嚴旭,高琦,程茜,周紅生,徐崢
?
摩擦力和樣品厚度對壓痕法測量生物試樣彈性的影響
嚴旭1,高琦2,程茜1,周紅生2,徐崢1
(1. 同濟大學物理科學與工程學院,上海 200092;2. 中國科學院聲學研究所東海研究站,上海 201815)
生物試樣的彈性測量可為生物體疾病的早期診斷和治療提供依據(jù)。利用壓痕法對生物試樣的彈性進行了測量,并用有限元軟件對壓痕過程進行了模擬。研究發(fā)現(xiàn),試樣厚度對彈性測量存在影響,試樣厚度越大,測量結果越接近試樣真實的楊氏模量。當試樣厚度為壓痕深度的75倍時,測量誤差僅為0.74 %。又研究了壓頭速度對彈性測量結果的影響。研究發(fā)現(xiàn),當壓頭速度較大時,由于摩擦力的作用,測量結果與試樣彈性的真實值之間存在一定的差異。在模擬過程中添加摩擦力可準確反演試樣的彈性,誤差在5 %以下。
壓痕法;彈性;有限元;摩擦力
生物體內(nèi)大到器官小到細胞均為生物軟組織。這些組織時刻受到不同大小的內(nèi)力和外力的作用,并保持彈性。一旦組織的彈性改變時,就意味著組織的損傷或者病變,如癌癥[1-4]、動脈粥樣硬化[5]、青光眼[6]等都會導致生物組織彈性發(fā)生改變。在細胞層面,研究者們發(fā)現(xiàn)細胞形態(tài)[7-9]改變,或細胞發(fā)生遷移[8,10-11]、增殖[9,12-14]或分化[10,15-17]時,其彈性將改變。因此,彈性對于表征生物體的活性和理解生物組織的生理功能均非常重要。
目前,生物組織的彈性可以通過超聲彈性成像技術[18-21]、磁共振彈性成像技術[22-26]等進行測量,但這些測量均為定性測量,無法反映生物組織的真實彈性。為得到生物組織彈性的定量結果,一般可使用壓縮法[27-28]、靜態(tài)拉伸法[29-31]、壓痕法[32-35]等。其中壓痕法因為操作簡單、對測量試樣無損、測試精度高等優(yōu)點而被廣泛應用。但壓痕法測量彈性是基于半無限大試樣建立的理論,當試樣厚度有限時,尤其是當壓痕深度與試樣厚度可比擬時,試樣底面的反射會給測量結果帶來誤差。另外,壓痕法要求測試的速度必須很慢,當壓頭速度較大時,由于粘滯力和摩擦力等的作用會給彈性測量結果帶來誤差。而現(xiàn)在很多研究工作已不局限于對試樣單點彈性的測量,而是測量整個生物試樣的彈性分布[36],這樣的測量在現(xiàn)有方法基礎上需要耗費大量的時間。因此建立一種快速且準確的彈性測量方法非常必要。
本文利用實驗和有限元仿真研究了試樣厚度對壓痕法測量彈性結果的影響。挑選了恰當厚度的試樣并通過改變壓頭速度,分析了摩擦力對彈性測量結果的影響,并給出了存在摩擦力作用時反演生物試樣彈性的方法。
圖1為壓痕法測量生物試樣彈性的實驗裝置示意圖(1(a)~1(c))與儀器實物圖(1(d))。實驗裝置由激光器、伺服電機、樣品臺、懸臂梁、壓頭組成。懸臂梁一端連接伺服電機,一端連接壓頭。壓頭直徑為5 mm,懸臂梁的長度為45 mm。實驗前,為得到激光位移補償,需校準儀器,利用探針下壓載物臺上的鋼塊,得出行程-變形量的曲線,根據(jù)曲線調(diào)整電機行程。實驗過程中,伺服電機驅(qū)動懸臂梁向下運動,代表電機的位移,當壓頭觸碰到試樣表面時,懸臂梁發(fā)生彎曲,激光器發(fā)射的光照射到懸臂梁上反射的光路發(fā)生改變,激光儀檢測到反射光路的變化,軟件記錄下電機位移和激光位移。根據(jù)測得的數(shù)據(jù),可通過赫茲模型計算得到彈性。
(a) 測試試樣的側視圖(b) 懸臂梁俯視圖 (c) 懸臂梁側視圖
當半徑為的球形壓頭壓在半無限大的介質(zhì)上,力與壓痕深度的關系[37]滿足:
*表示有效彈性,表達式為
為得到試樣的真實彈性,使用有限元模擬壓痕過程。如圖2所示,根據(jù)實物構建二維軸對稱模型,固定試樣的軸以及其底部,設置壓頭與試樣表面接觸。為了確保計算結果的準確,在模型的接觸區(qū)域細分了網(wǎng)格。
圖2 Comsol模擬壓痕過程的網(wǎng)格以及邊界條件
Cox等人發(fā)現(xiàn),在壓頭速度非常低時,反饋力僅與試樣彈性有關[39]。實驗中壓頭速度設置為0.03 mm/s。圖3是壓痕過程(進針、靜止和退針)中試樣反饋力與時間的關系曲線。從圖3可以發(fā)現(xiàn),在該速度下進針和退針曲線具有很好的對稱性,并且在中間靜止段沒有受到其他力的作用,表明試樣的粘滯作用可忽略。
