu)建了鑒別模型,模型判斷準(zhǔn)確率為97.5%。吳迪等[11]利用多光譜成像技術(shù)對(duì)茄子灰霉病進(jìn)行檢測(cè),通過550、650和800 nm共3個(gè)波段的圖像對(duì)茄子葉片進(jìn)行病斑識(shí)別。王曉慶等[12]研究發(fā)現(xiàn),茶樹受到炭疽病脅迫程度存在2個(gè)敏感波段742~794 nm和1 374~2 500 nm,基于一階微分的植被指數(shù)(R-R)/ (R+R)對(duì)炭疽病的危害程度具有很好的預(yù)測(cè)效果。目前,國(guó)內(nèi)外高光譜成像技術(shù)在茶樹病蟲害的研究涉及的病蟲害種類比較單一[3],本文嘗試?yán)酶吖庾V成像技術(shù)對(duì)雨花茶茶樹冠層表面最普遍、危害較大的3種病害進(jìn)行試驗(yàn)[13],提取其光譜特征和圖像特征,結(jié)合多種算法實(shí)現(xiàn)對(duì)病斑的識(shí)別分類,以期為農(nóng)業(yè)植保無人機(jī)超低空遙感病害檢測(cè)提供參考。
本試驗(yàn)所采用的研究對(duì)象為南京雨花茶葉片。從南京市六合區(qū)平山森林公園茶葉生產(chǎn)基地(經(jīng)度118°,緯度32°)采集早期茶樹灌叢表面近頂葉部位生長(zhǎng)狀況基本一致、葉片長(zhǎng)度范圍在50~60 mm的病害葉片和健康葉片若干。葉片采集為晴天上午9:00,環(huán)境溫度19 ℃,相對(duì)空氣濕度45%,采集完后依次裝入密封袋,放入微型冰箱保鮮,溫度設(shè)置0 ℃,并立即送往實(shí)驗(yàn)室進(jìn)行試驗(yàn)[14]。數(shù)據(jù)采集前經(jīng)過植保研究人員進(jìn)一步對(duì)比確認(rèn),最終篩選出用于試驗(yàn)的炭疽病葉片樣本80個(gè)、赤葉斑葉片樣本72個(gè)、茶白星葉片樣本80個(gè)、健康葉片樣本60個(gè)。
試驗(yàn)采用五鈴光學(xué)(ISUZU OPTICS)高光譜成像系統(tǒng),如圖1所示。系統(tǒng)主要包括:高光譜圖像光譜儀(ImSpector V10E)、CCD攝像機(jī)(GEV-B1621M)、2個(gè)150 W的光纖鹵素?zé)?、電位移控制臺(tái)、暗箱(1 200 mm× 500 mm×1 400 mm)、控制箱、一臺(tái)高性能計(jì)算機(jī)等。高光譜攝像機(jī)光譜范圍為358~1 021 nm,光譜分辨率為2.8 nm。
1.相機(jī) 2.光譜儀 3.鏡頭 4.鹵素光源 5.茶葉樣本 6.暗箱 7.電動(dòng)平移臺(tái) 8.步進(jìn)電機(jī) 9.移動(dòng)平臺(tái)控制器 10.計(jì)算機(jī)
光譜數(shù)據(jù)采集時(shí)的相關(guān)參數(shù)設(shè)置如下:圖像分辨率1 632像素×1 415像素,曝光時(shí)間50 ms,電位移臺(tái)速度1.06 mm/s,調(diào)節(jié)焦距保證圖像清晰不失真,確定物距770 mm。采集數(shù)據(jù)時(shí)暗箱內(nèi)溫度20 ℃,先對(duì)反射率為99%標(biāo)準(zhǔn)白色校正板進(jìn)行采集得到全白標(biāo)定圖像,然后蓋上鏡頭蓋采集得到全黑的標(biāo)定圖像,最后再進(jìn)行葉片樣本數(shù)據(jù)采集。
為減少葉面塵降對(duì)光譜數(shù)據(jù)采集的影響,葉片放入載物臺(tái)之前,用軟毛除塵刷清理干凈表面,最后放入載物臺(tái),調(diào)整到適當(dāng)位置,通過高光譜圖像采集軟件得到358~1 021 nm范圍616個(gè)波長(zhǎng)的原始高光譜圖像I。
高光譜數(shù)據(jù)處理都是基于ENVI 5.3(Exelis Visual Information Solutions,USA)、Excel 2010和Matlab 2016a(MathWorks,USA)軟件平臺(tái)。數(shù)據(jù)處理的硬件條件為:16GB RAM、Intel(R)Coer(TM)i5-6500 CPU。
