石 月,楊 翼
(1.上海體育職業(yè)學(xué)院 體育系,上海 200237;2.上海體育學(xué)院 運動科學(xué)學(xué)院,上海 200438;3.武漢體育學(xué)院 健康科學(xué)學(xué)院,湖北 武漢 430079)
?
中性粒細胞胞外誘捕網(wǎng)與運動免疫
石 月1,2,楊 翼3
(1.上海體育職業(yè)學(xué)院 體育系,上海 200237;2.上海體育學(xué)院 運動科學(xué)學(xué)院,上海 200438;3.武漢體育學(xué)院 健康科學(xué)學(xué)院,湖北 武漢 430079)
中性粒細胞胞外誘捕網(wǎng)(Neutrophil extracellular traps,NETs)作為中性粒細胞實施免疫應(yīng)答新的方式,通過自身網(wǎng)狀結(jié)構(gòu)和抗菌成分高效殺滅病原體微生物,拓展了中性粒細胞原有的吞噬和脫粒途徑;NETs的過多形成會造成宿主細胞損傷,引發(fā)自身免疫性疾病及促進血栓的形成。力竭運動引起NETs的形成,并與血漿游離DNA及血液高凝關(guān)系密切。總結(jié)了NETs的成分、釋放機制、誘因、信號通路,并對中性粒細胞及其胞外誘捕網(wǎng)在運動免疫領(lǐng)域的最新研究進展進行了概述。
運動人體科學(xué);中性粒細胞胞外誘捕網(wǎng);NETs;中性粒細胞;運動免疫;自身免疫疾病
中性粒細胞是固有免疫反應(yīng)中的“先鋒士兵”,在病原體入侵后6小時內(nèi),迅速反應(yīng)、大量聚集,通過吞噬和脫顆粒作用參與免疫應(yīng)答[1]。中性粒細胞誘捕網(wǎng)(Neutrophil extracellular traps,NETs)于2004年由Brinkmann等[2]發(fā)現(xiàn),是中性粒細胞在死亡過程中通過釋放含有殺菌蛋白酶的特殊三維網(wǎng)狀結(jié)構(gòu)。2007年Steinberg等[3]將中性粒細胞這種有別于細胞凋亡和壞死的死亡途徑用“NETosis”描述。近年來研究發(fā)現(xiàn),NETs除對病原體進行捕獲和殺傷外,也參與多種免疫相關(guān)疾病的發(fā)生和發(fā)展。有報道稱,力竭運動造成運動性免疫機能失衡,同時人外周血NETs顯著增加[4]。本文簡要介紹NETs的形成和作用,及其與運動性免疫機能失衡的聯(lián)系。
NETs是中性粒細胞釋放的,以DNA為骨架,裝載了組蛋白、顆粒成分及胞漿蛋白的胞外網(wǎng)狀結(jié)構(gòu)。其顆粒成分包括彈性蛋白酶(neutrophil elastase,NE)、髓過氧化物酶(myeloperoxidase,MPO)、組織蛋白酶G(cathepsin G)及乳鐵蛋白酶(lactoferrin,LF)等。中性粒細胞通過趨化、脫顆粒及吞噬等經(jīng)典的固有免疫反應(yīng)來應(yīng)對病原體,這種方式可以部分應(yīng)對短期大量病原體快速入侵[5-6],而NETs的發(fā)現(xiàn)補充了中性粒細胞在固有免疫應(yīng)答中的作用。
中性粒細胞受到刺激后,釋放NE和MPO,降解組蛋白,促進染色質(zhì)解聚[7]。肽酰基精氨酸脫亞氨酶4(peptidylarginine deiminase 4,PADI4)是NETs形成的關(guān)鍵酶[7-9],催化組蛋白瓜氨酸化,使染色質(zhì)進一步解聚,進而胞核腫脹、核膜溶解,染色質(zhì)與顆粒成分融合,NETs釋放[9-10]。
現(xiàn)有研究已證實中性粒細胞釋放NETs有三種機制:新型細胞死亡機制、完整胞內(nèi)核DNA釋放機制和完整胞內(nèi)線粒體DNA(mitochondrion DNA,mtDNA)釋放機制。Fuchs等[11]用佛波酯(phorbol 12-myristate 13-acetate,PMA)處理純化的外周血中性粒細胞3-4小時,發(fā)現(xiàn)核膜降解、胞膜溶解、核內(nèi)DNA釋放至胞外形成NETs。這種細胞死亡的途徑稱為自殺性NETosis(Suicidal NETosis)。此外研究發(fā)現(xiàn),在應(yīng)對局部高濃度革蘭氏陽性細菌感染時,部分中性粒細胞在迅速形成NETs的過程中仍可以吞噬病原體,仍保留原有的殺菌功能[6],說明中性粒細胞通過胞吐形式釋放NETs。