• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      快速濕潤(rùn)過(guò)程中鉀和鈣離子濃度對(duì)土壤團(tuán)聚體穩(wěn)定性的影響

      2017-12-15 02:53:41吳新亮蔡崇法
      關(guān)鍵詞:紅壤濕潤(rùn)電解質(zhì)

      胡 節(jié),吳新亮,蔡崇法

      ?

      快速濕潤(rùn)過(guò)程中鉀和鈣離子濃度對(duì)土壤團(tuán)聚體穩(wěn)定性的影響

      胡 節(jié),吳新亮,蔡崇法※

      (1. 華中農(nóng)業(yè)大學(xué)資源與壞境學(xué)院,武漢 430070; 2. 農(nóng)業(yè)部長(zhǎng)江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

      為探索土壤團(tuán)聚體穩(wěn)定性對(duì)電解質(zhì)的響應(yīng)情況,該文研究湖北省2種土地利用方式下(林地、耕地)的3種類(lèi)型土壤(黃褐土、黃棕壤、棕紅壤)團(tuán)聚體,在不同濃度(0、0.005、0.01、0.02、0.05、0.08、0.10、0.20 mol/L)電解質(zhì)(KNO3、Ca(NO3)2)溶液中快速濕潤(rùn)時(shí)的穩(wěn)定性和破碎過(guò)程。結(jié)果表明:1)濃度低于0.1 mol/L時(shí),團(tuán)聚體穩(wěn)定性隨電解質(zhì)濃度增大而減??;2)團(tuán)聚體穩(wěn)定度隨濕潤(rùn)時(shí)間呈雙指數(shù)衰減,與純水相比,棕紅壤和林地黃褐土的破碎過(guò)程受電解質(zhì)溶液影響尤為顯著,黃褐土和耕地黃棕壤在電解質(zhì)溶液中迅速全部破碎;3)初始階段團(tuán)聚體破碎能量與土壤粉粘比和有機(jī)質(zhì)含量呈負(fù)相關(guān),與鐵鋁氧化物含量呈正相關(guān)??傊瑘F(tuán)聚體穩(wěn)定性隨電解質(zhì)溶液濃度增大而減小,且相對(duì)于純水,團(tuán)聚體在電解質(zhì)溶液中破碎更快。

      土壤;團(tuán)聚體;電解質(zhì);快速濕潤(rùn);滲透率;消散

      0 引 言

      農(nóng)業(yè)種植過(guò)程中,化肥、農(nóng)藥和其他化學(xué)調(diào)節(jié)劑的大量使用,以及工業(yè)廢水、生活污水等的排放,導(dǎo)致各類(lèi)化學(xué)物質(zhì)隨灌溉水進(jìn)入農(nóng)田,改變土壤溶液組成,影響土壤質(zhì)量與作物產(chǎn)量[1-2]。團(tuán)聚體是土壤結(jié)構(gòu)的基本組成單元,探究南方丘陵區(qū)土壤團(tuán)聚體在現(xiàn)代農(nóng)業(yè)體系下的穩(wěn)定性及退化機(jī)理、分析化學(xué)物質(zhì)的使用對(duì)其影響等,在中國(guó)乃至當(dāng)今社會(huì)都具有極為重要的現(xiàn)實(shí)意義。

      目前國(guó)內(nèi)外關(guān)于土壤團(tuán)聚體穩(wěn)定性的研究成果卓著。Le Bissonnais[3]認(rèn)為多價(jià)陽(yáng)離子對(duì)團(tuán)聚體有較強(qiáng)的絮凝作用,而單價(jià)陽(yáng)離子則有很強(qiáng)的分散作用。尤其交換性Na+對(duì)團(tuán)聚體穩(wěn)定性影響最大,可以直接影響團(tuán)聚體的破碎[4]。Van Olphen[5]研究得出陽(yáng)離子分散作用的大小順序:Na+>K+>Mg2+>Ca2+。Ruizvera等[6]認(rèn)為團(tuán)聚體穩(wěn)定性對(duì)鹽離子的響應(yīng)進(jìn)一步受黏土礦物類(lèi)型、黏土含量和預(yù)濕潤(rùn)率的影響,在有機(jī)質(zhì)含量較低的土壤中,相比于有機(jī)質(zhì)含量,團(tuán)聚體破碎對(duì)黏粒含量更為敏感。Lugato等[7]通過(guò)對(duì)不同土壤的施肥試驗(yàn),得出相比于礦物質(zhì)肥,有機(jī)肥的施用在黏土中顯著提高大團(tuán)聚體的含量,而在壤土中并沒(méi)有顯著的影響。但團(tuán)聚體穩(wěn)定性并不總與黏粒含量呈正相關(guān),其與蒙脫石/高嶺石比呈負(fù)相關(guān),與Ca2+/Mg2+比和鐵鋁氧化物含量呈正相關(guān)[8]。土壤溶液中的Fe3+、Al3+起絮凝作用,其氧化物將有機(jī)分子和黏粒粘結(jié)在一起,同時(shí)也作為凝膠在黏粒表面沉淀,提高團(tuán)聚體穩(wěn)定性[9-10]。

      目前對(duì)于團(tuán)聚體穩(wěn)定性的測(cè)定多是以純水為介質(zhì)進(jìn)行測(cè)定的[11-13],這種測(cè)定是基于土壤水為淡水的條件下展開(kāi)。而實(shí)際上土壤溶液是溶有多種化學(xué)物質(zhì)的稀溶液,在地下水埋深較淺的地區(qū),潛水蒸發(fā)會(huì)導(dǎo)致地下水鹽分上移,同時(shí)任何灌溉水體也并非純水,其中化學(xué)物質(zhì)對(duì)土壤持水特性、土壤孔隙分布、土壤脹縮性等[14-16]的作用必然影響到土壤團(tuán)聚體的穩(wěn)定性。徐爽等[17]采用不同濃度氯化銨溶液作為介質(zhì),通過(guò)濕篩試驗(yàn)等提出土壤團(tuán)聚體穩(wěn)定性不僅局限于機(jī)械穩(wěn)定性、水力學(xué)穩(wěn)定性和生物學(xué)穩(wěn)定性3類(lèi),還應(yīng)包含“化學(xué)穩(wěn)定性”的概念。因此,在團(tuán)聚體水穩(wěn)性研究的基礎(chǔ)上,有必要探索不同濃度條件下無(wú)機(jī)鹽溶液對(duì)土壤團(tuán)聚體穩(wěn)定性的影響。

