秦 蓓,徐萬(wàn)里,姚紅宇,胡旭東,唐光木,馬海剛,孫寧川
(1.新疆農(nóng)業(yè)大學(xué) 草業(yè)與環(huán)境科學(xué)學(xué)院,烏魯木齊 830091;2.新疆農(nóng)業(yè)科學(xué)院 土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091;3.新疆阿勒泰地區(qū)青河縣農(nóng)業(yè)技術(shù)推廣中心,新疆阿勒泰 836200)
炭化溫度和時(shí)間對(duì)葡萄枝條炭和棉桿炭特性的影響
秦 蓓1,2,徐萬(wàn)里2,姚紅宇1,2,胡旭東3,唐光木2,馬海剛2,孫寧川2
(1.新疆農(nóng)業(yè)大學(xué) 草業(yè)與環(huán)境科學(xué)學(xué)院,烏魯木齊 830091;2.新疆農(nóng)業(yè)科學(xué)院 土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091;3.新疆阿勒泰地區(qū)青河縣農(nóng)業(yè)技術(shù)推廣中心,新疆阿勒泰 836200)
為探索適宜于農(nóng)業(yè)應(yīng)用的葡萄枝條炭與棉桿炭生產(chǎn)條件,將剪短的葡萄枝條和棉花秸稈在不同溫度(300 ℃、450 ℃、600 ℃)與時(shí)間(1 h、2 h、4 h、6 h)組合條件下置于馬弗爐中缺氧炭化,測(cè)定炭化后2種原料的出炭率、理化特性和元素組成,比較分析不同炭化溫度和時(shí)間下2種生物炭特性和元素組成,評(píng)價(jià)其農(nóng)用性質(zhì)。結(jié)果表明:(1)隨著炭化溫度的升高和炭化時(shí)間的延長(zhǎng),葡萄枝條炭和棉桿炭的出炭率逐漸下降,且葡萄枝條的出炭率(33.14%)低于棉花秸稈(38.19%)。(2)生物炭的pH和電導(dǎo)率隨著炭化溫度的升高逐漸增加:pH均可增加到10以上,葡萄秸稈炭電導(dǎo)率遠(yuǎn)低于棉花秸稈炭。(3)隨著炭化溫度的升高葡萄枝條炭與棉花秸稈炭中的有機(jī)炭質(zhì)量分?jǐn)?shù)下降,全量氮磷鉀與鈣鎂質(zhì)量分?jǐn)?shù)增加,堿解氮質(zhì)量分?jǐn)?shù)與速效磷質(zhì)量分?jǐn)?shù)下降;養(yǎng)分質(zhì)量分?jǐn)?shù)無(wú)論增加還是降低,葡萄枝條炭中的質(zhì)量分?jǐn)?shù)均低于棉花秸稈炭。同時(shí),炭化時(shí)間對(duì)生物炭中養(yǎng)分質(zhì)量分?jǐn)?shù)的影響并不明顯。可知炭化溫度低及時(shí)間短條件下生產(chǎn)的生物炭農(nóng)用性質(zhì)較優(yōu),即棉花秸稈的炭化性能在300 ℃、1 h炭化條件下為最適農(nóng)用,葡萄枝條在300 ℃、2 h炭化條件下為最適農(nóng)用;棉桿炭農(nóng)用特性優(yōu)于葡萄枝條炭。
葡萄枝條炭;棉花秸稈炭;炭化性能;出炭率;理化性質(zhì);養(yǎng)分質(zhì)量分?jǐn)?shù)
生物炭(Biochar)是將農(nóng)林廢棄物等生物質(zhì)在缺氧條件下高溫裂解成穩(wěn)定含碳的物質(zhì)[1],幾千年前生物炭就已經(jīng)被人工生產(chǎn)出來(lái)[2],現(xiàn)研究中對(duì)其認(rèn)識(shí)起源于巴西的國(guó)家亞馬遜研究院的研究人員對(duì)亞馬遜流域有機(jī)黑土[3]的研究,90年代末由Lehmann等[4]提出。中國(guó)作為一個(gè)農(nóng)業(yè)生產(chǎn)大國(guó),農(nóng)作物收獲后留下的作物秸稈會(huì)造成環(huán)境的嚴(yán)重污染。生物炭的生產(chǎn)為秸稈的處理提供了很好的應(yīng)用前景。國(guó)內(nèi)吳晶[5]已研究出精控制制備生物碳的方法。生物炭做為活性炭的前體,具有高度的微孔性和二維石墨狀結(jié)構(gòu)[6]及較大的比表面積[7],同時(shí)也具有其獨(dú)特的生態(tài)學(xué)特征[8]、元素組成與質(zhì)量分?jǐn)?shù)特性[9]和穩(wěn)定的性質(zhì)[10]?,F(xiàn)階段對(duì)生物炭的研究主要偏向于其作用方面,并取得很多有價(jià)值的成果。農(nóng)業(yè)方面可將生物炭做為堆肥的填充材料,減少腐熟過(guò)程中氮的損失[11-12];施入土壤后可改善土壤理化性質(zhì)[13],改善土壤微生物生長(zhǎng)環(huán)境[14],增加土壤對(duì)養(yǎng)分的固持能力[15],減少土壤中碳的排放[16],提高作物產(chǎn)量和品質(zhì)[17];同時(shí)施用生物炭可研究其對(duì)作物抗病性的影響[18],吸附農(nóng)藥有機(jī)殘留[19]和重金屬污染物[20-22]。環(huán)境方面,生物炭無(wú)論是在生產(chǎn)過(guò)程中還是在應(yīng)用過(guò)程中均可以減少溫室氣體的排放[23-24],從而起到保護(hù)環(huán)境的作用。能源方面,生物炭燃燒過(guò)程中釋放大量熱能,無(wú)污染物質(zhì)釋放,且來(lái)源廣泛,是一種可再生的清潔能源[25-26]。
