,,,
(南京農(nóng)業(yè)大學(xué) 國(guó)家肉品質(zhì)量安全控制工程技術(shù)研究中心,江蘇南京 210095)
膳食蛋白、機(jī)體抗氧化調(diào)節(jié)與健康的關(guān)系研究進(jìn)展
朱菁,李春保,徐幸蓮,周光宏*
(南京農(nóng)業(yè)大學(xué) 國(guó)家肉品質(zhì)量安全控制工程技術(shù)研究中心,江蘇南京 210095)
膳食蛋白為機(jī)體提供必需氨基酸,還具有廣泛的生理功能。膳食蛋白的消化代謝過程中,機(jī)體細(xì)胞會(huì)產(chǎn)生活性氧。活性氧積累可能引發(fā)氧化及衰老。細(xì)胞中的抗氧化蛋白——硫氧還蛋白、谷氧還蛋白及其他抗氧化酶等共同組成抗氧化系統(tǒng),抵御活性氧,減少有害物生成。本文綜合介紹不同來源的膳食蛋白與相應(yīng)的抗氧化調(diào)節(jié)對(duì)機(jī)體健康的影響,以及活性氧代謝過程中兩種抗氧化蛋白的調(diào)控作用,結(jié)合體內(nèi)其他抗氧化指標(biāo),從而更好地認(rèn)識(shí)不同膳食蛋白的代謝差異,指導(dǎo)個(gè)人膳食與健康。
膳食蛋白,肉蛋白,活性氧,谷氧還蛋白,硫氧還蛋白
隨著生活日漸富足,人們更多關(guān)注食物的營(yíng)養(yǎng)健康[1]。攝入富含蛋白質(zhì)的食物與健康狀況有很強(qiáng)的聯(lián)系。膳食蛋白為機(jī)體提供必需氨基酸,還具有廣泛的生理功能[2]。近年來,植物蛋白與動(dòng)物蛋白、白肉與紅肉對(duì)健康影響的爭(zhēng)議不斷,而關(guān)于紅肉及其肉類加工產(chǎn)品的攝入量與導(dǎo)致腫瘤風(fēng)險(xiǎn)的研究結(jié)果也遠(yuǎn)未達(dá)成共識(shí)。已有的研究表明動(dòng)物與植物蛋白對(duì)能量代謝、生理功能有區(qū)別性的影響[3-4]。豬肉、牛肉、禽肉、魚肉的消化代謝和蛋白利用率有明顯差異[5]。
膳食蛋白攝入促進(jìn)機(jī)體內(nèi)細(xì)胞水平的主要氧化反應(yīng),使細(xì)胞產(chǎn)生活性氧(reactive oxygen species,ROS)[6],并進(jìn)一步改變一系列器官的代謝狀態(tài)[7]。ROS是一類高反應(yīng)活性的含氧分子或自由基,影響機(jī)體內(nèi)各種信號(hào)傳導(dǎo)、代謝調(diào)節(jié)及細(xì)胞凋亡[8]。國(guó)際上關(guān)于ROS與細(xì)胞氧化衰老的基礎(chǔ)研究一直是熱點(diǎn)[9]。而細(xì)胞中的抗氧化蛋白——硫氧還蛋白(Trx)和谷氧還蛋白(Grx)及抗氧化酶——超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GPX)、過氧化氫酶(CAT)等共同組成抗氧化體系,來對(duì)抗ROS[10-12]。癌細(xì)胞能在高濃度ROS條件下存活且不斷增殖,主要靠Trx和Grx過表達(dá)來不斷清除活性氧,抑制細(xì)胞凋亡[13-16],目前對(duì)兩者的研究集中于醫(yī)學(xué)領(lǐng)域。了解這兩種抗氧化蛋白的調(diào)控作用,結(jié)合體內(nèi)其他抗氧化指標(biāo),從而更好地認(rèn)識(shí)不同來源的膳食蛋白的代謝差異,指導(dǎo)個(gè)人膳食與健康。
蛋白質(zhì)是構(gòu)成生命的基本要素。蛋白質(zhì)被攝入人體后,被分解成為氨基酸,進(jìn)而被吸收利用[17-18]。膳食蛋白為機(jī)體提供必需氨基酸,還廣泛參與各種生理功能包括:各類物質(zhì)的代謝合成、免疫反應(yīng)、酶類調(diào)節(jié)、信號(hào)傳導(dǎo)、肌肉收縮、血液凝固等,繼而有導(dǎo)致疾病的風(fēng)險(xiǎn)[2,19]。在小鼠模型中,膳食中限制含硫氨基酸(SAA)的攝入能增加胱硫醚γ裂解酶(CGL)代謝通路(TSP)的表達(dá),導(dǎo)致內(nèi)源性硫化氫生成量增加,使機(jī)體抗逆性增強(qiáng)[20]。
1.1不同來源的膳食蛋白對(duì)機(jī)體的影響
常見的膳食蛋白質(zhì)包括植物蛋白、乳蛋白、肉蛋白等[21-22],根據(jù)現(xiàn)有報(bào)道,這些蛋白質(zhì)攝入對(duì)機(jī)體健康有一定的影響。