當試樣厚度大于10倍的壓痕深度時,可以忽略試樣底部反饋力的作用,本實驗采用的壓痕深度為0.6 mm。選擇5、15、45 mm厚度的生物試樣,分別研究了在這些厚度條件下,壓痕法由于試樣厚度造成的誤差。首先研究了不同厚度試樣(5、15、45 mm)對彈性測量結果的影響。如圖4所示,在壓痕剛產(chǎn)生時,實驗測得力曲線與赫茲模型計算得到結果符合得較好。隨著壓痕深度的增加,實驗測得的結果逐漸偏離赫茲模型計算結果,當試樣厚度越小時,測得的反饋力越大。這是因為赫茲模型建立在半無限大厚度試樣上,對有限厚度試樣,存在載物臺的反作用力,當試樣厚度越小時,反作用力越大,因此實驗與赫茲模型的計算結果偏差也越大。另外,當試樣與壓頭的接觸面積變大,赫茲模型的假設(接觸半徑<<壓頭半徑)不再滿足,這也會導致實驗力曲線與理論計算結果的偏差增大。
圖3 時間與反饋力關系圖
圖4 實驗測出的不同厚度的力曲線及理論力曲線
將力-壓痕深度關系通過式(1)和(2)可反演試樣的楊氏模量,圖5給出了不同厚度生物試樣測出的楊氏模量,5 mm和15 mm厚度的生物試樣計算出的楊氏模量分別為95.06、94.45 kPa,誤差分別為8.02%、7.33%。計算得到的45 mm厚度的生物試樣的彈性為88.65 kPa,有限元法計算得出的生物試樣的彈性為88 kPa,誤差僅為0.74%。
我們又研究了壓頭速度對彈性反演的影響,不同壓頭速度測出的楊氏模量如圖6所示。為了減少載物臺對壓頭的反作用力,選擇45 mm厚度的試樣進行實驗。分別研究了壓頭以0.03、0.09、0.12、0.2 mm/s速度撤針測量得到的楊氏模量,結果如表1所示。由表1可知,壓頭速度越快,反演得到的楊氏模量誤差越大。因此,用赫茲模型反演試樣的楊氏模量需考慮摩擦力的作用。由表1的結果可知,試樣與壓頭間的摩擦力與壓頭速度有關。因此假設摩擦力表達式為
積分后得到
式中:為單位面積阻尼系數(shù);表示壓頭半徑;為壓頭速度沿接觸面的切向速度分量;為壓頭速度;為壓痕深度;為常數(shù)。隨后可根據(jù)實驗數(shù)值計算出。
圖5 不同厚度試樣的楊氏模量
圖6 不同壓頭速度測出的楊氏模量圖
表1 不同速度測出的45 mm試樣的楊氏模量
通過模擬結果與實驗結果對比,本文計算出為2.05×107 kg/(m2?s),當1時,計算與實驗結果符合最好。圖7分別給出了在壓頭速度為0.03、0.09、0.12 mm/s和0.20 mm/s時,力曲線的實驗值與未考慮摩擦和考慮摩擦后的計算值對比。從圖7中發(fā)現(xiàn),當壓頭速度很小(低于0.03 mm/s)時(圖7(a)),考慮摩擦和不考慮摩擦計算出的力曲線幾乎重合,這表明速度很小(低于0.03 mm/s)時可以忽略摩擦力的作用。此外,圖3中低速(0.03 mm/s)的進針曲線與退針曲線相對稱,說明速度很小時可忽略粘滯力的作用。當速度漸漸增大時,摩擦力的作用變得明顯。在退針過程中受摩擦力作用使反饋力減小,當壓頭速度為0.20 mm/s時,由于摩擦力作用使實驗和赫茲模型得到的力曲線相差很遠。此時反演得到的楊氏模量與試樣的真實值相差達到36.81 %(見表1)。在考慮摩擦的情況下,可以看到實驗測量值與赫茲模型符合較好。
(a) 壓頭速度為0.03 mm/s
(b) 壓頭速度為0.09 mm/s
(c) 壓頭速度為0.12 mm/s
(d) 壓頭速度為0.20 mm/s
圖7 壓頭速度分別為0.03、0.09、0.12、0.20 mm/s時力曲線的實驗值、未考慮以及考慮摩擦力之后的計算值
Fig.7 The force curves of experimental value and the calculated values without and with considering frictional force for indentation speeds of 0.03, 0.09, 0.12 and 0.20 mm/s
表2為考慮摩擦力后反演的楊氏模量。發(fā)現(xiàn)在考慮摩擦的情況下四種壓頭速度得到的楊氏模量很接近,與楊氏模量的真實值相差均在5 %以下。
表2 考慮摩擦力后計算出的楊氏模量
本文利用壓痕實驗測出生物試樣的力曲線及彈性,同時利用有限元法計算了理想狀態(tài)下生物試樣的力曲線,并給出了有摩擦力作用下的彈性反演方法。實驗表明試樣厚度對彈性測量存在影響,當試樣厚度遠大于壓痕深度時,測量誤差僅為0.47 %。在此基礎上研究了有摩擦力作用下的彈性測量方法,根據(jù)公式(4)可將測量誤差減小到5 %以下。在以后利用壓痕法測量生物試樣的彈性時,可通過降低速度、縮小壓頭的尺寸達到減少摩擦的效果。
感謝錢夢騄教授對本文中摩擦力公式及實驗手段改進的悉心指導。
[1] Kawano S, Kojima M, Higuchi Y, et al. Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance[J]. Cancer Science, 2015, 106(9): 1232-1239.