為保證光譜數(shù)據(jù)的準(zhǔn)確性并且消除采集過正中的噪聲干擾,按照式(1)對(duì)原始高光譜圖像I進(jìn)行校正得到校正后的高光譜圖像[15]。
式中為校正后的高光譜圖像;I為高光譜系統(tǒng)采集的原始高光譜圖像;為高光譜數(shù)據(jù)采集得到的全黑標(biāo)定圖像(反射率接近0);為高光譜數(shù)據(jù)采集得到的全白標(biāo)定圖像(反射率接近99%)。
由于高光譜圖像中的每一個(gè)像素點(diǎn)都對(duì)應(yīng)了一個(gè)全波段的光譜信息,因此根據(jù)樣本病斑區(qū)域平均分布特點(diǎn)選取以主葉脈為軸靠近葉尖一側(cè)200像素×200像素的區(qū)域?yàn)楦信d趣區(qū)域(region of interest, ROI)。本研究中,分別提取了80個(gè)炭疽病葉片、72個(gè)赤葉斑病葉片、80個(gè)茶白星病葉片和60個(gè)健康葉片4種樣本各自ROI的平均光譜反射率,如圖2所示。
圖2 樣本相對(duì)光譜反射率曲線
從圖2觀察得出,高光譜數(shù)據(jù)在358~400 nm的近紫外、紫光波段和980~1 021 nm的近紅外波段存在較大噪聲。為提高數(shù)據(jù)處理的準(zhǔn)確性,減少噪聲干擾,參考光譜數(shù)據(jù)處理的方法[16],剔除首尾共135個(gè)波段,最終得到用于光譜分析的有效波段范圍是430~950 nm,共481個(gè)波段。
本試驗(yàn)采集的高光譜圖像是一個(gè)三維數(shù)據(jù)立方體,相比于二維的圖像和一維的光譜,高光譜圖像波段豐富、圖譜合一、光譜分辨率高,包含信息多,但相鄰波段的相關(guān)性很大,數(shù)據(jù)冗余度高,降低了后期處理的準(zhǔn)確度和速度[17-18]。
主成分分析(principal component analysis, PCA)能夠有效去除數(shù)據(jù)之間的相關(guān)性,常用來數(shù)據(jù)降維。本試驗(yàn)利用PCA對(duì)剔除噪聲后430~950 nm波段的樣本高光譜圖像進(jìn)行降維,得到主成分(principal component, PC)圖像。根據(jù)協(xié)方差貢獻(xiàn)率的大小,確定PC圖像。由表1可知,樣本前4個(gè)主成分的累積貢獻(xiàn)率達(dá)到了99.89%以上,而PC1的貢獻(xiàn)率達(dá)到了97%以上,最能表征圖像的原始信息[19]。
表1 主成分累積貢獻(xiàn)率
試驗(yàn)中,對(duì)430~950 nm波段進(jìn)行第一次主成分分析,耗時(shí)較長(zhǎng),計(jì)算速度慢,因此根據(jù)PC1尋找特征波長(zhǎng)進(jìn)行第二次主成分分析[20]。PC1是481個(gè)波段下的圖像經(jīng)過線性組合的結(jié)果,比較線性組合中的各權(quán)重系數(shù),選出4類樣本最大的權(quán)重系數(shù)所對(duì)應(yīng)的波長(zhǎng)為762、700、721、719 nm。對(duì)優(yōu)選出來的4個(gè)特征波長(zhǎng)進(jìn)行第二次主成分分析,圖3是樣本第二次主成分分析后的PC圖像。
圖3 第二次主成分分析后4幅主成分圖像
由圖3可知,PC1圖像貢獻(xiàn)率雖然最大,但病斑區(qū)域和非病斑區(qū)域?qū)Ρ炔幻黠@,不利于病斑提取。炭疽病和茶白星2種病斑在PC2圖像中均高亮顯示,赤葉斑病斑區(qū)域在PC2圖像上與正常部位有明顯區(qū)分。PC3圖像中,赤葉斑和茶白星病斑區(qū)域與非病斑區(qū)域差異明顯,但炭疽病病斑區(qū)域和非病斑區(qū)域灰度級(jí)比較接近。PC4圖像在部分樣本中出現(xiàn)了重影的問題,且各類病斑區(qū)域和非病斑區(qū)域?qū)Ρ炔町愋 Mㄟ^觀察分析,不同種類病害葉片的病斑信息在PC2圖像中有明顯的特點(diǎn),最終確定PC2圖像作為后期病斑提取的特征圖像。