      基于此,本文以湖北省2種利用方式下(林地和耕地)的3種類(lèi)型土壤(黃褐土、黃棕壤和棕紅壤)團(tuán)聚體為研究對(duì)象,為模擬淡水和不同礦化度微咸水灌溉[18]或施肥條件下土壤團(tuán)聚體的穩(wěn)定性變化,同時(shí)考慮到土壤溶液及劣質(zhì)灌溉水中主要存在的陽(yáng)離子類(lèi)型[19],研究了土壤團(tuán)聚體在不同濃度(0、0.005、0.01、0.02、0.05、0.08、0.10、0.20 mol/L)電解質(zhì)(KNO3和Ca(NO3)2)溶液中快速濕潤(rùn)時(shí),消散作用對(duì)其平均重量直徑和破碎過(guò)程的影響,為團(tuán)聚體穩(wěn)定性研究提供新思路的同時(shí),對(duì)現(xiàn)代農(nóng)業(yè)生產(chǎn)技術(shù)措施存在一定指導(dǎo)意義。

      1 材料與方法

      1.1 試驗(yàn)材料

      試驗(yàn)所用土樣為湖北省內(nèi)黃褐土、黃棕壤和棕紅壤3類(lèi)典型土壤,黏土礦物以高嶺石和水云母為主,含有少量蛭石。其中黃褐土采自襄陽(yáng)市黃集鎮(zhèn)(112°09′E,32°19′N(xiāo)),位于漢江中游平原腹地,屬亞熱帶季風(fēng)氣候,年平均氣溫為15~16 ℃,年降水量為1 000 mm,年平均總?cè)照? 800~2 100 h;黃棕壤采自荊門(mén)市京山縣(113°14′E,30°57′N(xiāo)),地處大洪山南麓,江漢平原北端,屬北亞熱帶季風(fēng)氣候,年平均日照1 978.8~2 012.8 h,年平均氣溫16.1 ℃,年均降雨1 020~1 150 mm,光熱豐富,降雨充沛,雨熱同期;棕紅壤采自咸寧市通城縣(114°22′E,30°00′N(xiāo)),位于湘、鄂、贛3省交界處,屬亞熱帶季風(fēng)氣候,光照適中,氣候溫和,年平均氣溫16.7 ℃,年平均降雨量1 512.8 mm,多年平均徑流深795 mm。

      每類(lèi)土壤分別采取耕地和林地的表層土壤(0~10 cm),其中用于土壤理化性質(zhì)分析樣品按常規(guī)方法采集、風(fēng)干,分別過(guò)2.00、1.00、0.25、0.15 mm土壤篩,土樣裝瓶?jī)?chǔ)藏備用。用于團(tuán)聚體穩(wěn)定性分析的樣品采集大土塊,用特制木盒承裝運(yùn)回實(shí)驗(yàn)室,攤開(kāi)風(fēng)干、適宜濕度時(shí)沿自然破裂面小心掰開(kāi)為10 mm左右土塊,儲(chǔ)藏備用。

      1.2 基本性質(zhì)測(cè)定

      土壤基本性質(zhì):土壤質(zhì)地(國(guó)際制)采用吸管法測(cè)定,有機(jī)質(zhì)(OM)測(cè)定采用重鉻酸鉀外加熱法,陽(yáng)離子交換量(CEC)采用乙酸銨交換法,土壤碳酸鹽含量用容量滴定法,全量氧化物用王水-高氯酸提取,游離氧化物采用檸檬酸鈉-重碳酸鈉-連二亞硫酸鈉法浸提,非晶形氧化物采用草酸-草酸銨緩沖液浸提,絡(luò)合態(tài)氧化物用過(guò)磷酸鈉提取浸提液中Fe、Al含量使用等離子發(fā)射光譜法測(cè)定[20-21],每指標(biāo)測(cè)定重復(fù)3次。

      電解質(zhì)溶液表面張力:測(cè)試儀器為德國(guó)dataphysics公司生產(chǎn)的OCA15EC接觸角測(cè)定儀,以30L液滴重復(fù)3次測(cè)定表面張力。

      1.3 團(tuán)聚體破碎試驗(yàn)

      本試驗(yàn)采用LB法[3]中的快速濕潤(rùn)法(FW)和慢速濕潤(rùn)法(SW)測(cè)團(tuán)聚體穩(wěn)定性。將篩分的5~3 mm風(fēng)干團(tuán)聚體在40 ℃條件下烘干24 h,使樣品初始含水率一致后,分別進(jìn)行2種處理:快速濕潤(rùn)處理,先將5 g團(tuán)聚體在蒸餾水中浸沒(méi)10 min;慢速濕潤(rùn)處理,先把10 g團(tuán)聚體在?0.3 kPa張力的濾紙上靜置濕潤(rùn)30 min。2種處理后的團(tuán)聚體用95%轉(zhuǎn)移至0.05 mm的篩網(wǎng)上,在酒精中上下震蕩20次(振幅2 cm),收集篩子上的團(tuán)聚體顆粒,40 ℃下烘干(24 h),稱(chēng)質(zhì)量。干篩過(guò)2、1、0.5、0.25、0.10、0.05 mm土壤篩,稱(chēng)質(zhì)量得每個(gè)粒級(jí)的破碎團(tuán)聚體,分別計(jì)算平均重量直徑(MWD,mean weight diameter),每個(gè)處理重復(fù)3次。并利用相對(duì)消散指數(shù)(RSI, relative slaking index)來(lái)評(píng)價(jià)土壤團(tuán)聚體對(duì)消散作用破壞的敏感程度。

