邢浩男,楊啟良,喻黎明,劉小剛
?
方形噴灑域噴灌裝置的研制與試驗
邢浩男,楊啟良※,喻黎明,劉小剛
(昆明理工大學現(xiàn)代農(nóng)業(yè)工程學院,昆明 650500)
針對圓形噴灑域噴頭導致漏噴、水量重疊和界外噴灑的突出問題,該文研制了一種適用于無風環(huán)境的方形噴灑域噴灌裝置以提高噴灌均勻度和水資源利用效率。該裝置主要由搖臂式噴頭、連桿機構和凸輪組成。利用調節(jié)噴頭仰角的方式改變其射程使搖臂式噴頭噴出方形噴灑域,通過凸輪滾子與凸輪接觸部分阻力的變化調整噴頭轉速提高了裝置的噴灌均勻度。測試了該裝置在工作壓力為400 kPa,噴頭仰角變化范圍5°~30°,流量4.14 m3/h工作條件下裝置的性能,試驗結果表明,該裝置可噴灑30 m×30 m的正方形區(qū)域,其方形噴灑域系數(shù)高達92.06%,噴灌均勻度為82.07%,界外噴灌量占總噴灌量的1.32%,噴灑地塊邊角部分時比圓形噴灑域噴頭界外噴灑量減少了13.53%。因此,該裝置能較好的實現(xiàn)方形噴灑域、降低了界外噴灑量、減少了多個圓形噴灑域噴頭組合灌溉時所產(chǎn)生的重疊,為改善噴灌均勻度和提高水資源利用效率提供了新的思路和方法。
灌溉;均勻度;設計;噴灑域;方形;噴灌裝置;凸輪
噴灌是一種被廣泛應用的節(jié)水灌溉技術,具有結構簡單、操作方便、省時省工的優(yōu)點[1]。但是目前噴灌的均勻度和灌溉水利用效率較低[2]。其主要原因是噴頭的噴灑域是圓形的,而大多數(shù)農(nóng)田為方形,由此帶來的問題主要有以下幾個方面:1)采用固定噴灌方式,若采用單噴頭覆蓋整個灌溉區(qū)域,則界外噴灑導致的水分損失較多[3-6];2)若采用多噴頭組合方式,因水量重疊導致噴灌均勻度不高[7-14];3)在噴頭布置和組合時,地塊邊緣部位難免出現(xiàn)漏噴和噴出灌溉區(qū)域的情況導致灌溉水利用效率降低[15-20]。
如何提高噴灌均勻度和灌溉水利用效率是噴灌裝備研發(fā)的熱點和難點問題[4-5]。近年來,韓文霆等[21]通過理論分析,得出了方形噴灑域噴頭單位時間噴水量、噴頭水量分布以及噴頭轉速的數(shù)學模型。范興科等[3]利用“十”字孔板流量調節(jié)裝置實現(xiàn)方形噴灑域,并得出“十”字孔板長寬比為5:2。Hashim等[22]利用調節(jié)噴頭壓力的方式使得水利用效率提高了30%,為提高噴灌的效率以及均勻度提供了新的方法。Sheikhesmaeili等[4]對半干旱地區(qū)噴頭水量分布和噴霧損失進行了研究,表明在壓力虧缺6 kPa時噴霧損失達到了22.7%,為噴灌標準化管理提供了方法。這些方法和模型的提出均為噴灌均勻度的提高以及方形噴灑域噴灌裝置的研制提供了理論依據(jù)和設想,但研發(fā)出的產(chǎn)品實用性較差,對噴灑均勻度有何影響,缺乏試驗支撐,直至今日還沒有一種利用方形噴灑域噴灌實現(xiàn)節(jié)水灌溉的裝置在實際中被廣泛應用。
為解決上述問題,我們研制了一種噴灑域為方形的凸輪式噴灌機[23],利用調節(jié)噴頭仰角的方式噴灑方形區(qū)域、降低界外噴灑量,但該噴灌機并未考慮到噴頭射程變化對噴灌均勻度的影響?;谝陨蠁栴},本文設計了方形噴灑域噴灌裝置,并通過試驗驗證裝置的性能,旨在為灌溉水利用效率以及噴灌均勻度的提高提供新的思路和方法,為方形噴灑域噴灌設備的推廣應用提供理論依據(jù)和實踐方案。
方形噴灑域噴灌裝置設計要求能夠覆蓋邊長為30 m的正方形區(qū)域,其結構如圖1所示,該裝置由搖臂式噴頭,支撐架,連桿,頂桿,滾子,機架,凸輪組成裝置利用凸輪和連桿機構控制噴頭仰角變化,實現(xiàn)方形噴灑域噴灑,通過凸輪滾子與凸輪之間阻力的變化調節(jié)噴頭轉速,提高噴灌均勻度。