新疆是中國(guó)主要的棉果糧生產(chǎn)基地,尤其是葡萄與棉花占據(jù)新疆農(nóng)業(yè)發(fā)展的兩大規(guī)模產(chǎn)業(yè),在生產(chǎn)過(guò)程中會(huì)產(chǎn)生大量的農(nóng)業(yè)廢棄物,這些廢棄物利用不當(dāng)不僅會(huì)造成資源的浪費(fèi),還會(huì)造成環(huán)境的污染。國(guó)內(nèi)陳溫福等[27]、謝祖彬等[28]對(duì)生物炭的研究為解決這一問(wèn)題提供了新的途徑,同時(shí)目前無(wú)論是國(guó)內(nèi)還是國(guó)外對(duì)生物炭本身的性質(zhì)的研究和不同種類(lèi)秸稈裂解后的生物炭性質(zhì)對(duì)比研究較少。因此,本研究以葡萄枝條和棉花秸稈為研究對(duì)象,經(jīng)過(guò)不同溫度與時(shí)間在缺氧條件下裂解形成生物炭,比較分析這2種秸稈的炭化性能及其炭化后的理化特性和養(yǎng)分組成,并對(duì)其農(nóng)用性能進(jìn)行評(píng)估,為新疆農(nóng)業(yè)廢棄物的高效合理利用、環(huán)境保護(hù)和生物碳產(chǎn)業(yè)的推廣利用提供理論指導(dǎo)和數(shù)據(jù)支持。
1.1 材 料
供試葡萄枝條取自新疆建設(shè)兵團(tuán)第八師121團(tuán)炮臺(tái)土壤改良試驗(yàn)站;供試棉花秸稈取自新疆農(nóng)業(yè)科學(xué)院安寧渠試驗(yàn)基地。將葡萄枝條與棉花秸稈帶回實(shí)驗(yàn)室后在105 ℃條件下烘干8 h后剪為1~2 cm的短枝條,備用,并分別粉碎一部分后過(guò)篩,測(cè)定其理化指標(biāo),葡萄枝條與棉花秸稈成分如表1所示。
1.2 方 法
1.2.1 秸稈炭的制備 葡萄屬于多年生藤本植物,修剪掉的老枝多為多年不掛果或少掛果枝條,其枝條木質(zhì)化程度相對(duì)棉花秸稈高,密度大,不易裂解,所以將剪為1~2 cm的短枝經(jīng)粉碎機(jī)粉碎2 min后放入長(zhǎng)×寬×高為12 cm×9.5 cm×9 cm 的帶蓋的特質(zhì)不銹鋼鐵盒中,每盒360 g。棉花屬于1 a生亞灌木植物,其秸稈木質(zhì)化程度相對(duì)葡萄枝條低,密度小,易裂解,所以可直接將剪為1~2 cm的短枝320 g放入長(zhǎng)×寬×高為19 cm×13 cm×8 cm的帶蓋的特質(zhì)不銹鋼鐵盒中。放于盒子內(nèi)的秸稈壓實(shí)(盡可能多的減少盒子內(nèi)的氧氣質(zhì)量分?jǐn)?shù)),蓋緊蓋子,并用鐵絲十字形捆緊,將裝有棉花秸稈和葡萄枝條的鐵盒放入已設(shè)定好溫度的馬弗爐中,炭化溫度設(shè)定為300 ℃、450 ℃、600 ℃,炭化時(shí)間設(shè)定為1 h、2 h、4 h、6 h,共3×4=12組,每組重復(fù)3次。當(dāng)達(dá)到炭化時(shí)間后取出,于真空條件下冷卻后稱量,計(jì)算各個(gè)溫度與時(shí)間組合條件下的棉花秸稈與葡萄枝條的出炭率后,碾磨粉碎過(guò)2 mm和0.25 mm篩,備用。
1.2.2 秸稈炭性質(zhì)的測(cè)定 秸稈炭中有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)采用K2Cr2O7容量法-外加熱法測(cè)定,全氮、全磷、全鉀采用H2SO4-H2O2消煮法測(cè)定[29],pH和電導(dǎo)率用炭水比為1∶5的水浸提法測(cè)定,堿解氮采用堿解擴(kuò)散法,速效磷用NaHCO3浸提比色法測(cè)定,速效鉀用NH4OAc浸提火焰光度計(jì)法測(cè)定,鈣鎂采用EDTA滴定法[30]。
表1 葡萄枝條與棉花秸稈的組成成分Table 1 Properties and nutrient mass fraction of Vitis vinifera stalk and cotton stalk
1.2.3 數(shù)據(jù)分析 采用Excel 2007和SPSS 17.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,并采用新復(fù)極差法進(jìn)行顯著性比較。
2.1 葡萄枝條炭與棉花秸稈的出炭率
不同炭化溫度與時(shí)間組合條件下,葡萄枝條與棉花秸稈在缺氧條件下裂解產(chǎn)生的秸稈炭占原秸稈質(zhì)量的比例如圖1所示。由于葡萄枝條較硬,且屬于多年生藤本植物,木質(zhì)化物質(zhì)較多,即使粉碎后在300 ℃、1 h條件下也未能炭化出秸稈炭。從圖中可以看出,在300 ℃、2 h條件下葡萄枝條的出炭率最高,達(dá)47.85%;棉花秸稈的最高出炭率出現(xiàn)在300 ℃、1 h條件下,為51.68%??梢?jiàn),葡萄枝條的最高出炭率低于棉花秸稈。葡萄枝條的最低出炭率出現(xiàn)在600 ℃、1 h條件下,為30.12%;同時(shí)棉花秸稈的最低出炭率出現(xiàn)在600 ℃、6 h條件下,僅為29.83%,低于葡萄枝條的最低出炭率。但總體而言,從圖1可知,隨著炭化溫度的增加,無(wú)論是葡萄枝條還是棉花秸稈,其出炭率均會(huì)呈降低水平;炭化時(shí)間尤其是450 ℃和600 ℃條件下對(duì)葡萄枝條炭化的影響沒(méi)有對(duì)棉花秸稈的影響明顯。