      式中,為篩子個(gè)數(shù);X為篩分出來(lái)第級(jí)團(tuán)聚體的平均直徑,mm;i為第級(jí)粒徑范圍團(tuán)聚體占土壤樣品干質(zhì)量的百分?jǐn)?shù),%。

      式中MWDFW、MWDSW分別為快速濕潤(rùn)和慢速濕潤(rùn)2種處理的MWD值。

      借鑒LB法中的快速濕潤(rùn)法,用不同濃度(0、0.005、0.01、0.02、0.05、0.08、0.10、0.20 mol/L)的KNO3和Ca(NO3)2電解質(zhì)溶液對(duì)團(tuán)聚體進(jìn)行處理。具體步驟為:稱(chēng)取5 g的5~3 mm團(tuán)聚體置于100 mL的玻璃燒杯中,用量筒沿杯壁緩慢加入25 mL電解質(zhì)溶液,靜置10 min,吸出上清液后,用酒精將團(tuán)聚體洗入50m孔徑的篩子上,以幅度2 cm在95%酒精中上下振蕩20次,再用酒精將篩上團(tuán)聚體洗入玻璃燒杯中,40 ℃條件下烘干,分別過(guò)2、1、0.5、0.25、0.10、0.05 mm孔徑篩后稱(chēng)質(zhì)量,計(jì)算MWD。

      為研究快速濕潤(rùn)過(guò)程中團(tuán)聚體隨時(shí)間的破碎情況,開(kāi)展了靜止條件下不同濃度電解質(zhì)溶液中團(tuán)聚體破碎試驗(yàn)。具體過(guò)程為:取10粒(5~3 mm)較均勻的團(tuán)聚體置于3 mm孔徑的篩子上,緩慢浸沒(méi)于不同濃度(0.05、0.10、0.20 mol/L)的KNO3和Ca(NO3)2電解質(zhì)溶液中,依次觀察并記錄不同時(shí)間(5、10、30 s;1、2、3、5、10 min)下破碎團(tuán)聚體數(shù)量。團(tuán)聚體穩(wěn)定度采用指標(biāo)表示,即濕潤(rùn)過(guò)程中完整團(tuán)聚體數(shù)量占所有測(cè)試團(tuán)聚體的百分比。通過(guò)雙指數(shù)模型擬合(%)和時(shí)間(min)曲線可以獲得團(tuán)聚體破碎能量[22]。

      式中和分別表示最初快速破碎和隨后較慢破碎能量,min-1;為濕潤(rùn)時(shí)間,min;,為參數(shù)。

      1.4 數(shù)據(jù)處理

      本文用IBM SPSS Statistics 22分析土壤團(tuán)聚體穩(wěn)定性與基本性質(zhì)之間的相關(guān)性,以及不同土壤類(lèi)型、不同土地利用方式下電解質(zhì)溶液濃度、類(lèi)型對(duì)團(tuán)聚體穩(wěn)定性影響的差異(<0.05),用Origin 8.0進(jìn)行團(tuán)聚體破碎度與破碎時(shí)間的雙指數(shù)模型擬合。

      2 結(jié)果與分析

      2.1 基本性質(zhì)分析

      供試土壤pH值、有機(jī)質(zhì)、陽(yáng)離子交換量(cation exchange capacity, CEC)和碳酸鹽含量在不同土壤類(lèi)型間均差異顯著(<0.01),由表1看出,供試土壤pH值均在4.62~7.28之間,黃褐土和黃棕壤偏中性而棕紅壤偏酸性,這與成土過(guò)程中鹽基離子逐步淋失有關(guān),耕地棕紅壤酸化也可能與施肥條件有關(guān);CEC均在11.98~25.86 cmol/kg之間;黃褐土碳酸鹽含量高于黃棕壤,棕紅壤不存在石灰反應(yīng)發(fā)生,說(shuō)明隨水熱資源增加,碳酸鹽逐步淋失;有機(jī)質(zhì)含量與土地利用方式有關(guān),林地土壤有機(jī)質(zhì)含量較耕地土壤多,這與其枯枝落葉來(lái)源豐富,表層土壤有機(jī)質(zhì)得到有效補(bǔ)充有關(guān)。受沉積黏土母質(zhì)影響,供試土壤黏粒含量達(dá)27%以上,質(zhì)地較黏重。表2表明土壤全量Al2O3在57.25~92.89 g/kg之間,而全量Fe2O3在39.83~64.74 g/kg之間。

      表1 供試土壤基本性質(zhì)

      注:表中“-”表示數(shù)值極低,質(zhì)量分?jǐn)?shù)接近于0;OM為有機(jī)質(zhì),CEC為陽(yáng)離子交換量。

      Note: “-”represents the value is very low, the content is close to 0; OM represents organic matter, CEC represents cation exchange capacity.

      表2 供試土壤的鐵鋁氧化物含量

      圖1表明,團(tuán)聚體穩(wěn)定性都表現(xiàn)為耕地小于林地,相比于林地土壤,耕地土壤對(duì)空氣的消散作用更加敏感。這是由于林地表土接受枯枝落葉較多同時(shí)土壤孔隙度大、土壤疏松、微生物活動(dòng)活躍,3類(lèi)供試土壤中林地有機(jī)碳含量普遍高于耕地,有機(jī)質(zhì)的膠結(jié)作用提高團(tuán)聚體穩(wěn)定性[23-24];同時(shí)受人為耕作影響,耕地土壤結(jié)構(gòu)也受到一定程度破壞。慢速濕潤(rùn)下的MWD值均高于快速濕潤(rùn)下的MWD值,表明供試土壤團(tuán)聚體破碎的主要方式為快速濕潤(rùn)條件下團(tuán)聚體內(nèi)部空氣受壓縮所產(chǎn)生的消散作用,不均勻膨脹對(duì)團(tuán)聚體破碎的影響相對(duì)較小。同時(shí),濕篩條件下測(cè)得的MWD值與Fe、Al游離度[25]呈顯著正相關(guān)(<0.05),表明土壤風(fēng)化淋溶程度在一定程度上也影響團(tuán)聚體穩(wěn)定性。