1.搖臂式噴頭 2.支撐架 3.連桿 4.滾子 5.機架 6.凸輪 7.頂桿
噴灑域是指噴頭噴灑的分布區(qū)域和形狀[24]。噴灑域形狀取決于裝置旋轉噴灑過程中其射程的規(guī)律性變化[3]。影響噴頭射程的因素很多,本裝置采用控制噴頭仰角變化的方式改變其射程使搖臂式噴頭噴出方形噴灑域。裝置工作時,搖臂式噴頭進行噴灌作業(yè),并在搖臂打擊作用下旋轉,帶動連桿、頂桿、支撐架隨之旋轉,在凸輪輪廓的引導下,頂桿一端的滾子會沿著凸輪輪廓運動,帶動頂桿,連桿,并將此運動形式傳至搖臂式噴頭上,使得搖臂式噴頭在旋轉噴灌的同時做改變仰角的運動,使其射程隨仰角的變化而改變從而形成方形的噴灑域。搖臂式噴頭的運動可以分解為2部分,其一為搖臂式噴頭的周轉運動,其二為改變噴射仰角的周期性運動。此外,由于搖臂式噴頭流量是不變的,但在方形噴灌工作時,射程是不斷改變的,所以本裝置在設計上擬使噴頭旋轉速度隨其射程的增加而降低,在遠射程時通過增加噴灑時長彌補水量的不足,達到提高噴灌均勻度的目的。
本裝置采用在凸輪與滾子接觸部分設置增加阻力的障礙,通過障礙對滾子阻力系數(shù)的變化使搖臂式噴頭旋轉速度規(guī)律性變化為噴灌均勻度的提高創(chuàng)造有利條件。裝置的主要零部件型號及工作參數(shù)見表1。
表1 主要零部件參數(shù)
總體來說,單個噴頭的水量分布曲線可以近似地歸納為三角形、梯形和矩形等[21, 25-27]。由于本裝置是為了實現(xiàn)方形噴灑域,研究主旨之一是避免各個單噴頭噴灑域的重疊,因此本裝置理論上不需要噴頭之間水量互相補償。為了提高單噴頭噴灑均勻度,本裝置選用的是水量分布為矩形的搖臂式噴頭[21]。此外根據(jù)陳大雕[28]的研究結果,類似矩形的水量分布曲線的平均噴灌強度明顯高于類似三角形水量分布曲線,且灌溉耗時及一次投入較少,因此理論上本裝置可以提高噴灌系統(tǒng)的經(jīng)濟性。
2.1.1 搖臂式噴頭的仰角變化范圍
凸輪輪廓形狀與該裝置的連桿、頂桿、搖臂式噴頭的幾何尺寸以及噴頭的最大射程有關,其中各項數(shù)據(jù)均已在表1中列出。經(jīng)過前期試驗驗證,裝置選用的20PY噴頭在仰角為5°和30°時射程分別為15.7和21.5 m,其仰角從30°變化到5°過程中,射程依次減小。若噴頭仰角變化范圍為5°~30°則可以噴灑邊長為30 m的方形區(qū)域。
2.1.2 噴頭旋轉速度和仰角變化速度的關系
因為搖臂式噴頭仰角周期性變化,且方形噴灑域有對稱性,所以在計算其旋轉速度和仰角變化速度關系時如圖2b所示,噴頭從起始點旋轉45°所經(jīng)過的這一區(qū)域就可以表示噴頭整周旋轉其速度變化的規(guī)律?;邳S元申[29]研究結果,噴頭旋轉速度和仰角變化速度若采用線性關系,則可以有效降低凸輪設計和加工的難度。如圖2b所示,噴頭自起始點開始旋轉,仰角由5°變化至30°過程中,噴頭旋轉45°,故此線性關系為式(1)。為驗證線性關系的適用性,測試了該搖臂式噴頭仰角為5°,15°,20°,30°時的射程。其實測射程、理論要求射程以及相對誤差見表2。
式中α為噴頭仰角(°),β為噴頭旋轉角度(°)。
表2 搖臂式噴頭各仰角射程及相對誤差
注:t=15/cos(),式中15為噴灑域邊長的1/2。
Note:t=15/cos(), where 15 is 1/2 of the length of the side of spray field.