圖像分割是圖像處理的關(guān)鍵步驟,對(duì)病斑區(qū)域的準(zhǔn)確分割很大程度上影響了后期特征提取和算法驗(yàn)證的效果。為保證后期數(shù)據(jù)處理的準(zhǔn)確性,采用了最大類間方差法,又稱Otsu算法,其基本原理是以最佳閾值將灰度圖像的灰度值分割成2部分,使2部分之間方差最大,具有最大的分離性。圖4是對(duì)不同類型病斑區(qū)域分割前后的圖像。
觀察圖4可以得出,炭疽病和茶白星病病斑分割效果較好,但都存在葉脈根部和葉柄處微小區(qū)域誤分割的情況。赤葉斑病斑區(qū)域和葉片邊緣灰度值差異較小,分割效果一般,原因是由于樣本表面不平整導(dǎo)致的反射光線不均勻,在圖像處理時(shí)葉脈根部、葉柄和邊緣處產(chǎn)生了與病斑部位近似的灰度值。對(duì)得到的二值化圖像去除面積小于50的分割區(qū)域,并填充病斑中的孔洞,然后再將其與PC2圖像進(jìn)行運(yùn)算,最終得到只包含病斑區(qū)域的圖像。
圖4 不同類型病斑區(qū)域分割前后圖像
紋理特征描述了圖像區(qū)域所對(duì)應(yīng)的景物的表面性質(zhì)。通過觀察4類樣本葉片病斑區(qū)域和非病斑區(qū)域的紋理特征差異,將紋理特征作為識(shí)別病害的特征之一[21]?;叶裙采仃嚕╣ray-level co-occurrence matrix, GLCM)是一種通過研究灰度空間相關(guān)性來描述紋理的常用方法,可以用式(2)表示區(qū)域灰度共生矩陣(12)。
式中表示目標(biāo)區(qū)域中具有特定空間聯(lián)系的像素對(duì)的集合,右式分子表示了特定空間分布上灰度值分別為1和2的像素對(duì)的數(shù)量,(11)和(22)表示距離為的2個(gè)像素點(diǎn),#為集合的元素?cái)?shù)。
將預(yù)處理后的病斑樣本圖像和健康葉片的ROI區(qū)域圖像,在MATLAB中計(jì)算能量、對(duì)比度、相關(guān)度、平穩(wěn)度、熵等5個(gè)共生矩陣特征,在0°、45°、90°和135°共4個(gè)方向上取距離為2,得到20個(gè)紋理特征值,圖5顯示了樣本在4個(gè)方向上的紋理特征均值。
注:ASM表示能量,CON表示對(duì)比度,COR表示相關(guān)度,IDM表示平穩(wěn)度,ENT表示熵。
由圖5可知,4個(gè)方向上的對(duì)比度對(duì)4類樣本的區(qū)分效果良好,其中茶白星樣本的對(duì)比度在4類中顯示最大,說明茶白星病斑區(qū)域相比于其他3類,紋理溝較深,視覺效果清晰。炭疽病樣本的能量值總體上高于其他3類,反映出了炭疽病病斑區(qū)域的紋理較粗,因?yàn)榧y理越粗,能量越大。平穩(wěn)度方面,4類樣本差異并不大。在熵值方面則表現(xiàn)為炭疽病樣本最小,表明炭疽病葉斑圖像的非均勻程度較大。
顏色矩是一種通過計(jì)算矩來描述顏色分布的方法。顏色信息的分布主要集中在低階矩[22],一階矩描述平均顏色,二階矩描述顏色方差、三階矩描述顏色的偏移性[23-24]。本試驗(yàn)計(jì)算灰度圖像單通道的一至三階矩,用式(3)、(4)、(5)表示。
式中P是第個(gè)像素的第個(gè)顏色分量,是像素?cái)?shù)量。一階矩μ、二階矩σ、三階矩?分別反映了顏色的平均強(qiáng)度、不均勻性以及不對(duì)稱性[25]。
茶葉表面的光譜信息能夠反映其內(nèi)部生物化學(xué)組成信息。葉片受到病害侵襲后,會(huì)造成病害位置的葉綠素短缺,水分含量下降,可見光波段光譜反射率表現(xiàn)出極大的差異[26]。光譜曲線上反映為490~560 nm的綠色光區(qū)域和620~780 nm的紅色光區(qū)域反射率上升,而在近紅外光區(qū)域反射率下降[27]。通過觀察分析,4類樣本在560、640、780 nm共3個(gè)波段處光譜反射率差異較大,因此選定這3個(gè)波段所對(duì)應(yīng)的相對(duì)光譜反射率作為圖像的光譜特征。