2.2 葡萄枝條炭與棉花秸稈炭物理性質(zhì)
2.2.1 pH的比較 葡萄枝條與棉花秸稈在不同溫度與時(shí)間條件下炭化后的pH均大于8.0(圖2),且隨著炭化溫度的增加與炭化時(shí)間的延長(zhǎng)呈增長(zhǎng)趨勢(shì),但葡萄枝條和棉花秸稈在450 ℃和600 ℃條件下,炭化時(shí)間對(duì)pH的影響均不顯著,這也說(shuō)明低溫條件下時(shí)間對(duì)秸稈炭pH的影響明顯大于高溫條件。且葡萄枝條炭的最低pH出現(xiàn)在300 ℃、2 h(為8.41);而棉花秸稈炭的最低pH出現(xiàn)在300 ℃、1 h(為8.54),略高于葡萄枝條炭。其次葡萄枝條炭的最高pH(450 ℃、4 h炭化條件下為10.08)也低于棉花秸稈炭的最高pH(600 ℃、2 h炭化條件下為10.62),同時(shí)在相同溫度與時(shí)間組合條件下,葡萄枝條炭的pH總小于棉花秸稈炭,在做秸稈性質(zhì)測(cè)定時(shí)葡萄枝條的pH也小于棉花秸稈,說(shuō)明秸稈炭化后的pH不僅受炭化時(shí)間和炭化溫度的影響,原生物質(zhì)的性質(zhì)也是影響秸稈炭pH的因素之一。
A.葡萄枝條的出炭率 The char yield of Vitis vinifera stalk;B.棉花秸稈的出炭率 The char yield of cotton stalk
每張圖中圖上的字母是按不同溫度與時(shí)間組合進(jìn)行比較 The letters above each bar in the chart showed the difference between the combinations of temperatures and times;橫軸下的字母是按照不同炭化溫度進(jìn)行比較的 The letter after temperature under the horizontal axis showed the comparison results among different carbonization temperatures;圖例中的字母是按不同炭化時(shí)間進(jìn)行比較的 The letter in the upper legend showed difference between carbonization times;圖柱上不同小寫(xiě)字母表示5%顯著水平 The lowercase letters in the figure represent the significant difference at 0.05 level.下圖標(biāo)注同此 The same hereinafter.
圖1不同溫度與時(shí)間組合下葡萄枝條與棉花秸稈的出炭率比較
Fig.1ThecomparisonofcharyieldfromstalksofVitisviniferaandcottonundervariouscombinationsoftemperatureandtime
A.葡萄枝條炭的pH The pH value of Vitis vinifera stalk-char;B.棉花秸稈炭的pH The pH value of cotton stalk-char
2.2.2 電導(dǎo)率的比較 如圖3所示,除了棉花秸稈炭在450 ℃條件下電導(dǎo)率隨著炭化時(shí)間有所上升,相同炭化溫度條件下葡萄枝條炭的最低電導(dǎo)率均出現(xiàn)在2 h之外,炭化時(shí)間對(duì)葡萄枝條炭與棉花秸稈炭電導(dǎo)率的影響小于炭化溫度,且無(wú)明顯規(guī)律可循,另外,從圖中還可看出葡萄枝條炭和棉花秸稈炭的電導(dǎo)率隨著炭化溫度的上升呈增長(zhǎng)的趨勢(shì),說(shuō)明對(duì)秸稈炭電導(dǎo)率影響較為明顯的因素是炭化溫度,而非炭化時(shí)間。其次葡萄枝條炭的最高電導(dǎo)率(為3.65 mS·cm-1,600 ℃、1 h炭化條件下)近乎等于棉花秸稈炭的最低電導(dǎo)率(為3.70 mS·cm-1,450 ℃、1 h炭化條件下),表明葡萄枝條炭中的總鹽質(zhì)量分?jǐn)?shù)比棉花秸稈炭的少。
A.葡萄枝條炭的電導(dǎo)率 Conductivity ofVitisviniferastalk-char;B.棉花秸稈炭的電導(dǎo)率 Conductivity of cotton stalk-char
圖3不同溫度與時(shí)間組合下葡萄枝條炭與棉花秸稈炭的電導(dǎo)率的比較
Fig.3Theconductivitycomparisonofstalk-charsofVitisviniferaandcottoncarbonizedundervariouscombinationsoftemperatureandtime