金黃色葡萄球菌可在十分鐘內(nèi)誘導(dǎo)中性粒細胞在保持細胞活性的情況下釋放NETs[12]。Clark等[13]研究發(fā)現(xiàn)血小板Toll樣受體4(Toll like receptor,TLR-4)與TLR4配體結(jié)合,從而誘導(dǎo)血小板活化,刺激中性粒細胞,并促進中性粒細胞通過胞吐的方式釋放核DNA,形成NETs。NETs中的DNA來源除了核DNA外,還有mtDNA。例如,無菌性損傷患者外周血中NETs的骨架成分來源于mtDNA[14]。此外,通過離體實驗發(fā)現(xiàn),使用粒細胞-巨噬細胞集落因子(granulocyte-macrophage colony stimulating factor ,GM-CSF)/補體C5a或GM-CSF/脂多糖(Lipopolysaccharides,LPS)刺激中性粒細胞均可釋放NETs,其DNA成分完全來自于線粒體[15]。這兩種途徑合稱為活性NETosis(Vital NETosis)[5,16]。
上述研究提示中性粒細胞釋放NETs的機制因刺激物和刺激時間的不同而有所區(qū)別。中性粒細胞形成NETs的過程是通過自殺性NETosis還是通過活性NETosis的機制需要更多研究予以論證。
中性粒細胞除了可以受到上述PMA、TLR-4、血小板、LPS、GM-CSF/C5a、金黃色葡萄球菌等誘導(dǎo)釋放NETs之外,白細胞介素8(IL-8)[17]、趨化物甲酰甲硫氨酰-亮氨酰-苯丙氨酸(fMLP)[18]、真菌[19]和病毒感染[20]等也可作為NETs釋放的誘導(dǎo)劑。
較多的研究認為NETs的生成依賴NADPH氧化酶介導(dǎo)的氧自由基(reactive oxygen species,ROS)的產(chǎn)生。Hakkim等[21]發(fā)現(xiàn)NETs的形成是通過NADPH氧化酶激活協(xié)同抗凋亡蛋白上調(diào)的Raf-MEK-ERK途徑。Remijsen等[22]發(fā)現(xiàn),在中性粒細胞自噬及呼吸爆發(fā)后形成NETs,抑制自噬或NADPH氧化酶的活性都可以通過阻止染色質(zhì)的解聚,影響NETs的生成。
然而,也有研究認為可通過不依賴NADPH氧化酶途徑誘導(dǎo)NETs的產(chǎn)生。例如,金黃色葡萄球菌和曲霉菌等可以誘導(dǎo)非氧化劑依賴的NETs的釋放[12,19]。此外,羥甲基戊二酰輔酶A (hydroxymethylglutaryl-CoA,HMG-CoA)還原酶抑制劑抑制中性粒細胞呼吸爆發(fā)的同時,促進葡萄球菌刺激的NETs的產(chǎn)生[23]。 Parker等[24]發(fā)現(xiàn)PMA和細菌刺激時,需要NADPH氧化酶的參與,而離子霉素刺激則無需NADPH氧化酶介導(dǎo)。PMA刺激同時還需要MPO的參與,而LPS刺激則不依賴于MPO的活性[24]。中性粒細胞生成NETs是否依賴于氧化劑也因刺激物和刺激時間的不同而有所區(qū)別。
規(guī)律的運動訓(xùn)練不改變外周循環(huán)中中性粒細胞數(shù)量[25]。然而,一次急性運動后中性粒細胞數(shù)量迅速增加,并在隨后的幾小時出現(xiàn)延遲性增加,其增加的幅度取決于運動強度和持續(xù)時間[26-27]。研究認為,運動后即刻中性粒細胞快速增加是由于血流的剪切應(yīng)力和兒茶酚胺的作用引起,而延遲性增加則是由于皮質(zhì)醇誘導(dǎo)[28-30]發(fā)生。Radom-Aizik等[31]通過Affymetrix U133+2 基因芯片發(fā)現(xiàn),急性大強度運動大幅增加人外周血中性粒細胞炎癥、凋亡、損傷修復(fù)和病理狀況相關(guān)基因表達;進一步通過 Agilent miRNA芯片發(fā)現(xiàn),急性大強度運動造成人外周血中性粒細胞38個miRNA表達改變,涉及與炎癥相關(guān)的泛素蛋白酶體、Jak-STAT 和Hedgehog 3個信號通路[32]。