為檢驗(yàn)光譜特征對(duì)分類的有效性,本文嘗試用2個(gè)特征向量組合進(jìn)行模型檢驗(yàn)。單通道的一階矩、二階矩、三階矩和0°、45°、90°、135°方向的能量、對(duì)比度、相關(guān)度、平穩(wěn)度、熵;單通道的一階矩、二階矩、三階矩和0°、45°、90°、135°方向的能量、對(duì)比度、相關(guān)度、平穩(wěn)度、熵和560、640、780 nm的相對(duì)光譜反射率[28]。組合1為顏色特征+紋理特征,組合2為顏色特征+紋理特征+光譜特征。
針對(duì)2組特征向量,本文采用2種模型對(duì)樣本的病斑進(jìn)行識(shí)別檢測(cè)。隨機(jī)選出50個(gè)炭疽病樣本、48個(gè)赤葉斑病樣本、50個(gè)茶白星病樣本和40個(gè)健康葉片樣本共188個(gè)作為訓(xùn)練集,其余104個(gè)作為測(cè)試集,分別用2種算法進(jìn)行檢驗(yàn)。
BP神經(jīng)網(wǎng)絡(luò)輸入層節(jié)點(diǎn)數(shù)與對(duì)應(yīng)的特征數(shù)量一致,輸出層節(jié)點(diǎn)設(shè)置為4,輸入層和隱含層傳遞函數(shù)為正切S型,輸出層傳遞函數(shù)為線性函數(shù)。隱含層節(jié)點(diǎn)個(gè)數(shù)由式(6)得到[29]。
式中為隱含層節(jié)點(diǎn)數(shù),為輸入層節(jié)點(diǎn)數(shù),為輸出層節(jié)點(diǎn)數(shù)。設(shè)置學(xué)習(xí)速率為0.05,訓(xùn)練精度為0.001,最大迭代次數(shù)為200。
采用臺(tái)灣大學(xué)林智仁博士開發(fā)的LibSVM對(duì)樣本實(shí)現(xiàn)一對(duì)一方式的多分類,選擇分類能力比較強(qiáng)的徑向基核函數(shù)作為SVM的核函數(shù)。用以上2種算法檢驗(yàn)結(jié)果如表2所示。
由表2檢驗(yàn)結(jié)果得出:顏色特征和紋理特征組成的特征向量組合對(duì)樣本的識(shí)別率普遍較低,2種算法對(duì)赤葉斑病測(cè)試集的分類效果略高于其他樣本;不同種類樣本的能量、對(duì)比度、相關(guān)度、平穩(wěn)度、熵等紋理特征值差異不大,很容易造成誤識(shí)別,這是特征向量組合1識(shí)別率普遍較低的重要原因。顏色特征、紋理特征和光譜特征組成的特征向量組合2,對(duì)4類樣本的識(shí)別率高于組合1;BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)對(duì)4類樣本測(cè)試集的識(shí)別率都高于83%,并且2種算法對(duì)赤葉斑病的識(shí)別率均達(dá)到了90%以上;不同葉片的光譜反射率存在著明顯的差異,組合2中包含的560、640和780 nm相對(duì)光譜反射率的光譜特征,能很好地區(qū)分4類樣本。
BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)通過特征向量組合2都能較好的區(qū)分4類葉片樣本。支持向量機(jī)對(duì)4類樣本測(cè)試集的平均識(shí)別率為86.67%,而BP神經(jīng)網(wǎng)絡(luò)對(duì)其平均識(shí)別率為89.59%,高于支持向量機(jī),且對(duì)于4類樣本的識(shí)別穩(wěn)定性較好,因此采用BP神經(jīng)網(wǎng)絡(luò)作為進(jìn)一步研究的分類算法[30]。
表2 不同算法下特征向量組合檢驗(yàn)結(jié)果
注:BP:反向傳播神經(jīng)網(wǎng)絡(luò);SVM:支持向量機(jī).
Note: BP stands for back propagation neural network;SVM stands for support vector machine.