2.3 葡萄枝條炭與棉花秸稈炭中元素組成
2.3.1 有機(jī)碳質(zhì)量分?jǐn)?shù)的比較 不同溫度和時(shí)間組合對(duì)葡萄枝條炭和棉花秸稈炭中的有機(jī)碳質(zhì)量分?jǐn)?shù)影響如圖4所示。無(wú)論是低溫處理1 h還是高溫處理6 h,葡萄枝條炭的有機(jī)碳質(zhì)量分?jǐn)?shù)均為400~500 g·kg-1,但是不同炭化溫度處理對(duì)葡萄枝條炭中有機(jī)碳質(zhì)量分?jǐn)?shù)的影響明顯大于炭化時(shí)間處理。對(duì)棉花秸稈炭而言,隨著炭化溫度的增加有機(jī)碳質(zhì)量分?jǐn)?shù)也隨之減少,炭化時(shí)間的影響也小于炭化溫度的影響。說(shuō)明在不同溫度與時(shí)間組合下對(duì)生物炭中有機(jī)碳質(zhì)量分?jǐn)?shù)的影響溫度的作用明顯大于時(shí)間。其次,從棉花秸稈炭中有機(jī)碳質(zhì)量分?jǐn)?shù)的變化來(lái)看,低溫有利于有機(jī)碳質(zhì)量分?jǐn)?shù)的積累。棉花秸稈炭中的有機(jī)碳最高可達(dá)594.80 g·kg-1(300 ℃、1 h炭化條件),最低僅為229.95 g·kg-1(600 ℃、6 h炭化條件),而葡萄枝條炭中的有機(jī)碳質(zhì)量分?jǐn)?shù)未出現(xiàn)明顯的波動(dòng),說(shuō)明碳化溫度與時(shí)間組合對(duì)棉花秸稈炭中有機(jī)碳質(zhì)量分?jǐn)?shù)的影響明顯大于葡萄枝條炭。
A.葡萄枝條炭的有機(jī)碳質(zhì)量分?jǐn)?shù) The organic carbon mass fraction ofVitisviniferastalk-char;B.棉花秸稈炭的有機(jī)碳質(zhì)量分?jǐn)?shù) The organic carbon mass fraction of cotton stalk-char
圖4不同溫度與時(shí)間組合下葡萄枝條炭與棉花秸稈炭的有機(jī)碳質(zhì)量分?jǐn)?shù)的比較
Fig.4Theorganiccarbonmassfractioncomparisonofstalk-charsofVitisviniferaandcottoncarbonizedundervariouscombinationsoftemperatureandtime
2.3.2 氮磷鉀質(zhì)量分?jǐn)?shù)的比較 葡萄枝條和棉花秸稈在不同溫度與時(shí)間組合條件下炭化后的養(yǎng)分質(zhì)量分?jǐn)?shù)見(jiàn)表2。除棉花秸稈炭的全氮質(zhì)量分?jǐn)?shù)呈現(xiàn)不明顯的下降趨勢(shì)外,葡萄枝條炭和棉花秸稈炭的全量養(yǎng)分質(zhì)量分?jǐn)?shù)總體都隨著炭化溫度的增加呈增長(zhǎng)的趨勢(shì),炭化時(shí)間對(duì)全量養(yǎng)分質(zhì)量分?jǐn)?shù)的影響相對(duì)較小,說(shuō)明較高的炭化溫度有利于生物炭中全量養(yǎng)分的積累,同時(shí)炭化時(shí)間對(duì)全量養(yǎng)分積累的影響小于炭化溫度。炭化溫度與炭化時(shí)間對(duì)葡萄枝條炭與棉花秸稈炭中速效養(yǎng)分質(zhì)量分?jǐn)?shù)的影響表現(xiàn)出最利于的速效鉀、速效磷、堿解氮積累的炭化溫度分別為450 ℃和600 ℃、450 ℃、300 ℃,而炭化時(shí)間對(duì)速效養(yǎng)分的影響同樣無(wú)明確的規(guī)律可循??梢?jiàn),炭化時(shí)間對(duì)生物養(yǎng)分質(zhì)量分?jǐn)?shù)的影響不明顯。
同時(shí)縱觀葡萄枝條炭和棉花秸稈炭的養(yǎng)分,葡萄枝條炭中無(wú)論是全量養(yǎng)分還是速效養(yǎng)分均低于棉花秸稈炭,且質(zhì)量分?jǐn)?shù)遠(yuǎn)低于棉花秸稈炭中的養(yǎng)分質(zhì)量分?jǐn)?shù)。
表2 不同溫度與時(shí)間組合下葡萄枝條炭和棉花秸稈炭中的全量氮磷鉀與速效氮磷鉀的比較Table 2 The comparisons of nitrogen (N),phosphorus (P) and potassium (K) in the stalk-char of Vitis vinifera and cotton carbonized under various temperature and time
注:表中的小寫(xiě)字母表示不同溫度與時(shí)間組合下5%顯著水平。
Note:The lowercase letters in the table indicate a significant level of 0.05 under different combinations of temperature and times.