一次急性大強度運動后幾小時中性粒細胞應(yīng)對細菌刺激時,其脫粒和呼吸爆發(fā)的功能減弱[26-27,33]。這提示了運動可以誘導(dǎo)中性粒細胞進入循環(huán),但在運動后恢復(fù)期對外源性刺激的反應(yīng)能力減弱[34]。Nieman等[35]在1994年提出運動強度和持續(xù)時間與上呼吸道感染發(fā)病率呈“J型”曲線,認為規(guī)律的中等強度運動提高機體免疫功能,而長時間、高強度運動抑制免疫功能。很多研究顯示,在從事急性長時間大強度運動后,多種免疫細胞的功能均受到暫時性的抑制[36-37]。然而,有研究顯示,運動訓(xùn)練可以降低慢性炎癥狀況下或炎癥部位中的中性粒細胞數(shù)目,提高了這種運動在炎癥反應(yīng)中起抗炎作用的可能性[38]。急性大強度游泳運動可以造成人外周血中性粒細胞氧化損傷,抗氧化酶活性降低[39]。此外,還有研究報道過度運動可以導(dǎo)致NADPH氧化酶介導(dǎo)的ROS過多產(chǎn)生,導(dǎo)致運動型免疫機能抑制[40]。
研究發(fā)現(xiàn)NETs在機體免疫應(yīng)答中除了發(fā)揮有效捕獲病原體的良性作用之外,它的異常釋放也成為血栓和自身免疫性疾病的致病因素。近期Kessenbrock等[41]發(fā)現(xiàn)NETs中的mtDNA可以誘導(dǎo)I 型干擾素和炎癥細胞因子的產(chǎn)生,從而增加自身免疫性疾病的發(fā)病風(fēng)險。Tue Bjerg Bennike等[42]用蛋白質(zhì)組學(xué)的方式發(fā)現(xiàn)一系列蛋白質(zhì)在潰瘍性結(jié)腸炎患者體內(nèi)與NETs形成有關(guān)。腸道菌群失調(diào)導(dǎo)致NETs失調(diào)[43],NETs也能加重潰瘍與細菌感染導(dǎo)致腸膿毒血癥損傷[44],并與小腸組織中血液高凝相關(guān)[45]。
力竭運動中產(chǎn)生的NETs以及免疫異常同樣受到了關(guān)注。Syu GD等[46]研究發(fā)現(xiàn)久坐人群一次劇烈運動后外周血中NETs的形成增加。Bitter等[4]發(fā)現(xiàn)力竭運動后即刻外周血中性粒細胞細胞核腫脹,完整的中性粒細胞外有疑似NETs的結(jié)構(gòu)出現(xiàn),認為力竭運動誘導(dǎo)中性粒細胞經(jīng)由胞吐作用生成NETs。力竭運動后即刻血漿游離DNA(cell-free DNA,cf-DNA)和MPO指標(biāo)較運動前大幅提高,且兩者的值顯著正相關(guān),據(jù)此推測力竭運動導(dǎo)致的血漿cf-DNA的增加與NETs的生成關(guān)系密切。對于血漿cf-DNA及將其作為訓(xùn)練監(jiān)控的生理學(xué)指標(biāo)的相關(guān)研究已有很多,最新研究認為運動導(dǎo)致的cf-DNA的增加及和DNase的比值可以作為過度訓(xùn)練綜合征的檢測指標(biāo),以及可以調(diào)控過度運動誘導(dǎo)的免疫機能[47-48]。
許多研究已證實NETs通過促進凝血因子XII[49]、凝血酶原的表達[50],活化血小板[51],并抑制血栓調(diào)節(jié)素、抗凝血酶等[52]參與血栓形成。而劇烈運動可以使血液出現(xiàn)短時間高凝狀態(tài),表現(xiàn)為血小板及其衍生微粒數(shù)目的升高以及血小板高反應(yīng)性和白細胞聚集[53-56]。研究報道長時間、高強度訓(xùn)練的馬拉松運動員有血液高凝、血管損傷和循環(huán)停滯等多種靜脈血栓的致病因素[57]。由此可見,劇烈運動可能通過NETs的釋放導(dǎo)致血液高凝,從而導(dǎo)致靜脈血栓的形成,其發(fā)生機制有待進一步研究。
目前,已有大量研究探尋急性運動和慢性長期運動對機體免疫應(yīng)答的可能機制,但對于運動誘導(dǎo)的NETs是如何參與多種應(yīng)答機制及過度運動中NETs的異常釋放與自身免疫性疾病、血栓形成的關(guān)系等方面還有待更深入的研究。此外,運動后即刻血漿cf-DNA/NETs的表達水平有望成為檢測運動性疲勞最快速的指標(biāo),有效彌補血紅蛋白、血尿素、血睪酮等生化指標(biāo)特異性不足的缺點,為運動訓(xùn)練實踐提供更好的科學(xué)保障。
中性粒細胞胞外誘捕網(wǎng)已成為生物醫(yī)學(xué)領(lǐng)域的研究熱點,隨著其與運動科學(xué)研究的交叉滲透,運動性免疫機能失衡的解釋將得到更為有力的證據(jù)。另外,從NETs角度揭示規(guī)律適度的運動對機體健康造成的長期影響也將有很高的研究價值。
[1] Nathan C.Neutrophils and immunity:challenges and opportunities[J].NatureReviewsImmunology,2006(3):173-182.