通過BP神經(jīng)網(wǎng)絡(luò)建立的模型,能夠?qū)?類樣本進(jìn)行較準(zhǔn)確的識(shí)別。但該模型的輸入自變量多,且自變量之間存在著一定的關(guān)系,并非相互獨(dú)立,容易造成神經(jīng)網(wǎng)絡(luò)過擬合,從而影響模型的精度。因此,有必要將26個(gè)輸入自變量中起主要影響因素的自變量篩選出來參與建模。本文采用遺傳算法對(duì)建模自變量進(jìn)行優(yōu)化選擇。
遺傳算法模擬了自然選擇和遺傳中發(fā)生的復(fù)制、交叉和變異等現(xiàn)象,從一初始種群開始,通過隨機(jī)選擇、交叉、變異,產(chǎn)生一群更適應(yīng)環(huán)境的個(gè)體,使群體進(jìn)化到搜索空間中越來越好的區(qū)域,一代一代不斷繁衍進(jìn)化,最終收斂到一群最適應(yīng)環(huán)境的個(gè)體,從而得到問題的最優(yōu)解[31]。
用遺傳算法進(jìn)行優(yōu)化時(shí),將編碼長(zhǎng)度設(shè)置為26,種群大小設(shè)置為20,最大迭代次數(shù)設(shè)置為50。染色體每一位對(duì)應(yīng)一個(gè)輸入自變量,每一個(gè)位置基因取值都是1和0兩種情況。選取測(cè)試集數(shù)據(jù)均方誤差的倒數(shù)作為遺傳算法的適應(yīng)度函數(shù),經(jīng)過不斷迭代,最終篩選出具有代表性的輸出自變量參與建模。圖6為種群適應(yīng)度函數(shù)進(jìn)化曲線圖。
圖6 種群適應(yīng)度函數(shù)進(jìn)化曲線
遺傳算法優(yōu)化計(jì)算后,篩選出的一組自變量編號(hào)為1,2,4,5,6,10,11,14,19,20,23,24,25,26,分別對(duì)應(yīng)顏色一階矩、二階矩,0°方向能量、對(duì)比度、相關(guān)性,45°方向?qū)Ρ榷?、相關(guān)性,90°方向能量,135°方向能量、對(duì)比度、熵,560、640、780 nm相對(duì)光譜反射率。參與建模的自變量個(gè)數(shù)大約為全部輸入的一半。表3是優(yōu)化前后BP神經(jīng)網(wǎng)絡(luò)對(duì)4類樣本測(cè)試集樣本的識(shí)別率。
表3 優(yōu)化前后BP網(wǎng)絡(luò)測(cè)試集識(shí)別率
注:BP:反向傳播神經(jīng)網(wǎng)絡(luò);GA_BP:遺傳算法優(yōu)化的BP。
Note: BP stands for back propagation neural network;GA_BP stands for genetic algorithm optimize BP.
對(duì)比優(yōu)化前后的結(jié)果可以發(fā)現(xiàn),使用14個(gè)自變量建模后,BP神經(jīng)網(wǎng)絡(luò)對(duì)炭疽病、茶白星病、健康葉片的識(shí)別率顯著提高,整體的平均識(shí)別率達(dá)到了94.17%。模型建立時(shí)間也由優(yōu)化前的6.6縮短到了1.7 s。
本文采用光譜信息和圖像信息融合技術(shù),針對(duì)茶葉病害快速識(shí)別的問題,優(yōu)選出病害識(shí)別的特征向量,建立茶葉病害快速識(shí)別模型,研究表明:
1)由光譜特征、顏色特征和紋理特征組成的特征向量組合2,在BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)2種算法的檢驗(yàn)下,分類效果明顯優(yōu)于只有顏色特征和紋理特征組成的特征向量組合1;對(duì)4類樣本的平均識(shí)別率達(dá)到了89.59%和86.67%。這表明了560、640和780 nm相對(duì)光譜反射率構(gòu)成的光譜特征對(duì)茶葉病害的分類效果顯著。
2)基于遺傳算法對(duì)BP神經(jīng)網(wǎng)絡(luò)輸入特征進(jìn)行優(yōu)化降維,將26維輸入特征降為14維。通過識(shí)別檢驗(yàn),4類樣本的平均識(shí)別率提高到了94.17%,同時(shí)建模時(shí)間也縮短至1.7 s。
利用高光譜成像技術(shù)和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)可實(shí)現(xiàn)對(duì)茶葉病斑的高效識(shí)別,但當(dāng)受到自然條件下光照、背景的影響時(shí),識(shí)別效率較低,需做進(jìn)一步探討,為無人機(jī)超低空遙感病害監(jiān)測(cè)提供有價(jià)值的參考。
[1] 宛曉春,李大祥,張正竹,等. 茶葉生物化學(xué)研究進(jìn)展[J].茶葉科學(xué),2015,35(1):1-10. Wan Xiaochun, Li Daxiang, Zhang Zhengzhu, et al. Advances in biochemistry of tea[J]. Tea Science, 2015, 35(1): 1-10. (in Chinese with English abstract)
[2] 趙娟,彭彥昆,Sagar Dhakal,等. 基于機(jī)器視覺的蘋果外觀缺陷在線檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(1):260-263. Zhao Juan, Peng Yankun, Sugar Dhakal, et al. On-line detection of apple surface defect based on image processing method[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(1): 260-263. (in Chinese with English abstract).