2.3.3 秸稈炭中鈣鎂的比較 鈣鎂元素是植物生長(zhǎng)中的必需養(yǎng)分,也是土壤八大元素之一,參與土壤的陽(yáng)離子交換。將葡萄枝條炭化后,在300 ℃條件下,鈣和鎂的質(zhì)量分?jǐn)?shù)隨著時(shí)間的延長(zhǎng)逐漸增加,在450 ℃與600 ℃條件下,鈣鎂質(zhì)量分?jǐn)?shù)無(wú)明顯變化,且從圖5可以看出,隨著炭化溫度的增加,鈣質(zhì)量分?jǐn)?shù)出現(xiàn)增加的趨勢(shì),鎂質(zhì)量分?jǐn)?shù)在300 ℃(平均為4.81 g·kg-1)到450 ℃(平均為4.32 g·kg-1)時(shí)呈下降趨勢(shì),600 ℃(平均為4.39 g·kg-1)未出現(xiàn)明顯下降趨勢(shì)。說(shuō)明低溫條件利于葡萄枝條炭中鈣鎂的積累,且對(duì)鈣鎂的積累炭化溫度的影響明顯大于炭化時(shí)間的影響。在不同溫度與時(shí)間條件下炭化棉花秸稈(圖6)則表現(xiàn)為同樣的炭化溫度的影響大于炭化時(shí)間,隨著炭化時(shí)間的增加鈣、鎂質(zhì)量分?jǐn)?shù)未出現(xiàn)明顯規(guī)律性增長(zhǎng)趨勢(shì),但卻顯示高溫有利于鈣、鎂質(zhì)量分?jǐn)?shù)的積累,隨著溫度的升高,平均鈣質(zhì)量分?jǐn)?shù)為16.91 g·kg-1lt;18.57 g·kg-1lt;24.58 g·kg-1,平均鎂質(zhì)量分?jǐn)?shù)為6.23 g·kg-1lt;6.85 g·kg-1lt;7.36 g·kg-1。整體而言,棉花秸稈炭中的鈣、鎂質(zhì)量分?jǐn)?shù)高于葡萄枝條炭:棉花秸稈炭中的最低鈣質(zhì)量分?jǐn)?shù)為10.81 g·kg-1(300 ℃、1 h炭化條件),最低鎂質(zhì)量分?jǐn)?shù)為4.49 g·kg-1(300 ℃、4 h炭化條件);而葡萄枝條的最高鈣質(zhì)量分?jǐn)?shù)僅為5.74 g·kg-1(300 ℃、6 h條件),最高鎂質(zhì)量分?jǐn)?shù)僅為5.03 g·kg-1(300 ℃、6 h炭化條件)??梢?jiàn),不同的原材料經(jīng)過(guò)炭化后其元素質(zhì)量分?jǐn)?shù)不同。
圖5 不同溫度與時(shí)間組合下葡萄枝條炭鈣、鎂質(zhì)量分?jǐn)?shù)Fig.5 The Ca and Mg mass fraction of Vitis vinifera stalk-char carbonized under various temperature and time
圖6 不同溫度與時(shí)間組合下棉花秸稈炭鈣、鎂質(zhì)量分?jǐn)?shù)Fig.6 The Ca and Mg mass fraction of cotton stalk-char carbonized under various temperature and time
3.1 炭化溫度與時(shí)間對(duì)2種原料出炭率的影響
Demirbas[31]通過(guò)研究表明,在不同炭化溫度與炭化時(shí)間組合條件下,提高生物質(zhì)的炭化溫度同時(shí)延長(zhǎng)其炭化時(shí)間,不利于生物炭的形成,降低生物質(zhì)的出炭率。本試驗(yàn)中無(wú)論是木質(zhì)化程度較高的葡萄枝條還是木質(zhì)化程度較低的棉花秸稈,在不同炭化溫度與時(shí)間下均表現(xiàn)為出炭率隨著炭化溫度的升高和炭化時(shí)間的延長(zhǎng)出現(xiàn)下降的趨勢(shì)。這與高溫條件下植物枝條或秸稈中的有機(jī)物質(zhì)在無(wú)氧條件下分解為氣體、水分、焦油和更小分子質(zhì)量的物質(zhì),其中氣體、焦油和水分揮發(fā)損失有關(guān)。Xiong等[32]將棉花秸稈和竹屑在不同溫度下炭化,發(fā)現(xiàn)棉花秸稈的熱解炭化性能比竹屑性能好。圖1中在300 ℃、1 h條件下葡萄枝條不能較好地炭化出生物炭,同時(shí)在不同炭化溫度與炭化時(shí)間條件下,葡萄枝條的出炭率總體上均低于棉花秸稈。
3.2 炭化溫度與時(shí)間對(duì)生物炭物理性質(zhì)的影響
本試驗(yàn)中生物炭的物理性質(zhì)主要以pH和電導(dǎo)率為主。因?yàn)閷⑸锾渴┤胪寥篮?,尤其在新疆鹽堿化比較嚴(yán)重,總鹽質(zhì)量分?jǐn)?shù)與土壤pH較高的土壤,研究其對(duì)土壤pH和電導(dǎo)率的影響較為重要。Lehmann[10]在《Bio-energy in the black》中介紹生物炭的pH偏堿性,本試驗(yàn)將葡萄枝條和棉花秸稈在不同炭化溫度與時(shí)間組合下炭化后pH也均大于7.0,且隨著溫度的升高pH也會(huì)相應(yīng)的升高。Rehrah等[13]通過(guò)不同溫度炭化核桃殼、花生殼和棉花籽粒,發(fā)現(xiàn)生物炭的pH隨著炭化溫度的升高而升高;Yuan等[33]也通過(guò)試驗(yàn)將油菜、玉米、花生等作物秸稈在不同溫度下熱解成生物炭后發(fā)現(xiàn)其pH隨著溫度的增加出現(xiàn)上升的趨勢(shì),并證明對(duì)生物炭pH的影響主要來(lái)自其碳酸鹽成分,碳酸鹽質(zhì)量分?jǐn)?shù)越高,pH越高;同時(shí),較高溫度不利于生物炭中-COO-和-O-等有機(jī)陰離子的積累,由于這2個(gè)原因而使生物炭的pH升高。