如表2所示,搖臂式噴頭各仰角實際射程與理論上方形噴灑域要求的射程相比誤差均小于5.0%。
將本裝置除凸輪以外的所有零件在solidworks中建模并裝配,導入到solidworks motion中。因為搖臂式噴頭周轉運動1個周期,噴頭仰角變化4個周期,在運動仿真中只需要保證二者周期比為1∶4即可準確繪制凸輪輪廓,因此對本裝置的搖臂式噴頭施加仰角變化范圍為5°~30°的周期往復運動,運動周期為5 s,對支撐架施加周轉運動,其旋轉1周時間為20 s,搖臂式噴頭旋轉速度與仰角變化速度為式(1)的線性關系。模擬運行,繪制出滾子運動的軌跡,此軌跡即為凸輪輪廓線。
2.3.1 搖臂式噴頭旋轉速度變化規(guī)律
搖臂式噴頭工作過程中流量保持不變,但其工作過程中射程不斷發(fā)生變化,這會出現(xiàn)噴頭旋轉角度相同而噴灌區(qū)域面積不同的情況。以圖2b中所示的區(qū)域1和區(qū)域2為例,區(qū)域1和區(qū)域2夾角相同,但是區(qū)域2面積>區(qū)域1面積,而搖臂式噴頭流量不變,故應使區(qū)域2噴灑時長多于區(qū)域1。本裝置利用使各區(qū)域噴灑時長規(guī)律性變化的方式實現(xiàn)區(qū)域單位面積落水量均衡從而提高噴灌均勻度。將噴灑域平均劃分為8個區(qū)域,1/8區(qū)域的旋轉速度變化規(guī)律即可表示全部規(guī)律,如圖2b所示從起始角度旋轉45°的范圍即為該區(qū)域。搖臂式噴頭在此區(qū)域內任意旋轉一連續(xù)角度所對應的噴灑域面積為
式中為搖臂式噴灌頭任意旋轉一連續(xù)角度所對應的噴灑域面積,m2;1為搖臂式噴頭在仰角30°時的射程,m,和-1為區(qū)域內任意2個不同角度,rad。
為研究1/8噴灑域內噴頭旋轉速度的變化規(guī)律,將該區(qū)域按噴頭旋轉角度平均劃分為若干部分,由于該區(qū)域噴頭旋轉了45°,為使此角度能被整除,將該區(qū)域平均分成9個部分,即:β?β1=5°。顯然,9個區(qū)域面積之比即為搖臂式噴頭在該區(qū)域內噴灑時長之比。各區(qū)域面積、設計平均轉速/(°)/s、噴灑時長見表3。
表3 各區(qū)域面積及其設計參數(shù)
2.3.2 凸輪內壁與滾子之間阻力系數(shù)的計算
為實現(xiàn)表3中所示的噴灑時長變化規(guī)律,需要計算凸輪內壁與滾子之間的阻力系數(shù)。搖臂式噴頭在噴灌過程中由搖臂打擊力驅動其旋轉,在打擊過程中雖然打擊力大小不穩(wěn)定但是單次打擊做功和打擊頻率相對均衡[30],因此可以建立搖臂打擊做功與阻力系數(shù)的函數(shù)關系從而求得各段的阻力系數(shù)值。
1)滾子與凸輪內壁之間壓力值計算
本裝置運動機構受力分析如圖3所示。滾子和凸輪之間的壓力由搖臂式噴頭重力提供,如圖3a所示,噴頭噴灌時產(chǎn)生的反沖力與運動副1始終垂直,被運動副1抵消,故不影響滾子與凸輪之間的壓力,本裝置采用的搖臂式噴頭的質量為506 g,搖臂式噴頭重心到運動副1的距離為40 mm。為了便于計算可簡化力系,如圖3a所示。將重力簡化為一個作用于運動副1的力偶矩和一個豎直向下的力g,大小為202.50(N?mm),g大小等于噴頭重力。滾子與凸輪內壁之間壓力值為滾子與凸輪接觸點法線方向上的分力,滾子與凸輪接觸點受力分析見圖3b。在搖臂式噴頭仰角變化的過程中滾子與凸輪之間的壓力也在不斷變化。經(jīng)受力分析得到此壓力函數(shù)關系如式(3)所示。
式中()為滾子與凸輪之間的壓力函數(shù);為力偶矩(N?mm)其大小為202.50(N?mm);為連桿與水平面夾角,rad;為頂桿作用力與滾子和凸輪輪廓接觸點切線的夾角,rad;1為運動副1到運動副2的距離為60 mm;2為連桿長度為150 mm。
注:1為運動副1到運動副2的距離為60 mm;2為連桿長度為150 mm。
Note:1is the distance from kinematic pair 1 to kinematic pair 2,1=60 mm;2is the length of the connecting rod,2=150 mm.