[3] 劉飛,李春華,龔雪蛟,等. 高光譜成像技術(shù)在茶葉中的應(yīng)用研究進(jìn)展[J].核農(nóng)學(xué)報(bào),2016,30(7):1386-1394. Liu Fei, Li Chunhua, Gong Xuejiao, et al. Research progress on application of hyperspectral imaging techniques in tea science[J].Journal of Nuclear Agricultural Science, 2016, 30(7): 1386-1394. (in Chinese with English abstract)
[4] 鄒修國(guó),丁為民,劉德營(yíng),等.基于改進(jìn)Hu矩和遺傳神經(jīng)網(wǎng)絡(luò)的稻飛虱識(shí)別系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(6):222-226. Zou Xiuguo, Ding Weimin, Liu Deying, et al. Recognition system of rice planthopper based on improved Hu moment and genetic algorithm optimized BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 222-226. (in Chinese with English abstract)
[5] 伍南,劉君昂,周國(guó)英,等. 利用高光譜微分指數(shù)反演油茶炭疽病病情指數(shù)的研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(6):777-781. Wu Nan, Liu Jun'ang, Zhou Guoying, et al. Using hyper-spectral derivative indices to inverse Colletotrichum gloeosporioides disease indices[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6): 777-781. (in Chinese with English abstract)
[6] 寧井銘,孫京京,朱小元,等. 基于圖像和光譜信息融合的紅茶凋萎程度量化判別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):303-308. Ning Jingming, Sun Jingjing, Zhu Xiaoyuan, et al. Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 303-308. (in Chinese with English abstract)
[7] Bravo C, Moshou D. Early disease detection in wheat field useing spectral reflectance[J]. Biosystems Engineering, 2003, 84(22): 137-145.
[8] 李錦衛(wèi),廖桂平,金晶,等. 基于灰度截留分割與十色模型的馬鈴薯表面缺陷檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):236-242. Li Jinwei, Liao Guiping, Jin Jing, et al. Method of potato external defects detection based on fast gray intercept threshold segmentation algorithm and ten-color model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 236-242. (in Chinese with English abstract)
[9] Leckie D G, Cloney E, Joyce S P. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(1): 61-77.
[10] 馮雷,張德榮,陳雙雙,等. 基于高光譜成像技術(shù)的茄子葉片灰霉病早期檢測(cè)[J]. 浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2012,38(3):311-317. Feng Lei, Zhang Derong, Chen Shuangshuan, et al. Early detection of gray mold on eggplant leaves using hyperspectral imaging technique[J]. Journal of Zhejiang University: Agric. & Life Sci., 2012, 38(3): 311-317. (in Chinese with English abstract)
[11] 吳迪,朱登勝,何勇,等. 基于地面多光譜成像技術(shù)的茄子灰霉病無損檢測(cè)研究[J]. 光譜學(xué)與光譜分析,2008,28(7):1496-1500. Wu Di, Zhu Dengsheng, He Yong, et al. Nondestructive Detection of grey mold of eggplant based on ground multi-spectral imaging sensor[J]. Spectoscopy and Spectral Analysis, 2008, 28(7): 1496-1500. (in Chinese with English abstract)
[12] 王曉慶,冉烈,彭萍,等. 炭疽病脅迫下的茶樹葉片高光譜特征分析[J]. 植物保護(hù),2014,40(6):13-17. Wang Xiaoqing, Ran Lie, Peng Ping, et al. Hyperspectral characteristics of tea leaves under anthracnose stress[J]. Plant Protection, 2014, 40(6): 13-17. (in Chinese with English abstract)
[13] 崔宏春,周鐵鋒,余繼忠,等. 油茶皂素對(duì)茶輪斑病和茶白星病的抑菌作用[J]. 浙江農(nóng)業(yè)科學(xué),2012,28(9):1285-1287. Cui Hongchun, Zhou Tiefeng, Yu Jizhong, et al. Antibacterial effect of saponin of Camellia oleifera on tea ring spot and tea white spot [J]. Zhejiang Agricultural Sciences, 2012, 28(9): 1285-1287.(in Chinese with English abstract)
[14] 薛衛(wèi)東. 果蔬貯藏與保鮮[M]. 成都:電子科技大學(xué)出版社,1996.