      注:圖中“FW”代表快速濕潤(rùn)法,“SW”代表慢速濕潤(rùn)法。

      2.2 不同濃度下離子對(duì)團(tuán)聚體穩(wěn)定性的影響

      圖2為不同濃度電解質(zhì)溶液下團(tuán)聚體平均重量直徑。

      圖2 不同電解質(zhì)溶液中團(tuán)聚體穩(wěn)定性

      圖2表明,隨著電解質(zhì)濃度c的增大,反映團(tuán)聚體穩(wěn)定性的MWD逐漸變小。其中,棕紅壤的團(tuán)聚體穩(wěn)定性變化范圍最大,而黃棕壤最小。在K+和Ca2+濃度由0增至0.25 mol/L過(guò)程中,林地棕紅壤的MWD值降幅分別達(dá)到24.6%和49.2%,而林地黃棕壤的MWD值降幅分別僅為4.0%和4.5%。但電解質(zhì)溶液對(duì)團(tuán)聚體穩(wěn)定性的減弱作用有一個(gè)臨界范圍,當(dāng)電解質(zhì)濃度增大一定值后,團(tuán)聚體的穩(wěn)定性不再發(fā)生明顯變化。本試驗(yàn)所確定的臨界濃度為0.1 mol/L,當(dāng)超過(guò)這個(gè)濃度時(shí)團(tuán)聚體穩(wěn)定性不發(fā)生明顯降低,在電解質(zhì)濃度增加到0.2 mol/L過(guò)程中,除林地棕紅壤外,其他幾種土樣的團(tuán)聚體穩(wěn)定性基本未發(fā)生改變。

      對(duì)破碎后的團(tuán)聚體進(jìn)行分級(jí)過(guò)篩,細(xì)分成4個(gè)粒級(jí):>2、2~0.25、0.25~0.05和<0.05 mm[26]。如圖3,在<0.05水平,隨電解質(zhì)溶液濃度升高,團(tuán)聚體分散后的粒級(jí)分布發(fā)生顯著變化:黃褐土中>2、2~0.25 mm組分含量顯著降低,而0.25~0.05 mm組分含量顯著升高;黃棕壤中>2組分顯著降低,而2~0.25、0.25~0.05 mm組分含量顯著升高;棕紅壤中>2、2~0.25 mm組分含量顯著降低,而0.25~0.05 mm組分含量顯著升高??傮w呈現(xiàn)出<0.05 mm微團(tuán)聚體含量隨濃度變化無(wú)明顯規(guī)律,>2和2~0.25 mm大團(tuán)聚體含量均隨濃度增大表現(xiàn)出降低趨勢(shì),而0.25~0.05 mm微團(tuán)聚體含量則隨濃度增大呈現(xiàn)升高趨勢(shì)。同時(shí)可明顯看出,破碎后的團(tuán)聚體2~0.25 mm粒級(jí)含量最高而<0.05 mm粒級(jí)含量最低,相同土壤類(lèi)型下,相對(duì)于耕地,林地土壤>2粒級(jí)含量較高而0.25~0.05 mm粒級(jí)含量較低。

      圖3 不同濃度電解質(zhì)溶液中團(tuán)聚體粒級(jí)分布

      2.3 不同濃度下離子對(duì)團(tuán)聚體破碎過(guò)程的影響

      圖4表明土壤團(tuán)聚體穩(wěn)定度AS均隨濕潤(rùn)時(shí)間呈雙指數(shù)衰減(2>0.96)。團(tuán)聚體破碎過(guò)程對(duì)溶液濃度的響應(yīng)差別主要表現(xiàn)在純水介質(zhì)與電解質(zhì)溶液介質(zhì)之間,而在不同濃度電解質(zhì)溶液未表現(xiàn)出明顯差別(>0.05):與電解質(zhì)溶液介質(zhì)相比,以純水為介質(zhì)的團(tuán)聚體破碎試驗(yàn)在前階段穩(wěn)定度衰減較慢,而后隨著濕潤(rùn)時(shí)間的增長(zhǎng),在黃棕壤、耕地黃褐土和耕地棕紅壤土樣中,其穩(wěn)定度與電解質(zhì)溶液介質(zhì)的破碎過(guò)程達(dá)到基本相同的穩(wěn)定階段,可知雖然團(tuán)聚體在純水與電解質(zhì)溶液中最終達(dá)到相同的破碎度,但在高濃度電解質(zhì)溶液中趨向于破碎為更小的粒級(jí)(圖3)。在濕潤(rùn)初始階段,隨時(shí)間降低較快,尤其是黃褐土和耕地黃棕壤,基本在2 min內(nèi)值穩(wěn)定為0。耕地棕紅壤和林地棕紅壤在穩(wěn)定階段分別保持為70%和40%,林地黃棕壤保持在40%,明顯高于其他土壤模型擬合參數(shù)見(jiàn)表3。