圖3 本文裝置運動機構受力分析圖
Fig.3 Force analysis diagram of this paper device motion mechanism
2)阻力系數(shù)與做功值函數(shù)關系的建立
除凸輪與滾子接觸部分阻力做功以外,設其余阻力做功為0。0由3部分組成,其一是為克服運動副摩擦力做功1,其二是搖臂式噴頭重心改變所做的功2,此外在噴頭旋轉過程中,當處于45°~90°時噴頭重心下降,此時為保證理論要求的轉速,滾子和凸輪接觸面需要提供較大的阻力,所以如圖4所示在機架和凸輪連接處加入了一個大小為30(N?mm)的旋轉阻尼器,當處于45°~90°時兩齒輪嚙合,阻尼器提供阻力,其阻尼通過傳動比為1∶6的齒輪機構放大到180(N?mm),該阻尼器做功為3。
式中,2為搖臂式噴頭重心改變所做的功,mJ,當處于0°~45°時搖臂式噴頭重心上升,其重力阻止噴頭旋轉,式(4)中符號取“+”,當處于45°~90°時重心下降,其重力有利于噴頭旋轉,式中符號取“-”。
注:齒輪機構中,大齒輪與支撐架底部固定連接,小齒輪與阻尼器固定連接,阻尼器與機架固定連接。
Note: In the gear mechanism, the large gear is fixedly connected with the bottom end of the support frame, the smaller gear is fixedly connected with the damper, the damper is fixedly connected with the frame.
圖4 阻尼器連接圖
Fig.4 Diagram of damper connection
式中運動副阻力矩實測值為287(N?mm)。
式中和-1為當處于和-1時對應的角度值,G為搖臂式噴頭重力,N,3為搖臂式噴頭重心到運動副1的距離,為40 mm。
式中180為阻尼器提供的阻尼大小,即180(N?mm)。
裝置工作時,搖臂擊打1次有效做功平均值為′,單位時間擊打次數(shù)為。該搖臂式噴頭擊打頻率為6.02次/s。′實測值為9.95 mJ。根據(jù)式(1)、(3)、(4)可得出噴頭旋轉任意角度過程中搖臂打擊力做功
式中i為凸輪內壁與滾子之間的阻力系數(shù),()為與凸輪輪廓半徑的函數(shù)關系;為該區(qū)域的噴灑時長,s;為單位時間擊打次數(shù);′為搖臂打擊1次做功,mJ。
()為多項擬合關系式
式中為凸輪輪廓半徑,mm。
因為旋轉角處于0°~45°時搖臂式噴頭重心上升,處于45°~90°時重心下降,所以凸輪在這2個角度范圍內其阻力系數(shù)也是不同的,所以需要確定處于0°~90°這一范圍內凸輪阻力系數(shù)的變化規(guī)律。根據(jù)式(1)、(3)、(4)、(8)、(9)得出如表4中所示的凸輪內壁與滾子之間的阻力系數(shù)。為便于制造,如表4所示裝置樣機的實際阻力系數(shù)會與理論計算值有差異,所引起的噴灑時長最大相對誤差為5.44%。為提供阻力所需系數(shù),在凸輪內部所設置的障礙如圖5所示。
表4 凸輪各部分阻力系數(shù)及噴灑時長相對誤差
圖5 障礙實物圖
試驗在室內進行,由于試驗場地面積限制,所以將該裝置放置于正方形測試區(qū)頂點,測試裝置1/4噴灑域噴灌數(shù)據(jù)驗證其性能,試驗場地為16 m×16 m的正方形區(qū)域,在14 m×14 m區(qū)域內按照2 m×2 m方格網(wǎng)狀布置量雨筒,為計算界外噴灑量,在測試區(qū)15~16 m區(qū)域內間隔0.2 m放置量雨筒。試驗采用0. 4精度級壓力表讀取噴頭工作壓力,0.5精度級電磁流量計讀取流量。裝置運行過程中工作壓力為400 kPa、流量為4.14 m3/h。本裝置采用20PY型的搖臂式噴頭,噴嘴直徑為8 mm。凸輪采用3D打印制造,材質為PLA塑料,加工精度為0.1 mm,支撐架、連桿、頂桿采用鋁制造。裝置性能通過3個方面進行驗證:
1)噴灑域的方形程度:采用韓文霆[31]提出的方形噴灑域系數(shù)計算噴灑域的方形程度,見式(10);
2)噴灌均勻度:采用克里斯琴森均勻系數(shù)來衡量,見式(11);
3)界外噴灌量:該裝置1/4噴灑域,即15 m×15 m正方形區(qū)域外的降水即為界外噴灑,界外噴灌量見式(12)。
式中為方形噴灑域系數(shù),%;為方形頂點方向上實測噴頭射程,m;′為方形邊線中點方向上實測噴頭射程,m;為正方形邊數(shù)。
試驗區(qū)域的水量分布圖如圖6所示,試驗結果如表5所示。
圖6 試驗區(qū)域水量分布圖
表5 噴灌試驗數(shù)據(jù)
結果表明本裝置的方形噴灑域系數(shù)達到92.06%,可以完全覆蓋30 m×30 m的正方形區(qū)域;本裝置的噴灌均勻度為82.07%,達到了設計要求,較同型號的圓形噴灑域噴頭高1.41%;在15 m×15 m正方形區(qū)域之外的水量為總水量的1.32%,在對方形地塊的邊角區(qū)域進行噴灌時,與圓形噴灑域噴頭相比,其界外噴灌量可減少13.53%,因此本裝置不僅提高了噴灌均勻度,而且也大大減少了水資源的浪費。