[2] Brinkmann V,Reichard U,Goosmann C,et al.Neutrophil extracellular traps kill bacteria[J].Science,2004(5663):1532-1535.
[3] Steinberg BE,Grinstein S.Unconventional roles of the NADPH oxidase:signaling,ion homeostasis,and cell death[J].SciSTKE,2007(379):11.
[4] Beiter T,Fragasso A,Hudemann J,et al.Neutrophils release extracellular DNA traps in response to exercise[J].JournalofAppliedPhysiology,2014(3):325-333.
[5] Phillipson M,Kubes P.The neutrophil in vascular inflammation[J].NatureMedicine,2011(11):1381-1390.
[6] Yipp BG,Petri B,Salina D,et al.Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo[J].NatureMedicine,2012(9):1386-1393.
[7] Papayannopoulos V,Metzler KD,Hakkim A,et al.Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J].JCellBiol,2010(3):677-691.
[8] Li P,Li M,Lindberg MR,et al.PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J].JExpMed,2010(9):1853-1862.
[9] Leshner M,Wang S,Lewis C,et al.PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures[J].FrontImmunol,2012(3):307.
[10] Wang Y,Li M,Stadler S,et al.Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J].TheJournalofCellBiology,2009(2):205-213.
[11] Fuchs TA,Abed U,Goosmann C,et al.Novel cell death program leads to neutrophil extracellular traps[J].TheJournalofCellBiology,2007(2):231-241.
[12] Pilsczek FH,Salina D,Poon KK,et al.A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J].JImmunol,2010(12):7413-7425.
[13] Clark SR,Ma AC,Tavener SA,et al.Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J].NatureMedicine,2007(4):463-469.
[14] McIlroy DJ,Jarnicki AG,Au GG,et al.Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery[J].JCritCare,2014(6):1133-1135.
[15] Yousefi S,Mihalache C,Kozlowski E,et al.Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J].CellDeathDiffer,2009(11):1438-1444.
[16] Yipp BG,Kubes P.NETosis:how vital is it?[J].Blood,2013(16):2784-2794.