[2] Miyanaga N, Akaza H, Yamakawa M, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report[J]. International Journal of Urology, 2006, 13(12): 1514-1518.
[3] Aboumarzouk O M, Ogston S, Huang Z, et al. Diagnostic accuracy of transrectal elastosonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis[J]. BJU International, 2012, 110(10): 1414-1423.
[4] Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples[J]. Physics in Medicine and Biology, 2007, 52(6): 1565-1576.
[5] Claridge M W, Bate G R, Hoskins P R, et al. Measurement of arterial stiffness in subjects with vascular disease: Are vessel wall changes more sensitive than increase in intima–media thickness[J]. Atherosclerosis, 2009, 205(2): 477-480.
[6] Last J A, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork[J]. Investigative Ophthalmology & Visual Science, 2011, 52(5): 2147-2152.
[7] Chou S Y, Cheng C M, Leduc P R. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells[J]. Biomaterials, 2009, 30(18): 3136-3142.
[8] Isenberg B C, Dimilla P A, Walker M, et al. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength[J]. Biophysical Journal, 2009, 97(5): 1313-1322.
[9] Liao S W, Yu T B, Guan Z. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses[J]. Journal of the American Chemical Society, 2009, 131(48): 17638-17646.
[10] Chen C C, Hsieh P C H, Wang G M, et al. The influence of surface morphology and rigidity of the substrata on cell motility[J]. Materials Letters, 2009, 63(21): 1872-1875.
[11] Chen Y M, Ogawa R, Kakugo A, et al. Dynamic cell behavior on synthetic hydrogels with different charge densities[J]. Soft Matter, 2009, 5(9): 1804-1811.
[12] Leipzig N D, Shoichet M S. The effect of substrate stiffness on adult neural stem cell behavior[J]. Biomaterials, 2009, 30(36): 6867-6878.
[13] Hadjipanayi E, Mudera V, Brown R A. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness[J]. Journal of Tissue Engineering & Regenerative Medicine, 2009, 3(2): 77-84.
[14] Ghosh K, Pan Z, Guan E, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties[J]. Biomaterials, 2007, 28(4): 671-679.
[15] Kloxin A M, Benton J A, Anseth K S. In situ elasticity modulation with dynamic substrates to direct cell phenotype[J]. Biomaterials, 2010, 31(1): 1-8.
[16] Moussallem M D, Olenych S G, Scott S L, et al. Smooth muscle cell phenotype modulation and contraction on native and cross-linked polyelectrolyte multilayers[J]. Biomacromolecules, 2009, 10(11): 3062-3068.
[17] Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells[J]. Biomaterials, 2009, 30(27): 4695-4699.
[18] Gao L, Parker K J, Lerner R M, et al. Imaging of the elastic properties of tissue-A review[J]. Ultrasound in medicine & biology, 1996, 22(8): 959-977.
[19] Chen E J, Novakofski J, Jenkins W K, et al. Young's modulus measurements of soft tissues with application to elasticity imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43(1): 191-194.
[20] 他得安, 陳啟敏. 非均勻軟組織聲散射模型的研究概況[J]. 聲學技術, 1999, 18(2): 91-94. TA De’an, CHEN Qimin. Review the ultrasonic scattering model for inhomogeneous soft tissue[J]. Technical Acoustics, 1999, 18(2): 91-94.
[21] 他得安, 陳啟敏. 基于AR倒譜法研究人體脾組織微結構的變化[J]. 聲學技術, 2000, 19(3): 118-120. TA De’an, CHEN Qimin. Study on the variation of microstructures of human spleen by AR cepstrum[J]. Technical Acoustics, 2000, 19(3): 118-120.