本裝置試驗中只測試了單噴頭的噴灑均勻度,在實際中所遇到的大多數(shù)情況是多噴頭噴灑[32],為探討多噴頭噴灌的均勻度,對試驗進行了理論分析。本文裝置組合噴灌時,采用正方形組合形式,各裝置之間的間隔為30 m。由于本裝置有少量界外噴灑,故方形組合形式在距裝置15~16 m區(qū)域內有重疊灌溉,如圖6a所示,距裝置15 m附近的水量偏低,2噴灑域重疊噴灌后水量可以互相補償,這有利于地塊整體噴灌均勻度的提高,利用試驗數(shù)據(jù)以及式(11)推測出本裝置采用正方形組合的噴灌均勻度為82.19%,比單個裝置的噴灌均勻度提高0.15%。若采用本裝置所使用的PY20噴頭進行組合噴灑,在同樣的布設情況下噴灌均勻度為80.73%。由此可見,本裝置在組合噴灑情況下噴灌均勻度仍高于圓形噴灑域噴頭。本裝置所使用的PY20噴頭水量分布與理想情況下的矩形水量分布有偏差,若后續(xù)能研制出水量分布更接近理想情況的噴頭將可以大幅度提升本裝置噴灌均勻度。在設備布置方面,若使用圓形噴灑域噴頭進行噴灌在正方形組合情況下,通常認為最優(yōu)噴頭間距為其最大射程[24],若使用本裝置中的搖臂式噴頭進行噴灌,則布設間距為21.5 m,此時分析得出其噴灑均勻度為82.06%,與本裝置基本持平,本裝置布設間距為30m,比圓形噴灑域噴頭布設間距長8.5m,這使得灌溉設備管路密集程度有所降低,使用噴頭數(shù)量明顯減少,同時也減輕了供水設備的負荷。故本裝置具有節(jié)省材料和勞動力成本的潛力。
本文中所有數(shù)據(jù)均是在無風條件下計算的,所以本裝置目前的適用范圍也僅限于無風環(huán)境,如溫室大棚。當前溫室大棚噴灌設備以平移式噴罐機和吊掛折射噴頭為主[33],平移式噴罐機結構復雜,占用空間大,且涉及電路和控制等方面內容,在溫室噴灌作業(yè)中如果以本裝置替代平移式噴罐機將大大節(jié)省投入成本,此外,在使用中本裝置無需電力驅動,相對于平移式噴罐機有功耗低的優(yōu)勢。吊掛折射噴頭射程近,管路布置密集,單條管線損壞經(jīng)常會導致整個系統(tǒng)癱瘓[34],本裝置相對于吊掛折射噴頭有管路布置簡單且便于管理的優(yōu)勢。若將本裝置應用于大田噴灌作業(yè)風力的影響則不可忽視[12],對于風力對裝置的影響以及裝置抗風輔助設備的研制,未來將進行實時測量風向和風速裝置的研究,用以控制本裝置工作過程中的噴頭工作條件如:噴灑方向、水壓等[25],從而增強裝置的抗風性能,此外制定裝置組合使用的最佳間距也是抵抗風力影響的重要內容[4],這也應作為未來方形噴灑域噴灌裝置的研究重點。
本文以凸輪為核心零件,通過運動仿真設計凸輪輪廓,采用連桿機構調節(jié)搖臂式噴頭仰角的變化改變噴頭射程噴灑出方形區(qū)域。在噴頭旋轉過程中,通過凸輪與滾子的阻力控制噴頭旋轉速度的變化提高噴灌的均勻度。
試驗運行結果表明,本裝置能夠在無風條件下噴灑方形噴灑域,其方形噴灑域系數(shù)為92.06%,能夠完全覆蓋30 m×30 m的正方形區(qū)域;單噴頭的噴灌均勻度為82.07%,正方形組合的噴灌均勻度為82.19%,遠遠高于《噴灌工程技術規(guī)范》中不低于75%的規(guī)定;界外噴灑量為1.32%,與圓形噴灑域噴頭相比減少了13.53%,節(jié)水效果明顯。
本裝置避免了圓形噴灑域噴頭所產(chǎn)生的重疊,噴灑均勻度較高有利于促進作物生長,同時在噴灌地塊邊角部位時可以有效避免界外噴灑,從而明顯提高了水資源的利用效率,為新型噴灌裝置的研發(fā)提供了新的思路和方法。
[1] 李宗禮,趙文舉,孫偉,等. 噴灌技術在北方缺水地區(qū)的應用前景[J]. 農(nóng)業(yè)工程學報,2012,28(6):1-5. Li Zongli, Zhao Wenju, Sun Wei, et al. Application prospect of sprinkler irrigation technology in water-short areas of northern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 1-5. (in Chinese with English abstract)
[2] 韓文霆,崔利華,吳普特,等. 正三角形組合噴灌均勻度計算方法[J]. 農(nóng)業(yè)機械學報,2013,44(4):99-107. Han wenting, Cui Lihua, Wu Pute, et al. Calculation methods for irrigation uniformity with sprinklers spaced in regular triangle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 99-107. (in Chinese with English abstract)
[3] 范興科,吳普特,馮浩,等. 全圓旋轉搖臂式噴頭的非圓形域噴灑[J]. 灌溉排水學報,2006,25(1):58-61. Fan Xingke, Wu Pute, Feng Hao, et al. Non-circular spray region of the round rotatory rocker arm spr inkler[J]. Journal of Irrigation and Drainage, 2006, 25(1): 58-61. (in Chinese with English abstract)
[4] Sheikhesmaeili O, Montero J, Laserna S. Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas[J]. Agricultural Water Management, 2016, 163:275-284.