      圖5表明雙指數(shù)擬合方程中的參數(shù)值取對(duì)數(shù)后與濕潤(rùn)10 min后的AS值呈現(xiàn)良好的線性關(guān)系(2=0.88,<0.01),表明團(tuán)聚體表面能量顯著影響了穩(wěn)定階段團(tuán)聚體破碎率。根據(jù)值的大小在純水介質(zhì)和電解質(zhì)溶液介質(zhì)間、以及耕地與林地間的差別,可知初始階段團(tuán)聚體破碎能量總體上呈現(xiàn)在電解質(zhì)溶液中高于純水中、且同類(lèi)土壤耕地高于林地的規(guī)律,這與破碎過(guò)程曲線的趨勢(shì)相吻合;值在黃褐土和耕地黃棕壤中更大,也與其土樣在短時(shí)間內(nèi)快速全部破碎的現(xiàn)象相符。如表4,團(tuán)聚體值均與土壤粉黏比和有機(jī)質(zhì)含量呈極顯著負(fù)相關(guān)而與鐵、鋁氧化物含量呈極顯著正相關(guān)(<0.01)。通常條件下黏粒含量高,粉黏比低時(shí)土壤風(fēng)化程度高,故風(fēng)化程度對(duì)團(tuán)聚體初始階段的破碎能量有一定影響。而有機(jī)質(zhì)可通過(guò)增強(qiáng)土壤持水性、粘結(jié)力,降低入滲速率,從而減小消散作用對(duì)團(tuán)聚體的破壞[27]。

      注:圖例中“0”純水介質(zhì);“K(0.05)”代表0.05 mol·L-1的K+溶液,其他類(lèi)推。

      表3 團(tuán)聚體穩(wěn)定度AS(%)與時(shí)間t(min)雙指數(shù)擬合模型參數(shù)k(min-1)

      注:k為最初快速破碎能量。

      表4 κ值與土壤基本性質(zhì)間的相關(guān)關(guān)系

      注:**表示極顯著相關(guān)(<0.01)。

      Note: ** stands for relation is very significant (<0.01).

      3 討 論

      Quirk[28]提出鹽堿導(dǎo)致土壤結(jié)構(gòu)退化的關(guān)鍵過(guò)程包括團(tuán)聚體崩解和黏粒分散,其中崩解由團(tuán)聚體內(nèi)部閉蓄空氣爆破的消散作用或者土壤顆粒物的不均勻膨脹引起,不均勻膨脹是由于土壤的潤(rùn)濕部分比干燥部分會(huì)發(fā)生明顯膨脹,從而在濕潤(rùn)前沿形成剪切平面,破壞土壤顆粒間的粘結(jié)力[29]。3種供試土壤的主要黏土礦物均為非膨脹型的水云母和高嶺石,故黏粒的不均勻膨脹作用在本研究中影響不大[30]。同時(shí),根據(jù)Le Bissonnais的分析,導(dǎo)致團(tuán)聚體崩解的物理機(jī)械作用主要是消散作用、黏粒膨脹和機(jī)械外力作用,本研究采用的快速濕潤(rùn)下團(tuán)聚體破碎的主要原因是消散作用[3]。

      潤(rùn)濕性是團(tuán)聚體破碎特征的主要影響因子之一[31],團(tuán)聚體內(nèi)閉蓄空氣的壓力在土壤潤(rùn)濕性強(qiáng)的情況下其影響最大[32]。而作為潤(rùn)濕性的反映指標(biāo)之一,接觸角對(duì)團(tuán)聚體內(nèi)閉蓄氣壓的形成和潤(rùn)濕團(tuán)聚體的穩(wěn)定性都有明顯的作用[33-34]。就接觸角而言,本研究供試土壤(<31°)均屬于親水性土壤,加之快速濕潤(rùn)的處理?xiàng)l件,溶液浸入團(tuán)聚體速度快,擠壓內(nèi)部空氣形成高閉蓄氣壓,導(dǎo)致供試團(tuán)聚體在短時(shí)間內(nèi)迅速破碎[35]。同時(shí),溶液浸入團(tuán)聚體的動(dòng)力特征又很大程度上受溶液表面張力的影響:在親水性團(tuán)聚體中,隨著溶液表面張力增加,溶液進(jìn)入團(tuán)聚體的速率[36]增大,消散作用增強(qiáng),團(tuán)聚體穩(wěn)定性降低,土壤團(tuán)聚體趨向于破碎為更小粒徑的團(tuán)聚體,且快速破碎的團(tuán)聚體破碎后比慢速破碎后團(tuán)聚體的粒徑更小[3,33]。根據(jù)膠體與表面化學(xué),無(wú)機(jī)鹽溶液表面張力隨濃度升高呈直線增大[37],本研究中測(cè)得無(wú)機(jī)鹽溶液表面張力如圖6,從數(shù)值上看變化范圍不大,但研究表明即使微小的表面張力變化也會(huì)對(duì)溶液滲入團(tuán)聚體速率產(chǎn)生顯著影響[22],同時(shí)試驗(yàn)土壤團(tuán)聚體本身穩(wěn)定性不高,風(fēng)干后團(tuán)聚體內(nèi)部空氣含量高,對(duì)消散作用敏感性強(qiáng),因而高濃度溶液介質(zhì)條件下的團(tuán)聚體MWD值更小。而由于團(tuán)聚體受消散作用影響不是一個(gè)無(wú)限制破碎的過(guò)程,達(dá)到一定破碎程度后,其進(jìn)一步破碎可能受其他因子影響更大,因而鹽離子濃度的繼續(xù)增大對(duì)團(tuán)聚體MWD值沒(méi)有明顯影響[38]。

      式中v為團(tuán)聚體濕潤(rùn)速率,cm/s;r為團(tuán)聚體孔隙半徑,cm;γ為溶液表面張力,mN/m;θ為溶液接觸角,(°);η為溶液粘度,P;z為溶液滲透到團(tuán)聚體孔隙中的長(zhǎng)度,cm。