試驗(yàn)中,葡萄枝條炭與棉花秸稈炭的電導(dǎo)率也隨著炭化溫度的變化而變化,炭化溫度越高,電導(dǎo)率也越高,這與Rehrah等[13]的研究結(jié)果一致。電導(dǎo)率的高低受溶質(zhì)中鹽(或其分解為電解質(zhì))質(zhì)量分?jǐn)?shù)的影響。將葡萄枝條和棉花秸稈在不同溫度下炭化,溫度愈高,越不利于有機(jī)物質(zhì)的積累[34],使殘留的無(wú)機(jī)鹽物質(zhì)也越多,其中鉀鈉等碳酸鹽均易溶于水,從而使電導(dǎo)率隨著溫度的增加而增加。
3.3炭化溫度與時(shí)間組合對(duì)生物炭養(yǎng)分質(zhì)量分?jǐn)?shù)的影響
現(xiàn)階段,在中國(guó)將生物炭與其他肥料不同配比生產(chǎn)為炭基肥[35],用于生產(chǎn)中,已成為研究生物炭應(yīng)用的一個(gè)熱點(diǎn),同時(shí)生物炭中的養(yǎng)分質(zhì)量分?jǐn)?shù)也成為研究其應(yīng)用的重點(diǎn)之一,將其施入土壤中也會(huì)影響土壤的養(yǎng)分質(zhì)量分?jǐn)?shù)。Gheorghe等[34]的研究表明隨著溫度的升高,生物炭中的有機(jī)碳質(zhì)量分?jǐn)?shù)隨著炭化溫度的升高而逐漸降低,本試驗(yàn)中,葡萄枝條炭與棉花秸稈炭中的有機(jī)碳質(zhì)量分?jǐn)?shù)也隨著炭化溫度的升高而降低,尤其以棉花秸稈炭表現(xiàn)最為明顯。這是因?yàn)檩^高的炭化溫度會(huì)使有機(jī)物質(zhì)大量而急速地分解,還有一部分分子量相對(duì)較小有機(jī)物質(zhì)轉(zhuǎn)化為焦油的形式而損失。
葡萄枝條炭與棉花秸稈炭中的氮磷鉀和鈣鎂質(zhì)量分?jǐn)?shù)受葡萄枝條與棉花秸稈的影響較為明顯,均表現(xiàn)為葡萄枝條炭中的質(zhì)量分?jǐn)?shù)少于棉花秸稈炭;但全量養(yǎng)分質(zhì)量分?jǐn)?shù)均表現(xiàn)為隨著炭化溫度的上升而增加的趨勢(shì),堿解氮質(zhì)量分?jǐn)?shù)下降,速效鉀質(zhì)量分?jǐn)?shù)增加,速效磷質(zhì)量分?jǐn)?shù)在300~450 ℃時(shí)上升、450~600 ℃時(shí)下降。其中堿解氮質(zhì)量分?jǐn)?shù)下降與Verhilen等[36]的結(jié)果一致。Deluca等[37]通過(guò)試驗(yàn)表明速效磷質(zhì)量分?jǐn)?shù)在350~800 ℃炭化條件下出現(xiàn)降低趨勢(shì),全磷質(zhì)量分?jǐn)?shù)則會(huì)增加,也與本試驗(yàn)結(jié)果相吻合。同時(shí)生物炭中的鈣鎂質(zhì)量分?jǐn)?shù)也會(huì)隨著炭化溫度的升高而相對(duì)富集[28]。這是因?yàn)樯锾侩S著炭化溫度的升高,pH上升,形成更多的鈣鎂磷酸鹽,鈣鎂磷酸鹽難溶于水,從而使生物炭中的全磷質(zhì)量分?jǐn)?shù)增加,速效磷質(zhì)量分?jǐn)?shù)降低,鈣鎂質(zhì)量分?jǐn)?shù)增加。
4.1 隨著炭化溫度的增加與炭化時(shí)間的延長(zhǎng)葡萄枝條和棉花秸稈的出炭率逐漸下降并逐漸趨向于穩(wěn)定,且葡萄秸稈的炭化性能小于棉花秸稈。
4.2 隨著炭化溫度的升高,無(wú)論是葡萄枝條炭還是棉花秸稈炭,pH逐漸升高,最終均大于10.0而呈堿性;電導(dǎo)率也隨著炭化溫度的升高而升高。炭化時(shí)間對(duì)pH和電導(dǎo)率的影響并不顯著。
4.3 隨著炭化溫度的升高,葡萄枝條炭和棉花秸稈談中的有機(jī)碳質(zhì)量分?jǐn)?shù)出現(xiàn)下降趨勢(shì);全量氮磷質(zhì)量分?jǐn)?shù)上升,堿解氮質(zhì)量分?jǐn)?shù)與速效磷質(zhì)量分?jǐn)?shù)下降;鉀鈣鎂質(zhì)量分?jǐn)?shù)均表現(xiàn)為增加趨勢(shì)。同樣炭化時(shí)間對(duì)生物炭中養(yǎng)分質(zhì)量分?jǐn)?shù)的影響小于炭化溫度的影響。葡萄枝條炭中的養(yǎng)分質(zhì)量分?jǐn)?shù)比棉花秸稈炭中的低。
綜上認(rèn)為,在相對(duì)低的炭化溫度與相對(duì)短的炭化時(shí)間條件下制備的生物炭(棉花秸稈在300 ℃、1 h炭化條件下,葡萄枝條在300 ℃、2 h炭化條件下)更有利于農(nóng)業(yè)利用,尤其是在新疆綜合性質(zhì)較差的土壤上;同時(shí),從本試驗(yàn)中也可看出棉花秸稈的炭化性能、棉花秸稈炭的理化性質(zhì)均優(yōu)于葡萄枝條與葡萄枝條炭。在實(shí)際生產(chǎn)與應(yīng)用中還應(yīng)綜合考慮作物秸稈(或枝條)的炭化性能、土壤性質(zhì)等因素,為高效應(yīng)用生物炭做基礎(chǔ)。
Reference:
[1] ANTAL M J,GRONLI M.The art, science and technology of charcoal production [J].IndustrialandEngineeringChemistry,2003,42(8):1619-1640.