[5] 劉俊萍,袁壽其,李紅,等. 全射流及搖臂式噴頭水量分布形狀分析及組合計算[J]. 灌溉排水學報,2014,33(4/5):168-174. Liu Junping, Yuan Shouqi, Li Hong, et al. Analysis on Water Distribution Shape and Combination Calculation of Complete Fluidic Sprinklers and Impact Sprinklers[J]. Journal of Irrigation and Drainage, 2014, 33(4/5): 168-174. (in Chinese with English abstract)
[6] 袁壽其,魏洋洋,李紅,等. 異形噴嘴變量噴頭結構設計及其水量分布試驗[J]. 農(nóng)業(yè)工程學報,2010,26(9):149-153. Yuan Shouqi, Wei Yangyang, Li Hong, et al. Structure design and experiments on the water distribution of the Variable-rate fable-rate sprinkler with non-circle nozzle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 149-153. (in Chinese with English abstract)
[7] Li Lianhao, Zhang Xinyue, Qiao Xiaodong, et al. Analysis of the decrease of center pivot sprinkling system uniformity and its impact on maize yield[J]. Int J Agric & Biol Eng, 2016, 9(4): 108-119.
[8] Rathore V S, Nathawat N S, Bhardwaj S, et al. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region[J]. Agricultural Water Management, 2017, 187:232-245.
[9] 劉柯楠,吳普特,朱德蘭,等. 太陽能渠道式噴灌機自主導航研究[J]. 農(nóng)業(yè)機械學報,2016,47(9):141-146. Liu Ke’nan, Wu Pute, Zhu Delan, et al. Autonomous Navigation of Solar Energy Canal Feed Sprinkler Irrigation Machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 141-146. (in Chinese with English abstract)
[10] 袁壽其,王新坤. 我國排灌機械的研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)機械學報,2008,39(10):52-58. Yuan Shouqi, Wang Xinkun. Present research situation and perspective of drainage and irrigation machinery in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 52-58. (in Chinese with English abstract)
[11] Sun Wenfeng, Wang Yanhua, Wang Teng, et al. Spray head selection and hydraulic performance optimization of roll wheel line move sprinkling irrigation machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 99-106.
[12] 張以升,朱德蘭,宋博,等. 基于彈道理論有風條件下折射式噴頭噴灌均勻度研究[J]. 農(nóng)業(yè)機械學報,2017,48(2):91-97. Zhang Yisheng, Zhu Delan, Song Bo, et al. Uniformity of fixed spray late sprinkler under windy condition based on ballistic simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 91-97. (in Chinese with English abstract)
[13] 徐紅,龔時宏,賈瑞卿,等. 新型ZY系列搖臂旋轉式噴頭水滴直徑分布規(guī)律的試驗研究[J]. 水利學報,2010,41(12):1416-1422. Xu Hong, Gong Shihong,Jia Ruiqing, et al. Study on droplet size distribution of ZY sprinkler head[J]. Journal of Hydraulic Engineering, 2010, 41(12): 1416-1422. (in Chinese with English abstract)
[14] 施鈞亮,竇以松,朱堯洲. 噴灌設備與噴灌系統(tǒng)規(guī)劃設計[M]. 北京:水利電力出版社,1979.
[15] 劉俊萍,劉興發(fā),朱興業(yè),等. 搖臂式噴頭與全射流噴頭水滴分布對比試驗[J]. 農(nóng)業(yè)工程學報,2015,31(18):85-90. Liu Junping, Liu Xingfa, Zhu Xingye, et al. Comparison of droplet size distribution experiments between complete fluidic sprinkler and impact sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 85-90. (in Chinese with English abstract)
[16] Dwomoh F A, Shouqi Y, Hong L. Field performance characteristics of fluidic sprinkler[J]. Applied Engineering in Agriculture, 2013, 29(4):529-536.