      K+、Na+、Ca2+、Mg2+是土壤溶液中的主要的陽(yáng)離子,也是對(duì)團(tuán)聚體作用較強(qiáng)的4種離子,有研究表明,同價(jià)陽(yáng)離子對(duì)土壤團(tuán)聚體作用效果相似而不同價(jià)態(tài)陽(yáng)離子對(duì)團(tuán)聚體作用差別較大[17,39]。同時(shí),考慮到實(shí)際生產(chǎn)中施肥特點(diǎn),由于鈉離子和鎂離子在化肥中較少含有,而鉀離子和鈣離子常伴隨氮肥(KNO3)、鉀肥以及磷肥(Ca(H2PO4)2·H2O、鈣鎂磷肥等)、鈣肥的施用輸入到農(nóng)田土壤中,故該文選用K+、Ca2+2種離子作為研究對(duì)象,在實(shí)際生產(chǎn)中比Na+、Mg2+2種離子具有代表性。該研究證明了以純水為介質(zhì)測(cè)團(tuán)聚體穩(wěn)定性的方法與田間實(shí)際情況存在差異,其在生產(chǎn)實(shí)踐中具有一定的局限性。同時(shí),湖北地區(qū)降水豐富,雨旱交替頻繁,該文中以風(fēng)干土壤作為試驗(yàn)對(duì)象,以K+、Ca2+作為介質(zhì)陽(yáng)離子,初步探討了干旱土壤灌溉或降雨前施肥對(duì)土壤團(tuán)聚體穩(wěn)定性的影響,而針對(duì)不同陽(yáng)離子對(duì)團(tuán)聚體穩(wěn)定性產(chǎn)生的不同影響還有待后期進(jìn)行擴(kuò)展研究。

      4 結(jié) 論

      隨著電解質(zhì)濃度增大,團(tuán)聚體趨于破碎為更小的粒級(jí),穩(wěn)定性降低,濃度超過(guò)0.1 mol/L后,團(tuán)聚體穩(wěn)定性不發(fā)生明顯改變;團(tuán)聚體穩(wěn)定度隨濕潤(rùn)時(shí)間呈雙指數(shù)衰減;與純水介質(zhì)相比,棕紅壤和林地黃褐土的破碎受電解質(zhì)溶液影響尤為顯著,黃褐土和耕地黃棕壤在電解質(zhì)溶液中迅速全部破碎;濕潤(rùn)10 min后的團(tuán)聚體穩(wěn)定度與初始階段團(tuán)聚體破碎能量呈現(xiàn)良好的負(fù)相關(guān),且團(tuán)聚體初始階段破碎能量與土壤粉黏比和有機(jī)質(zhì)含量呈負(fù)相關(guān),與鐵鋁氧化物含量呈正相關(guān)。

      [1] 肖振華,萬(wàn)洪富. 灌溉水質(zhì)對(duì)土壤水力性質(zhì)和物理性質(zhì)的影響[J] . 土壤學(xué)報(bào),1998,35(3):359-366.

      Xiao Zhenhua, Wan hongfu. Effect of irrigation water quality on soil hydraulic and physical properties[J]. Acta Geologica Sinica, 1998, 35(3): 359-366. (in Chinese with English abstract)

      [2] 張俊鵬,馮棣,鄭春蓮,等. 咸水灌溉對(duì)土壤水熱鹽變化及棉花產(chǎn)量和品質(zhì)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):161-167.

      Zhang Junpeng, Feng Di, Zheng Chunlian, et al. Effects of saline water irrigation on soil water-heat-salt variation and cotton yield and Quality[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 161-167. (in Chinese with English abstract)

      [3] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility Ⅰ[J]. Theory and Methodology. Eur. J. Soil Sci. 1996, 47: 425-437.

      [4] Keren R, Shainberg I, Klein E. Settling and flocculation value of sodium-montmorillonite particles in aqueous media[J]. Soil Sci. Soc. Am. J. 1988, 52: 76-80.

      [5] Van Olphen H. An introduction to clay colloid chemistry(2nd edition)[M]. Nueva York : Interscience Publ. 1977, 318.

      [6] Ruizvera V M, Wu L. Influence of Sodicity, Clay Mineralogy, Prewetting Rate, and Their Interaction on Aggregate Stability[J]. Soil Science Society of America Journal, 2006, 70(6): 1825-1833.

      [7] Lugato E, Simonetti G, Morari F, et al. Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment[J]. Geoderma, 2010, 157(3): 80-85.

      [8] Yilmaz K, ?elik I, Kapur S, et al. Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity and soil erosion in southeastern Turkey[J]. Turkish Journal of Agriculture & Forestry, 2005, 29(1): 29-37.

      [9] Duiker S W, Fred E Rhoton, José Torrent, et al. Iron (hydr) oxide crystallinity effects on soil aggregation[J]. Soil Sci Soc Am J, 2003, 67: 606-611.

      [10] 胡國(guó)成,章明奎. 氧化鐵對(duì)土粒強(qiáng)膠結(jié)作用的礦物學(xué)證據(jù)[J]. 土壤通報(bào),2002,33:25-27.

      Hu Guocheng, Zhang Mingkui. Mineralogical evidence for strong cementation of soil particles by iron oxides[J]. Chinese Journal of Soil Science, 2002, 33: 25-27. (in Chinese with English abstract)

      [11] 王小紅,劉智杰,劉小飛,等. 中亞熱帶山區(qū)土壤不同形態(tài)鐵鋁氧化物對(duì)團(tuán)聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2016,36(9):2588-2596.

      Wang Xiaohong, Yang Zhijie, Liu Xiaofei, et al. Effects of different forms Fe and Al oxides on soil aggregate stability in the mid-subtropical mountainous area of southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. (in Chinese with English abstract)

      [12] 馬仁明,蔡崇法,李朝霞,等. 前期土壤含水率對(duì)紅壤團(tuán)聚體穩(wěn)定性及濺蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):95-103.

      Ma Renming, Cai Chongfa, Li Zhaoxia, et al. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 95-103. (in Chinese with English abstract)

      [13] 王迪,吳新亮,蔡崇法,等. 長(zhǎng)期培肥下紅壤有機(jī)碳組成與團(tuán)聚體穩(wěn)定性的關(guān)系[J] . 中國(guó)水土保持科學(xué),2016,14(1):61-70.