[17] Khandpur R,Carmona-Rivera C,Vivekanandan-Giri A,et al.NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis[J].ScienceTranslationalMedicine,2013(178):140.
[18] Itakura A,McCarty OJ.Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J].AmericanJournalofPhysiology-CellPhysiology,2013(3):C348-C354.
[19] Byrd AS,O'Brien XM,Johnson CM,et al.An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans[J].JImmunol,2013(8):4136-4148.
[20] Hahn S,Giaglis S,Chowdury CS,et al.Modulation of neutrophil NETosis:interplay between infectious agents and underlying host physiology[C].In:Seminars in immunopathology,Springer,2013:439-453.
[21] Hakkim A,Fuchs TA,Martinez NE,et al.Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation[J].NatChemBiol,2011(2):75-77.
[22] Remijsen Q,Vanden Berghe T,Wirawan E,et al.Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J].CellRes,2011(2):290-304.
[23] Chow OA,von Kockritz-Blickwede M,Bright AT,et al.Statins enhance formation of phagocyte extracellular traps[J].CellHostMicrobe,2010(5):445-454.
[24] Parker H,Dragunow M,Hampton MB,et al.Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus[J].JLeukocBiol,2012(4):841-849.
[25] Gleeson M,Bishop NC.The T cell and NK cell immune response to exercise[J].AnnalsofTransplantation,2005(4):44.
[26] Peake JM.Exercise-induced alterations in neutrophil degranulation and respiratory burst activity:possible mechanisms of action[J].ExercImmunolRev,2002(8):49-100.
[27] Robson P,Blannin A,Walsh N,et al.Effects of exercise intensity,duration and recovery on in vitro neutrophil function in male athletes[J].InternationalJournalofSportsMedicine,1999(2):128-130.
[28] McCarthy D,Macdonald I,Grant M,et al.Studies on the immediate and delayed leucocytosis elicited by brief (30-min) strenuous exercise[J].EuropeanJournalofAppliedPhysiologyandOccupationalPhysiology,1992(6):513-517.
[29] Nunes-Silva A,Bernardes PT,Rezende BM,et al.Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner.An intravital microscopy study[J].PLoSOne,2014(5):e96464.
[30] Kakanis M,Peake J,Hooper S,et al.The open window of susceptibility to infection after acute exercise in healthy young male elite athletes[J].JournalofScienceandMedicineinSport,2010(13):85-86.
[31] Radom-Aizik S,Zaldivar F,Leu S-Y,et al.Effects of 30 min of aerobic exercise on gene expression in human neutrophils[J].JournalofAppliedPhysiology,2008(1):236-243.
[32] Radom-Aizik S,Zaldivar F,Oliver S,et al.Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes[J].JournalofAppliedPhysiology,2010(1):252-261.
[33] Peake J,Suzuki K.Neutrophil activation,antioxidant supplements and exercise-induced oxidative stress[J].ExercImmunolRev,2004(2):129-141.
[34] Walsh NP,Gleeson M,Shephard RJ,et al.Position statement part one:immune function and exercise[J].2011.
[35] Nieman DC.Exercise,infection,and immunity[J].InternationalJournalofSportsMedicine,1994(S3):S131-S141.
[36] Ronsen O,Pedersen BK,ritsland TR,et al.Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise[J].JournalofAppliedPhysiology,2001(1):425-434.
[37] Simpson RJ,Kunz H,Agha N,et al.Exercise and the Regulation of Immune Functions[J].ProgMolBiolTranslSci,2015(135):355-380.
[38] Node K,Michishita R,Tsuruta T,et al.Effect of exercise therapy on monocyte and neutrophil counts in overweight women[J].TheAmericanJournaloftheMedicalSciences,2010(2):152-156.
[39] Ferrer MD,Tauler P,Sureda A,et al.Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise[J].JournalofSportsSciences,2009(1):49-58.
[40] 陳佩杰,董靜梅.過度運動激活中性粒細胞產(chǎn)生的活性氧對淋巴細胞 DNA 損傷及干預(yù)研究[J].體育科學(xué),2011(1):29-38.
[41] Kessenbrock K,Krumbholz M,Schnermarck U,et al.Netting neutrophils in autoimmune small-vessel vasculitis[J].NatureMedicine,2009(6):623-625.