[2] YANIK J,KOMMAYER C,SAGLAM M,etal.Fast pytolysis of agricultural wastes:characterization of pyrolysis products[J].FuelProcessingTechnology,2007,88(10):942-947.
[3] WILLIAM I W,NEWTON P S F.Biochar trials aim to enrich soil for smallholders[J].Nature,2006,443(7108):144.
[4] LEHMANN J,DA SILVA JR J P,STEINER C,etal.Nutrient availability and leaching in a archaeological Anthrosol and a Ferralsol of Central Amazonia:fertilizer,and charcoal amendments [J].PlantandSoil,2003,249(2):343-357.
[5] 吳 晶.生物炭精控制備方法[D].長(zhǎng)春:沈陽(yáng)農(nóng)業(yè)大學(xué),2015.
WU J.Study on accurate control preparation of biochar[D].Changchun:Shenyang Agricultural University,2015(in Chinese with English abstract).
[6] AZARGOHAR R,DALAI A K.Biochar as a precursor of activated carbon[J].AppliedBiochemistryandBiotechnology,2006,131(1/3):762-773.
[7] CHUN Y,SHENG G,CHOU CT,etal.Compositions and sportive properties of crop residue-derived chars[J].EnvironmentalScienceamp;Technology,2004,38(17):4649-4655.
[8] GUNDALE M J,DELUCA T H.Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J].ForestEcologyandManagement,2006,231(1):89-93.
[9] ALEXIS M A,RASSE D P,RUMPEL C,etal.Fire impact on C and N losses and charcoal production in a scrub oak ecosystem[J].Biogeochemistry,2007,82(2):201-216.
[10] LEHMANN J.Bio-energy in the black[J].FrontiersinEcologyandtheEnvironment,2007,5(7):381-387.
[11] STEINER C,MELEAR N,HARRIS K,etal.Biochar as bulking agent for poultry litter composting[J].CarbonManagement,2011,2(3):227-230.
[12] DIAS B O,SLIVA C A,HIGASHIKAWA F S,etal.Use of biochar as bulking agent for the composting of poultry manure:effect on organic matter degradation and humification[J].BioresourceTechnology,2010,101(4):1239-1246.
[13] REHRAH D,REDDY M R,NOVAK J M,etal.Production and characterization of biochars from agricultural by-products for use in soil quality enhancement[J].JournalofAnalyticalandAppliedPyrolysis,2014,108:301-309.
[14] WANG C Y,CRAIG A,MANUEL S A,etal.The chemical composition of native organic matter influences the response of bacterial community to input of biochar and fresh plant material[J].PlantSoil,2015,395:87-104.
[15] GANNT J L,LEHMANN J.Energy balance and emissions associated with biochar sequestration and pyrolysis biochenergy production[J].EnvironmentalScienceamp;Technology,2008,42(11):4152-4158.
[16] TENENBAUM D J.Biochar:carbon mitigation from the ground up[J].EnvironmentalHealthPerspectives,2009,117(2):70-73.
[17] GASKIN J W,SPEIR R A,HARRIS K,etal.Effect of peanut hull and pine chip biochar on soil nutrients,corn nutrient status,and yield[J].AgronomyJournal,2010,102(2):623-633.
[18] AMIT K,JAISWAL,OMER F,etal.Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia Solano:“Shifted Rmax-Effect” [J].PlantSoil,2015,395(1/2):125-140.
[19] CAO X D,MA L A,GAO B,etal.Dairy-manure derived biochar effectively sorbs lead and atrazine[J].EnvironmentalScienceamp;Technology,2009,43(9):3285-3291.
[20] LUKE B,MARTA M,LUCA P,etal.Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants(SolanumlycopersicumL) [J].ScienceoftheTotalEnvironment,2013,454-455:598-603.
[21] FREDERIC R,CYRIL G,THIBAULT S,etal.Plant growth and metal uptake by a non-hyperaccumulating species(Loliumperenne)and a Cd-Zn hyperaccumulator(Noccaeacaerulescens)in contaminated soils amended[J].PlantSoil,2015,395(1/2):57-73.
[22] LUKE B,MARTA M.The immobilization and retention of soluble arsenic,cadmium ad zinc by biochar[J].EnvironmentalPollution,2011,159:474-480.
[23] SPOKAS K A,KOSKINEN W C,BAKER J M,etal.Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J].Chemosphere,2009,77(4):574-581.
[24] RENNER R.Rethinking biochar[J].EnvironmentalScienceamp;Technology,2007,41(17):5932-5933.
[25] HAYES M H B.Biochar and biofuels for a brighter future[J].Nature,2006,443(7108):144.
[26] LEHMANN J.A handful of carbon[J].Nature,2007,447(7141):143-144.
[27] 陳溫福,張偉明,孟 軍.農(nóng)用生物炭研究進(jìn)展與前景[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(16):3324-3333.
CHEN W F,ZHANG W M,MENG J.Progress and prospect of agricultural biological carbon [J].ScientiaAgriculturaSinica,2013,46(16):3324-3333(in Chinese with English abstract).
[28] 謝祖彬,劉 琦,許燕萍,等.生物炭研究進(jìn)展及其研究方向[J].土 壤,2011,43(6):875-861.
XIE Z B,LIU Q,XU Y P,etal. Advances and perspectives of biochar research[J].Soils,2011,43(6):875-861(in Chinese with English abstract).