      Wang Di, Wu Xinliang, Cai Chongfa. Composition of organic carbon and their relationship with aggregate stability in red soil under different fertilizer application[J]. Science of Soil and Water Conservation, 2016, 14(1): 61-70. (in Chinese with English abstract)

      [14] 邢旭光,馬孝義,康端剛. 鹽陽(yáng)離子類(lèi)型及濃度對(duì)土壤持水及干縮開(kāi)裂的作用效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):115-122.

      Xing Xuguang, Ma Xiaoyi, Kang Duangang. Impacts of type and concentration of salt cations on soil water retention and desiccation cracking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 115-122. (in Chinese with English abstract)

      [15] 栗現(xiàn)文,周金龍,靳孟貴,等. 高礦化度土壤水分特征曲線及擬合模型適宜性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):135-141.

      Li Xianwen, Zhou Jinlong, Jin Menggui, et al. Soil-water characteristic curves of high-TDS and suitability of fitting models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 135-141. (in Chinese with English abstract)

      [16] 張展羽,朱文淵,朱磊,等. 根系及鹽分含量對(duì)農(nóng)田土壤干縮裂縫發(fā)育規(guī)律的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20): 83-89.

      Zhang Zhanyu, Zhu Wenyuan, Zhu Lei, et al. Effects of roots and salinity on law of development for farmland soil desiccation crack[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 83-89. (in Chinese with English abstract)

      [17] 徐爽,王益權(quán),王浩,等. 不同肥力水平土壤團(tuán)聚體的穩(wěn)定性及對(duì)氮肥鹽溶液的響應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(5):1135-1143.

      Xu Shuang, Wang Yiquan, Wang Hao, et al. Effects of nitrogen fertilizer solution on stability of soil aggregates under different fertility levels[J]. Plant Nutrition & Fertilizer Science, 2012, 18(5): 1135-1143. (in Chinese with English abstract)

      [18] 王全九,單魚(yú)洋. 微咸水灌溉與土壤水鹽調(diào)控研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(12):117-126.

      Wang Quanjiu, Shan Yuyang. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-126. (in Chinese with English abstract)

      [19] 李法虎,Benhur M, Keren R. 劣質(zhì)水灌溉對(duì)土壤鹽堿化及作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):63-66.

      Li Fahu, Benhur M, Keren R. Effect of marginal water irrigation on soil salinity, sodicity and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 63-66. (in Chinese with English abstract)

      [20] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.

      [21] 張甘霖,龔子同. 土壤調(diào)查實(shí)驗(yàn)室分析方法[M]. 北京:科學(xué)出版社,2012.

      [22] Goebel M O, Woche S K, Bachmann J. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid–liquid interfacial properties[J]. Journal of Hydrology, 2012, 442-443(10): 63-74.

      [23] Milne R M, Haynes R J. Soil organic matter, microbial properties, and aggregate stability under annual and perennial pastures[J]. Biology and Fertility of Soils, 2004, 39(3): 172-178.

      [24] Varela M E, Benito E, Keizer J J. Effects of wild?re and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency[J]. Catena, 2010, 83: 127-134.

      [25] 劉友兆,丁瑞興. 黃棕壤中鐵鋁錳氧化物的形態(tài)及發(fā)生學(xué)特征[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),1990,13(2):86-91.

      Liu Youzhao, Ding Ruixing. Forms and genetic characterist ics of iron, aluminium and manganese oxides of yellow brown soils[J]. Journal of Nanjing Agricultural University, 1990, 13(2): 86-91.

      [26] 竇森. 土壤有機(jī)質(zhì)[M]. 北京:科學(xué)出版社,2010.

      [27] Chenu C, Le Bissonnais Y, Arrouays D. Organic matter influence on clay wettability and soil aggregate stablity[J]. Soil Sci Soc Am J. 2000, 64: 1479-1486.

      [28] Quirk J P. Landmark Papers: No. 2. The effect of electrolyte concentration on soil permeability[J]. European Journal of Soil Science, 2013, 64(1): 8-15.

      [29] Kemper W D, Rosenau R C. Aggregate stability and size distribution[J]. Methods of Soil Analysis.part.physical & Mineralogical Methods, 1986: 425-442.

      [30] 李法虎,郭錦蓉. 土壤水蝕中關(guān)于化學(xué)因素的研究現(xiàn)狀和展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(5):32-37.

      Li Fahu, Guo Jinrong. Research status and future development of effects of chemical factors on soil water erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 32-37. (in Chinese with English abstract)

      [31] Fox D M, Darboux F, Carrega P. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions[J]. Hydrological Processes, 2007, 21(17): 2377-2384.

      [32] Loch R J. A method for measuring aggregate water stability of dryland soils with relevance to surface seal development[J]. Australian Journal of Soil Research, 1994, 32(4): 687-700.

      [33] Zhang H, Hartge K H. Effect of differently humified organic matter on aggregate stability by reducing aggregate wettability[J]. Zeitschrift Fuer Pflanzenernaehrung Und Bodenkunde, 1992, 155(2): 143-149.

      [34] Goebel M O, Bachmann J, Woche S K, et al. Soil wettability, aggregate stability, and the decomposition of soil organic matter[J]. Geoderma, 2005, 128(1/2): 80-93.

      [35] Quirk J P, Panbokke C R. Incipient failure of soil aggregates[J]. European Journal of Soil Science, 2010, 13(13): 60-70.

      [36] Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.

      [37] 趙振國(guó). 膠體與界面化學(xué) [M]. 北京:化學(xué)工業(yè)出版社,2004.

      [38] 李小剛,崔志軍,王玲英,等. 鹽化和有機(jī)質(zhì)對(duì)土壤結(jié)構(gòu)穩(wěn)定性及阿特伯格極限的影響[J]. 土壤學(xué)報(bào),2002,39(4):550-559.

      Li Xiaogang, Cui Zhijun, Wang Lingying, et al. Effects of salinization and organic matter on soil structural stability and atterberg limits[J]. Acta Geologica Sinica, 2002, 39(4): 550-559. (in Chinese with English abstract)

      [39] Amezketa E, Aragues R. Flocculation-dispersion behaviour of arid-zone soil clays as affected by electrolyte concentration and composition[J]. Investigacion Agraria Produccion Y Proteccion Vegetales, 1995, 10: 101-112.