[17] 吳普特,朱德蘭,呂宏興, 等.農(nóng)田灌溉過程中的水力學問題[J]. 排灌機械工程學報,2012,30(6):726-732. Wu Pute, Zhu Delan, Lü Hougxing, et al. Hydraulics problems in farmland irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(6): 726-732. (in Chinese with English abstract)
[18] 李連豪,李光永,喬曉東,等. 中心支軸式噴灌機非設計工況對均勻性的影響評估[J]. 農(nóng)業(yè)機械學報,2015,46(12):62-67. Li Lianhao, Li Guangyong, Qiao Xiaodong, et al. Assessment of influence of offlesign conditions on uniformity of sprinkler irrigation of center-pivot irrigation system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 62-67. (in Chinese with English abstract)
[19] Lemme C D. Rotary sprinkler nozzle for enhancing close-in water distribution: US5240182[P]. 1993.
[20] 李紅,徐敏,李一鳴,等. 噴頭旋轉式散水盤散水齒結構優(yōu)化設計[J]. 農(nóng)業(yè)機械學報,2014,45(12):69-74. Li Hong, Xu Min, Li Yiming, et al. Optimal Design of Rotating Stream Interrupter Diffuser for Sprinklers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 69-74. (in Chinese with English abstract)
[21] 韓文霆,吳普特,馮浩,等. 方形噴灑域變量施水精確灌溉噴頭實現(xiàn)理論研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2003,21(2):105-107. Han Wenting, Wu Pute, Feng Hao, et al. Variable-rate sprinklers for precision irrigation on square area[J]. Agricultural Research in the Arid Areas, 2003, 21(2): 105-107. (in Chinese with English abstract)
[22] Hashim S, Mahmood S, Afzal M, et al. Performance evaluation of hose-reel sprinkler irrigation system[J]. Arabian
Journal for Science & Engineering, 2016, 41(10):1-8.
[23] 楊啟良,邢浩男,賈維兵. 一種凸輪式噴灌機: CN205756138U[P]. 2016.
[24] 汪志農(nóng). 灌溉排水工程學[M]. 北京:中國農(nóng)業(yè)出版社,2000.
[25] 脫云飛,楊路華,柴春嶺,等. 噴頭射程理論公式與試驗研究[J]. 農(nóng)業(yè)工程學報,2006,22(1):23-26. Tuo yunfei, Yang Luhua, Chai Chunling, et al. Experimental study and theoretical formula of the sprinkler range[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 23-26. (in Chinese with English abstract)
[26] 陳超,李紅,袁壽其,等. 出口可調式變量噴頭噴灌均勻性[J]. 排灌機械工程學報,2011,29(6):536-541. Chen Chao, Li Hong, Yuan Shouqi, et al. Irrigation uniformity of nozzle-changeable variable-rate sprinkler[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(6): 536-541. (in Chinese with English abstract)
[27] 王波雷,馬孝義,范嚴偉,等. 旋轉式噴頭射程的理論計算模型[J]. 農(nóng)業(yè)機械學報,2008,39(1):41-45. Wang Bolei, Ma Xiaoyi, Fan Yanwei, et al. Modeling and experiment validation on the rotational sprinkler nozzle range[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 41-45. (in Chinese with English abstract)
[28] 陳大雕. 最優(yōu)噴頭組合形式選擇方法的探討[J]. 噴灌技術,1984(2):5-13. Chen Dadiao. Discussion on selection method of optimum nozzle combination form[J]. Sprinkler Irrigation Technique, 1984(2): 5-13. (in Chinese with English abstract)
[29] 黃元申. 高精度非線性凸輪曲線的加工研究[J]. 光學儀器,2000,22(1):33-38.
Huang Yuanshen.The research for machining of high precision nonlinear cam curve[J]. Optical in Struments, 2000, 22(1): 33-38.