[22] Vappou J. Magnetic resonance- and ultrasound imaging-based elasticity imaging methods: a review.[J]. Critical Reviews in Biomedical Engineering, 2012, 40(2): 121-134.
[23] Garteiser P, Doblas S, Daire J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characteriza-tion[J]. European Radiology, 2012, 22(10): 2169-2177.
[24] McGee K P, Mariappan Y K, Hubmayr R D, et al. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung[J]. Journal of Applied Physiology, 2012, 113(4): 666-676.
[25] Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review[J]. Current Medical Imaging Reviews, 2011, 7(4): 328-339.
[26] Palmeri M L, Wang M H, Dahl J J, et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force[J]. Ultrasound in Medicine & Biology, 2008, 34(4): 546-558.
[27] ZHOU H S, WANG T Y, XU Z, et al. Measurement of the elasticity of biological soft tissue of finite thickness[J]. Chinese Physics Letters, 2016, 33(12): 96-100.
[28] Barnes S L, Lyshchik A, Washington M K, et al. Development of a mechanical testing assay for fibrotic murine liver[J]. Medical Physics, 2007, 34(11): 4439-4450.
[29] Harrison S M, Bush M B, Petros P E. Towards a novel tensile elastometer for soft tissue[J]. International Journal of Mechanical Sciences, 2008, 50(4): 626-640.
[30] Vappou J, Hou G Y, Marquet F, et al. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging(HMI)[J]. Physics in Medicine and Biology, 2015, 60(7): 2853-2868.
[31] McKee C T, Last J A, Russell P, et al. Indentation versus tensile measurements of Young's modulus for soft biological tissues[J]. Tissue Engineering Part B: Reviews, 2011, 17(3): 155-164.
[32] Egorov V, Tsyuryupa S, Kanilo S, et al. Soft tissue elastometer[J]. Medical Engineering & Physics, 2008, 30(2): 206-212.
[33] Yao W, Yoshida K, Fernandez M, et al. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34(6): 18-26.
[34] Jiang Y, Li G, Qian L X, et al. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis[J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(5): 1119-1128.
[35] 徐崢, 段俊麗, 錢夢騄, 等. 掃描探針顯微技術測量血管內(nèi)皮細胞的彈性[J]. 聲學技術, 2016, 35(3): 239-242. XU Zheng, DUAN Junli, QIAN Menglu, et al. Elasticity measurement of endothelial cells by scanning probe microscopy[J]. Technical Acoustics, 2016, 35(3): 239-242.
[36] Liu F, Tschumperlin D J. Micro-mechanical characterization of lung tissue using atomic force microscopy[J]. Journal of Visualized Experiments Jove, 2011, 54(54): 2911-2911.
[37] Codan B, Favero G D, Martinelli V, et al. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation[J]. Materials Science & Engineering C, 2014, 40(949): 427-434..
[38] Fung, Y. C., Richard Skalak. Biomechanics: Mechanical properties of living tissues[M]. Springer-Verlag, 1981: 231-298.
[39] Cox M A J, Gawlitta D, Driessen N J B, et al. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11(5): 585-592.
The effects of friction and specimen thickness on the measurement of biological specimen elasticity with indentation method
YAN Xu1, GAO Qi2, CHENG Qian1, ZHOU Hong-sheng2, XU Zheng1
(1. Institute of Acoustics, Tongji University, Shanghai 200092, China;2. Shanghai acoustics laboratory, Chinese Academy of Sciences, Shanghai 201815, China)
The measurement of elasticity of biological samples can provide the basis for the early diagnosis and treatment of diseases. In this paper, the elasticity of biological samples is measured by indentation method. The indentation process is simulated by finite element software. Results indicate that the thickness of the sample influences the measurement of the elasticity. The measurement error is 0.74 % when the thickness of the specimen is 75 times of the indentation depth. The effect of indentation velocity on elasticity measurement has also been studied. It is found that there is a certain difference between the measured result and the true Young’s modulus due to the effect of friction when the indentation velocity is high. The elasticity of the sample can be accurately calculated when the friction has been taken into account and the error of the calculated modulus is 5 % or less relative to the true modulus.
indentation method; elasticity; finite element; friction force
O429
A
1000-3630(2017)-05-0410-05
10.16300/j.cnki.1000-3630.2017.05.003
2017-05-10;
2017-07-18
國家自然科學基金資助項目(11404245、11374231、11674249)、國家重點研發(fā)計劃項目(2016YFA0100800、2012YQ150213)
嚴旭(1993-), 男, 江蘇泰州人, 碩士研究生, 研究方向為生物醫(yī)學超聲。
徐崢, E-mail: gotoxvzheng@#edu.cn