      胡 節(jié),吳新亮,蔡崇法. 快速濕潤(rùn)過(guò)程中鉀和鈣離子濃度對(duì)土壤團(tuán)聚體穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):175-182. doi:10.11975/j.issn.1002-6819.2017.22.022 http://www.tcsae.org

      Hu Jie, Wu Xinliang, Cai Chongfa. Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 175-182. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.022 http://www.tcsae.org

      Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process

      Hu Jie, Wu Xinliang, Cai Chongfa※

      (1.,,430070,; 2.,,430070,)

      Soil aggregates are basic properties of soil structure, and it is of very necessity to investigate soil aggregates stability when it comes to analyze the soil quality. At present, the soil aggregates are measured in medium of pure water, which ignores the existence of salt ions in soil water. Whereas, the soil water contains a variety of chemical substance. In addition, there is plentiful chemical substance in the irrigation water and fertilizer, which inevitably affects the stability of soil aggregates. Precipitation is abundant in Hubei area, and the alternation of rain and drought is also frequent. For investigating the effects of fertilization in droughty soil before irrigation or rainfall on the stability of soil aggregates, in this study, 2 different groups of experiments were carried out. In the first group, the soil aggregates from 3 types of soil (yellow cinnamon soil, yellow brown soil and brown red soil) in 2 kinds of land use types (forest and cultivated land) in Hubei Province were fast wetted under 2 kinds of electrolyte (KNO3and Ca(NO3)2) solutions in different concentrations (0, 0.005, 0.01, 0.02, 0.05, 0.08, 0.10, 0.20 mol/L) and then washed by alcohol. MWD (mean weight diameter) values were calculated after wet sieving. In the second group, these air-dry soil aggregates were immersed under KNO3and Ca(NO3)2solutions with concentrations of 0, 0.05, 0.10 and 0.20 mol/L. The parameter values of the breaking energy of the aggregates at the initial stage) were assessed by double exponential fitting model of AS (percentage of intact aggregates in all the tested aggregates during wetting process) and wetting time. The results indicate that: 1) When the concentration of solution was lower than 0.1 mol/L, as electrolyte concentration increases, MWD value decreased and the aggregates tended to break down into smaller size fractions; 2) AS value exponentially decays as the wetting time. Compared with pure water, the crushing of the brown red soil and the forest yellow cinnamon soil was affected significantly by the electrolyte solution. The aggregates of yellow cinnamon soil and the yellow brown soil of the cultivated land were rapidly broken in the electrolyte solution; 3) The AS of aggregates was negatively correlated with the breaking energy of the aggregates at the initial stage, which is a parameter in the exponential model, and the crushing energy was negatively correlated with the ratio of silt to clay in soil and content of soil organic matter, while positively correlated with the content of oxidative iron and aluminum. In summary, while the concentration increases, the rate of solution penetrating into aggregates increases with the surface tension of solution. As a result, the stability of aggregates decreases when the solution concentration rises. And compared with pure water, aggregates are crushed faster under electrolyte solution. These findings demonstrate that the soil aggregates stability tested by medium of pure water is different from the actual situation in the field, which is helpful to provide practical reference for modern agricultural production. Considering the characteristics of fertilizer application in actual production, K+and Ca2+are selected as representative research objects. In further study, more kinds of salt cations can be tested to explore the effects of different kinds of cations on soil aggregates stability.

      soils; aggregates; electrolytes; fast wetting; infiltration rate; slaking

      10.11975/j.issn.1002-6819.2017.22.022

      S157.1; S152.7

      A

      1002-6819(2017)-22-0175-08

      2017-05-03

      2017-11-05

      國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目“花崗巖風(fēng)化巖土體特性的地帶性分異及崩崗形成機(jī)理研究”(No:41630858);國(guó)家自然科學(xué)基金“典型地帶性土壤團(tuán)聚體抗侵蝕穩(wěn)定性及其與鐵鋁氧化物關(guān)系”(No:41471231)

      胡 節(jié),主要從事土壤侵蝕機(jī)理研究。 Email:hujie913@webmail.hzau.edu.cn

      蔡崇法,教授,博士生導(dǎo)師,主要從事土壤侵蝕與水土保持研究。Email:cfcai@mail.hzau.edu.cn

      猜你喜歡
      紅壤濕潤(rùn)電解質(zhì)
      The Desert Problem
      Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
      初探熱脫附技術(shù)在有機(jī)污染紅壤修復(fù)的應(yīng)用
      昆鋼科技(2021年6期)2021-03-09 06:10:26
      海邊的沙漠
      電解質(zhì)溶液高考熱點(diǎn)直擊
      長(zhǎng)期不同施肥對(duì)赤紅壤稻田區(qū)肥力的影響
      Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進(jìn)展
      固體電解質(zhì)Li1.3 Al0.3 Ti1.7(PO4)3燒結(jié)片的制備與表征
      長(zhǎng)期施肥下紅壤旱地土壤CO2排放及碳平衡特征
      長(zhǎng)期施肥對(duì)紅壤pH、作物產(chǎn)量及氮、磷、鉀養(yǎng)分吸收的影響
      额济纳旗| 江山市| 汪清县| 容城县| 梧州市| 绥芬河市| 儋州市| 正宁县| 嵩明县| 广东省| 丹寨县| 山西省| 古蔺县| 乐都县| 周至县| 星座| 望都县| 保定市| 达州市| 波密县| 和平县| 前郭尔| 改则县| 鞍山市| 临泉县| 台中市| 通河县| 大足县| 绍兴市| 米泉市| 滕州市| 凯里市| 兴隆县| 灵台县| 平凉市| 淮北市| 大同县| 土默特右旗| 南和县| 辽宁省| 铜川市|