[30] 王祺銘,嚴海軍,劇錦三,等. PY140型搖臂式噴頭搖臂碰撞過程數(shù)值模擬[J]. 農(nóng)業(yè)機械學報,2010,41(1):86-90. Wang Qiming, Yan Haijun, Ju Jinsan, et al. Numerical simulation of swing arm impact proces to the PY140 impact sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 86-90. (in Chinese with English abstract)
[31] 韓文霆. 變量噴灑可控域精確灌溉噴頭及噴灌技術研究[D].楊凌:西北農(nóng)林科技大學,2003. Han Wenting. Variable Rate Watering and Contour Controlled Precision Sprinkler and Sprinkler Irrigation[D]. Yangling: Northwest A&F University, 2003. (in Chinese with English abstract)
[32] 李永沖,嚴海軍,徐成波,等.考慮水滴運動蒸發(fā)的噴灌水量分布模擬[J]. 農(nóng)業(yè)機械學報,2013,44(7):127-132. Li Yongchong, Yan Haijun, Xu Chengbo, et al. Simulation of sprinkler water distribution with droplet dynamics and evaporation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 127-132. (in Chinese
with English abstract)
[33] 閆華. 典型作物設施農(nóng)業(yè)灌溉決策系統(tǒng)研究與實現(xiàn)[D]. 北京:中國農(nóng)業(yè)大學,2016. Yan hua.Study and Implementation of Irrigation Decision System for Typical Crop in Facility Agriculture[D]. Beijing:China Agricultural University, 2016. (in Chinese with English abstract)
[34] 韓文霆,姚小敏,朱冰欽,等. 變量噴灑噴頭組合噴灌試驗[J]. 農(nóng)業(yè)機械學報,2013,44(7):121-126. Han Wenting, Yao Xiaomin, Zhu Bingqin, et al. Test and evaluation on variable-rate irrigation sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 121-126. (in Chinese with English abstract)
邢浩男,楊啟良,喻黎明,劉小剛. 方形噴灑域噴灌裝置的研制與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(22):84-91. doi:10.11975/j.issn.1002-6819.2017.22.011 http://www.tcsae.org
Xing Haonan, Yang Qiliang, Yu Liming, Liu Xiaogang. Design and experiment of sprinkler irrigation device with square spray field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 84-91. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.011 http://www.tcsae.org
Design and experiment of sprinkler irrigation device with square spray field
Xing Haonan, Yang Qiliang※, Yu Liming, Liu Xiaogang
(650500,)
In this research, the sprinkler irrigation device with square spray field was developed to solve the problem of overlapping irrigation and extraterritorial spraying of the circular spray field sprinkler. The device spray field can completely cover the square area of 30 m×30 m. We used the link mechanism and the cam to controls the elevation angle of the sprinkler in order to change the range to form a square area during the sprinkler irrigation. In the design process, we selected 20PY sprinkler, and expanded the sprinkler diameter to 8 mm. We determined the elevation angle of the sprinkler of 5°-30° by the experiment. The results showed that the rotational speed of the sprinkler was linearly related to the velocity of the elevation. We created solid model with solid works, and use solid works motion software to simulate the motion so that we can draw the outline of the cam. In the terms of the spray uniformity, it resulted in uneven spraying that the sprinkler range was constantly changing and the sprinkler unit time was kept constant during the sprinkler process. The device adjusted the sprinkler rotation speed by changing the resistance coefficient between cam roller and cam contact surface so that when the range was far away, the rotation speed was relatively slow, and when the range was closer, the rotation speed was slightly faster to adjust the sprinkler’s shooting time in a variety of range. Thereby the spray uniformity was improved. When we calculated the spray duration, the cam profile was symmetric. As such, we can select a quarter of the cam as the object of study, and divided this part into 18 regions by angle, and the ratio of the sprayed area to the 18 regions was the ratio of these areas’ spray duration. The work of the rocker arm fighting once was relatively stable. The work of the corresponding area was the product of the spray time, rocker strike frequency and the work of the rocker arm fighting once in the area. And we can set the equation with the corresponding regional’s work and resistance coefficient to solve the resistance coefficient of roller and cam contact surface in this area. We took the 1/4 spray field to verify device performance in the experiment. The experimental results verified that the proximity between the spray field and the spray area, and the proximity was 92.06%. The sprinkler uniformity of the device was well, and the Christiansen uniformity of the sprinkler was 82.07% in the uniformity. In addition, the outside sprinkling irrigation quantity was also an important indicator of the test, and we regarded 15 m×15 m square outside the area of precipitation as the outside sprinkling irrigation quantity. The experiment showed that the ratio of the amount of the outside spray to the total spray was 1.32%. When we irrigated the edge of land, the outside sprinkling irrigation quantity amount from the device was decreased by 13.53% than the circular spray domain. The device avoided the overlapping of the circular spray field sprinklers, and the spray uniformity was high. At the same time, the device can effectively avoided the outside spray in the corner of land, thus improved the water use efficiency significantly. Our research provides a new concept and a method for the research and development of new sprinkler. The combined sprinkler and the spray situation in the impact of wind are still variables affecting effectives of sprinkler that needs to be studied.
irrigation; uniformity; design; spray area; square; sprinkler irrigation device; cam
10.11975/j.issn.1002-6819.2017.22.011
S277.9
A
1002-6819(2017)-22-0084-08
2017-07-22
2017-11-09
國家自然科學基金(項目編號51779113; 51379004;51109102);云南省教育廳科學研究基金項目(項目編號2017YJS065)
邢浩男,男,河北永清人,主要從事節(jié)水灌溉技術與裝備研究。Email:449286363@qq.com
楊啟良,男,甘肅通渭人,博士,教授,博士生導師,主要從事節(jié)水灌溉技術與裝備研究。Email:yangqilianglovena@163.com