[15] 鄭志雄,齊龍,馬旭,等. 基于高光譜成像技術(shù)的水稻葉瘟病病害程度分級(jí)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):138-144. Zheng Zhixiong, Qi Long, Ma Xu, et al. Grading method of rice leaf blast using hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 138-144. (in Chinese with English abstract)
[16] 沈煥鋒. ENVI遙感影像處理方法[M]. 武漢:武漢大學(xué)出版社,2009.
[17] 吳龍國(guó),王松磊,康寧波,等. 基于高光譜成像技術(shù)的靈武長(zhǎng)棗缺陷識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):281-286. Wu Longguo, Wang Songlei, Kang Ningbo, et al. Non-destructive detection of defects inbased on near-infrared hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 281-286. (in Chinese with English abstract)
[18] 金瑞,李小昱,顏伊蕓,等. 基于高光譜圖像和光譜信息融合的馬鈴薯多指標(biāo)檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):258-263. Jin Rui, Li Xiaoyu, Yan Yiyun, et al. Detection method ofmulti-target recognition of potato based on fusion of hyperspectral imaging and spectral information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 258-263. (in Chinese with English abstract)
[19] Omiadze N T, Mchedlishvili N I, Rodrigez-Lopez J N, et al. Biochemical processes at the stage of withering during black tea production[J]. Applied Biochemistry and Microbiology, 2014, 50(4): 393-397.
[20] 周竹,李小昱,陶海龍,等. 基于高光譜成像技術(shù)的馬鈴薯外部缺陷檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):221-228. Zhou Zhu, Li Xiaoyu, Tao Hailong, et al. Detection of potato external defects based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 221-228. (in Chinese with English abstract)
[21] 楊丹,趙海濱,龍哲. MATLAB圖像處理實(shí)例詳解[M]. 北京:清華大學(xué)出版社,2013.
[22] 韓丁,武佩,張強(qiáng),等. 基于顏色矩的典型草原牧草特征提取與圖像識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):168-175. Han Ding, Wu Pei, Zhang Qiang, et al. Feature extraction and image recognition of typical grassland forage based on color moment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 168-175. (in Chinese with English abstract)
[23] 張志斌,羅錫文,臧英,等. 基于顏色特征的綠色作物圖像分割算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):183-189.
Zhang Zhibin, Luo Xiwen, Zang Ying, et al. Segmentation algorithm based on color feature for green crop plants[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 183-189. (in Chinese with English Abstract)
[24] Li Bing, Xu De, Lang Congyan. Moment invariants for color constant image description[J]. Chinese Journal of Electronics, 2010, 19(2): 283-287.
[25] 張東彥,張競(jìng)成,朱大洲,等. 小麥葉片脅迫狀態(tài)下的高光譜圖像特征分析研究[J]. 光譜學(xué)與光譜分析,2011,31(4):1101-1105. Zhang Dongyan, Zhang Jingcheng, Zhu Dazhou, et al. Investigation of the hyperspectral image characteristics of wheat leaves under different stress[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 1101-1105. (in Chinese with English abstract)
[26] 孫俊,金夏明,毛罕平,等. 基于高光譜圖像光譜與紋理信息的生菜氮素含量檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):167-173. Sun Jun, Jin Xiaming, Mao Hanping, et al. Detection of nitrogen content in lettuce leaves based on spectroscopy and texture using hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 167-173. (in Chinese with English abstract
[27] 鞠昌華,田永超,朱艷,等. 小麥疊加葉片的葉綠素含量光譜反演研究[J]. 麥類作物學(xué)報(bào),2008,28(6):1068-1074. Ju Changhua, Tian Yongchao, Zhu Yan, et al. Spectral inverse study of stacked leaf chlorophyll concentration in wheat[J]. Journal of Triticeae Crops, 2008, 28(6): 1068-1074. (in Chinese with English abstract
[28] 章海亮,李曉麗,朱逢樂,等. 應(yīng)用高光譜成像技術(shù)鑒別綠茶品牌研究[J].光譜學(xué)與光譜分析,2014,34(5):1373-1377. Zhang Hailiang, Liu Xiaoli, Zhu Fengle, et al. Identification of green tea brand based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1373-1377. (in Chinese with English abstract)
[29] 李宗儒. 基于圖像分析的蘋果病害識(shí)別技術(shù)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2010. Li Zongru. Research on Identify Technologies of Applie’s Disease Based on Image Analysis[D]. Yangling: Northwest A&F University, 2010. (in chinese with English abstract)
[30] Ronald P H, Sirinnapa S, Warunee T, et al. Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes[J]. Postharvest Biology and Technology, 2013, 6(1): 23-28.
[31] 雷英杰,張善文,李續(xù)武,等. MATLAB遺傳算法工具箱及應(yīng)用[M]. 西安:西安電子科技大學(xué)出版社,2005.