[42] Bennike TB,Carlsen TG,Ellingsen T,et al.Neutrophil Extracellular Traps in Ulcerative Colitis:A Proteome Analysis of Intestinal Biopsies[J].InflammBowelDis,2015(9):2052-2067.
[43] Vong L,Pinnell LJ,Maattanen P,et al.Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis[J].AmJPhysiolGastrointestLiverPhysiol,2015(3):181-192.[44] Gao X,Hao S,Yan H,et al.Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats[J].JSurgRes,2015(1):211-218.
[45] Guglietta S,Chiavelli A,Zagato E,et al.Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis[J].NatCommun,2016(7):11037.
[46] Syu GD,Chen HI,Jen CJ.Acute severe exercise facilitates neutrophil extracellular trap formation in sedentary but not active subjects[J].MedSciSportsExerc,2013(2):238-244.
[47] Tamkovich SN,Cherepanova AV,Kolesnikova EV,et al.Circulating DNA and DNase activity in human blood[J].AnnNYAcadSci,2006(1075):191-196.
[48] Breitbach S,Tug S,Simon P.Circulating cell-free DNA[J].SportsMedicine,2012(7):565-586.
[49] von Brühl M-L,Stark K,Steinhart A,et al.Monocytes,neutrophils,and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo[J].TheJournalofExperimentalMedicine,2012(4):819-835.
[50] Massberg S,Grahl L,von Bruehl M-L,et al.Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J].NatureMedicine,2010(8):887-896.
[51] Semeraro F,Ammollo CT,Morrissey JH,et al.Extracellular histones promote thrombin generation through platelet-dependent mechanisms:involvement of platelet TLR2 and TLR4[J].Blood,2011(7):1952-1961.
[52] Ammollo C,Semeraro F,Xu J,et al.Extracellular histones increase plasma thrombin generation by impairing thrombomodulin‐dependent protein C activation[J].JournalofThrombosisandHaemostasis,2011(9):1795-1803.
[53] El-Sayed MS.Exercise and training effects on platelets in health and disease[J].Platelets,2002(5-6):261-266.
[54] Li N,He S,Blomback M,et al.Platelet activity,coagulation,and fibrinolysis during exercise in healthy males:effects of thrombin inhibition by argatroban and enoxaparin[J].ArteriosclerThrombVascBiol,2007(2):407-413.
[55] Menzel K,Hilberg T.Blood coagulation and fibrinolysis in healthy,untrained subjects:effects of different exercise intensities controlled by individual anaerobic threshold[J].EurJApplPhysiol,2011(2):253-260.
[56] Adams M,Williams A,Fell J.Exercise in the fight against thrombosis:friend or foe?[J].SeminThrombHemost,2009(3):261-268.
[57] Hull CM,Harris JA.Cardiology Patient Page.Venous thromboembolism and marathon athletes[J].Circulation,2013(25):469-471.
NETs and Sports Immune
SHI Yue1,2, YANG Yi3
(1.Sport Dept., Shanghai Sports Vocational Inst., Shanghai 200237, China; 2. Sports Science Dept., Shanghai Inst. of Physical Education, Shanghai 200438, China; 3. Health Science Dept., Wuhan Sports Univ., Wuhan 430079, China)
As a new netrophil immune response, NETs expand the neutrophil phagocytosis and the original threshing way through killing kill pathogenic microorganisms with its network structure and antibacterial ingredients; excessive NETs formation will cause the host cell damage, cause autoimmune disease and promote thrombosis.Exhaustive exercise induced the formation of NETs, and it has close relationship with plasma DNA and blood coagulation . The paper summerizes the components of NETs, release mechanism, incentive signal road, the latest research progress in the field and the movement of immune neutrophils and their extracellular traps.
neutrophil extracellular traps; NETs; neutrophil; sports immune;immune disease
2016上海市教育委員會和上海市教育發(fā)展基金會“晨光計劃”資助項目(169CGB29)。
石月(1990-),碩士,助教,研究方向:運動與免疫。
楊翼(1973-),博士,教授,研究方向:運動醫(yī)學(xué)臨床與基礎(chǔ)研究。
G804.2
A
1672-268X(2017)03-0076-05
2017-04-26)