[29] 林志鋒,黃忠泊,劉長(zhǎng)風(fēng).有機(jī)肥料氮、磷、鉀的化學(xué)分析方法[J].磷肥與復(fù)肥,2006(6):62-65.
LIN ZH F,HUANG ZH B,LIU CH F. Chemical analysis method applying in determining organic fertilizer nitrogen,phosphorus and potassium levels[J].Phosphateamp;CompoundFertilizer,2006(6):62-65(in Chinese with English abstract).
[30] 鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2005.
BAO SH D.Soil and Agricultural Chemistry Analysis[M].Beijing:China Agriculture Press,2005(in Chinese).
[31] DEMIRBAS A.Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J].JournalAnalyticalandAppliedPyrolysis,2004,72(2):243-248.
[32] XIONG SH W,ZHANG SH Y,WU Q M,etal.,Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation[J].BioresourceTechnology,2014,152(1):86-92.
[33] YUAN J H,XU R K,ZHANG H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].BioresourceTechnology,2011,102(3):3488-3497.
[34] GHEORGHE C,MARCULESCU C,BADEA A,etal.Effect of pyrolysis conditions on bio-char production from biomass[C]//Proceedings of the 3rd WSEAS Int. Conf. on Renewable energy sources.University of La Laguna,Tenerife,Canary Islands Spain,2009:239-241.
[35] 孫寧川,唐光木,徐萬(wàn)里,等.棉桿炭和炭基專用肥對(duì)棉花生長(zhǎng)及產(chǎn)量的影響[J].新疆農(nóng)業(yè)科學(xué),2016,53(1):163-169.
SUN N CH,TANG G M,XU W L,etal. The impact of cotton stalk carbon and carbon-based specialty fertilizer on the cotton growth and yield[J].XinjiangAgriculturalScience,2016,53(1):163-169(in Chinese).
[36] VERHEIJEN F,JEFFERY S,BASTOS A C,etal.Biochar application to soils: a critical scientific review of effects on soil properties, processes and function[R].Luxembourg:European Commission:2010.
[37] DELUCA T H,MACKENZIE M D,GUNDALE M J.Biochar effects on soil nutrient transformations[M]//Lehmann J L,Joseph S.Biochar for environmental management:science and technology,London:eartthscan,2009:251-270.
CorrespondingauthorXU Wanli,male,researcher.Research area:soil and plant nutrition.E-mail:wlxu2005@163.com
(責(zé)任編輯:潘學(xué)燕Responsibleeditor:PANXueyan)
EffectsofCarbonizationTemperatureandTimeonCharacteristicsofVitisviniferaandCottonStalk-chars
QIN Bei1,2,XU Wangli2,YAO Hongyu1,2,HU Xudong3, TANG Guangmu2,MA Haigang2and SUN Ningchuan2
(1. Fculty of Glassland and Environment Sciences,Xinjiang Agricultural University,Urumqi 830000,China;2. Institute of Soil and Fertilizer and Agricultural Sparing Water,Xinjiang Academy of Agricultural Science,Urumqi 83000,China;3.Qinghe County Agricultural Technology Promotion Center,Altay Xinjiang 836200,China)
In order to explore the optimum conditions ofVitisviniferastraw carbon and cotton stalk carbon for application in agriculture production,different combinations of temperatures (300 ℃,450 ℃ and 600 ℃) and time (1 h,2 h,4 h,6 h) for hypoxia in the muffle furnace were designated for carbonization,and determined carbon yield,physicochemical characteristics and elemental composition of two raw materials to evaluate its agricultural properties. The results showed that: (1) with increasing carbonization temperature and carbonization time,carbon yield ofVitisviniferastraw and cotton stalk decreased gradually,and the carbon yield ofVitisviniferastraw (33.14%) was lower than that of cotton straw (38.19%). (2) the pH and electrical conductivity of the biological carbon gradually increased with the increase of carbonization temperature,the pH value could increase to more than 10,and the conductivity of carbon fromVitisviniferastraw was lower than that from cotton stalk. (3) With the increase of carbonization temperature ofVitisviniferastraw and cotton straw,the mass fraction of carbon,available nitrogen and phosphorus decreased,but total mass fraction of nitrogen,phosphorus, potassium,calcium and magnesium increased. However,nutrient mass fraction was constant lower inVitisviniferastraw charcoal than cotton straw charcoal. At the same time,the effect of carbonization time on the nutrient mass fraction in the biological carbon was not obvious. The properties of biochar agricultural production was better under the condition of low temperature and short time of carbonization,the cotton stalk carbonized at 300 ℃ and 1 h conditions is the most suitable for agricultural use,Vitisviniferastraw carbonized at 300 ℃ and 2 h conditions is the most suitable for agricultural use; agricultural characteristics of cotton stalk carbon are better than theVitisviniferastraw carbon.
Vitisviniferastalk-carbon; Cotton stalk-carbon; Carbonization characteristics; Carbon yield; Physical and chemical properties; Nutrient mass fraction
2016-09-17
2016-11-10
National Natural Science Foundation of China(No.41161055 and 41261059).
QIN Bei,female,master.Research area:soil and plant nutrition.E-mail:568916732@qq.com
日期:2017-11-17
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1220.S.20171117.1101.026.html
2016-09-17
2016-11-10
國(guó)家自然科學(xué)基金(41161055和41261059)。
秦 蓓,女,碩士,研究方向?yàn)橥寥琅c植物營(yíng)養(yǎng)。E-mail:568916732@qq.com
徐萬(wàn)里,男,研究員,研究方向?yàn)橥寥琅c植物營(yíng)養(yǎng)。E-mail:wlxu2005@163.com
S210.5045
A
1004-1389(2017)11-1672-09