張帥堂,王紫煙,鄒修國(guó),錢 燕,余 磊. 基于高光譜圖像和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的茶葉病斑識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):200-207. doi:10.11975/j.issn.1002-6819.2017.22.026 http://www.tcsae.org
Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, Qian Yan, Yu Lei. Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 200-207. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.026 http://www.tcsae.org
Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network
Zhang Shuaitang, Wang Ziyan, Zou Xiuguo※, Qian Yan, Yu Lei
(/,,210031,)
In order to achieve fast and efficient identification of tea diseases, the method of identifying tea diseases based on hyperspectral imaging technology was put forward. Four kinds of samples, including anthracnose, brown leaf spot disease, white star disease and healthy leaf, were collected in Pingshan tea plantation of Nanjing. Hyperspectral images of these samples, ranging from 358 to 1 021 nm, were collected by hyperspectral imaging system. Among them, there were 80 samples of anthracnose, 72 samples of brown leaf spot disease, 80 samples of white star disease and 60 samples of healthy leaves. The region of interest (ROI) was an area of 200 pixels × 200 pixels near the tip of the tea leaf. The average spectral reflectance curves of the effective band of ROI were extracted to analyze the spectral characteristics. For the purpose of decreasing the redundancy of hyperspectral data, and reducing the computational complexity, this study used principal component analysis (PCA) to process the original hyperspectral images, and obtained 4 kinds of principal component images for the samples with the maximum weight coefficients, and the wavelengths of 762, 700, 721, 719 nm corresponded were taken as the characteristic wavelengths. The test showed that direct use of 481 bands for the first PCA resulted in low calculation speed and low processing efficiency. Thus, the second principal components with the 4 characteristic wavelengths were employed, and the second principal component image was selected as the feature image through comparing the characteristics of lesion and non lesion regions. To get the accurate extraction of tea leaf spots, OTSU algorithm for image segmentation was adopted, the optimal threshold of 4 kinds of leaf samples was determined, and finally the sample images containing only leaf lesion regions were extracted. After image segmentation, 3 color feature parameters were extracted from the single-channel first moments, second moments and three-order moments of each feature image based on color moments; and 20 texture parameters were calculated from the 4 directions (0 , 45, 90 and 135°) of energy, contrast, correlation, stability and entropy based on gray level co-occurrence matrix (GLCM); and 3 spectral characteristic parameters of relative spectral reflectance of sensitive bands, including 560, 640 and 780 nm, were obtained. The color feature, texture feature and spectral feature were optimized into 2 feature vectors, and the training set and test set were tested by BP (back propagation) neural network and support vector machine (SVM) respectively. A total of 188 samples, including 50 anthracnose samples, 48 brown spot disease samples, 50 white star disease samples and 40 healthy leaf samples, were randomly selected as the training set, and the remaining 104 samples were used as the test set. The recognition rates of the test set through the feature vector combination of color features and texture features were generally low by BP neural network and SVM, and the recognition rates of the test set through the feature vector combination of color feature, texture feature and spectral feature were higher, which were 89.59% and 86.67% for BP neural network and SVM respectively. In order to further improve the recognition rate and shorten the modeling time, genetic algorithm was used to reduce the dimensionality of the input feature. Through taking selection, crossover and mutation operations, 26-dimensional input features were optimized to 14 dimensions, and then BP neural network was to recognize the tea spots. Finally, the average recognition rate was raised to 94.17%, and the model setup time was also shortened from 6.6 to 1.7 s. The result shows that it is possible to achieve fast and efficient identification of tea diseases by the fusion of spectral information and image information with pattern recognition technique. The neural network identification model based on genetic algorithm optimization has the advantages of short modeling time and high recognition accuracy.
algorithms; optimization; neural networks; hyperspectral imaging technology; principal component analysis; spectral characteristics
10.11975/j.issn.1002-6819.2017.22.026
TP391.41; S435.711
A
1002-6819(2017)-22-0200-08
2017-06-07
2017-09-07
國(guó)家博士后科學(xué)基金資助項(xiàng)目(2015M571782);中央高??蒲袠I(yè)務(wù)基本業(yè)務(wù)費(fèi)資助項(xiàng)目(KYTZ201661);江蘇省農(nóng)機(jī)基金資助項(xiàng)目(GXZ14002)
張帥堂,主要從事模式識(shí)別研究。Email:1035692577@qq.com
鄒修國(guó),副教授,博士,主要從事機(jī)器視覺與模式識(shí)別、農(nóng)業(yè)空氣質(zhì)量檢測(cè)與控制研究。Email:zouxiuguo@njau.edu.cn