運(yùn)用基因芯片研究發(fā)現(xiàn),飼喂大豆蛋白或小麥谷蛋白改變了大鼠肝臟或肌肉中與膽固醇代謝、脂肪代謝、抗氧化活性、轉(zhuǎn)錄調(diào)控、能量代謝等相關(guān)基因的表達(dá),可降低膽固醇和甘油三酯的濃度[23]。大豆蛋白還可以讓過氧化物酶體增殖物激活受體(PPARs)活化來改善胰島素抗性和血脂水平[24]。Mezei等研究發(fā)現(xiàn)攝入具有高異黃酮的大豆蛋白可以改善肥胖Zucker大鼠的葡萄糖耐受量、胰島素抗性、肝膽固醇、甘油三酯的濃度。在細(xì)胞培養(yǎng)研究中發(fā)現(xiàn),含有異黃酮的大豆提取物和分離的大豆異黃酮能增加PPARs的基因表達(dá)[25]。這表明大豆蛋白對(duì)糖和脂質(zhì)代謝的有益作用可能是通過激活PPAR介導(dǎo)。Morifuji等研究表明,攝入大豆蛋白可降低大鼠甘油三酯水平和附睪脂重量,這可能與脂肪酸氧化相關(guān)的一些酶的活性及其轉(zhuǎn)錄水平上調(diào)有關(guān)。此外,攝入大豆蛋白可通過激活PPAR通路從而刺激骨骼肌中脂肪氧化,導(dǎo)致身體脂肪積累減少[26]。
牛奶中大約五分之四的蛋白質(zhì)是酪蛋白。酪蛋白不僅可以為身體補(bǔ)充能量,還可以供給必需氨基酸。在消化過程中,酪蛋白經(jīng)過水解會(huì)產(chǎn)生活性肽,這類活性肽產(chǎn)物能夠有效促進(jìn)消化道蠕動(dòng),增強(qiáng)免疫功能,消除ROS、調(diào)節(jié)礦物質(zhì)代謝和保護(hù)心血管[27]。在被特異性消化酶激活之前,活性肽被包裹在酪蛋白中,不具有生物活性。而活性肽經(jīng)過食品加工或體內(nèi)外消化,當(dāng)活性基團(tuán)被暴露出來后才發(fā)揮出巨大的生物活性優(yōu)勢(shì)。乳源性生物活性肽(酪啡肽、乳啡肽等)在心血管系統(tǒng)、免疫系統(tǒng)、消化系統(tǒng)及神經(jīng)系統(tǒng)等均具有廣泛的生理作用[28]。
研究表明魚肉蛋白具有降血壓、降膽固醇的作用[29-30],而此領(lǐng)域的研究仍存在一些矛盾的結(jié)果。Murata以大豆蛋白為對(duì)照進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)飼喂大鼠魚肉蛋白可以降低血漿中甘油三酯濃度[31]。但Ait Yahia在大鼠模型中并未發(fā)現(xiàn)此類影響[32]。此外,魚肉蛋白對(duì)高密度脂蛋白-膽固醇的影響結(jié)果也不一致。Anjali等研究發(fā)現(xiàn),用阿拉斯加鱈魚的魚肉蛋白飼喂大鼠會(huì)增加其肝臟的膽固醇濃度,同時(shí)會(huì)降低肝臟中高密度脂蛋白濃度[33]。Madani等卻發(fā)現(xiàn)沙丁魚的魚肉蛋白攝入能夠有效減少大鼠肝臟中膽固醇含量并且降低大鼠血壓[34]。這種相反的結(jié)果可能跟蛋白質(zhì)來源的魚類品種有關(guān)。目前對(duì)魚肉蛋白的營(yíng)養(yǎng)基因組學(xué)研究主要集中在肝臟基因表達(dá)上,而對(duì)肝臟蛋白表達(dá)的影響研究還很少。
Brandsch等對(duì)照酪蛋白和大豆蛋白,探究大鼠攝入牛肉蛋白、豬肉蛋白和火雞肉蛋白后其肝臟脂質(zhì)代謝的變化。結(jié)果表明:三種肉蛋白對(duì)膽固醇代謝的影響與對(duì)照組相比無差異;與酪蛋白相比,豬肉蛋白降低了大鼠的血漿甘油三酯的濃度,可能與肝臟的脂質(zhì)合成能力降低相關(guān)[35]。目前肉源性蛋白對(duì)機(jī)體基因和蛋白表達(dá)的影響研究還較少,對(duì)肉類蛋白營(yíng)養(yǎng)和生理功能的認(rèn)識(shí)還遠(yuǎn)遠(yuǎn)不夠。張英君等研究發(fā)現(xiàn)羊肉可以顯著提高大鼠的甲狀腺素水平,而大鼠攝入鴨肉后,甲狀腺素分泌減少[36]。閆振國(guó)、馮憲超等研究表明羊肉參比豬肉,會(huì)使大鼠能量代謝升高,結(jié)腸AQP2基因轉(zhuǎn)錄和翻譯水平上調(diào),鴨肉則使其mRNA和蛋白表達(dá)量降低[37-38]。陳佳研究表明大鼠的動(dòng)物肉粉攝入量與體重增重正相關(guān),與總抗氧化能力水平負(fù)相關(guān),攝入愈多,過氧化物終產(chǎn)物丙二醛(MDA)產(chǎn)生越多,對(duì)機(jī)體健康不利[39]。
1.2肉蛋白攝入與健康問題
還有學(xué)者從其他方言層面探究了語音影響母語遷移。詞匯是語言構(gòu)建的基石,是語言學(xué)習(xí)的關(guān)鍵。就詞匯而言,學(xué)習(xí)者會(huì)受到母語的影響而使用錯(cuò)誤的搭配。有學(xué)者對(duì)5種英語學(xué)習(xí)者(即不同水平、不同類型的英語學(xué)習(xí)者)的書面材料進(jìn)行分析,結(jié)果顯示語言失誤三個(gè)層面中有兩個(gè)與詞匯相關(guān),21種失誤中與詞匯相關(guān)的竟多達(dá)17種,由此得出,詞匯遷移是英語學(xué)習(xí)中最主要的問題之一。
作為機(jī)體生長(zhǎng)和健康維持所需的高品質(zhì)蛋白來源[40],肉蛋白的必需氨基酸比例比植物蛋白更接近于人體需求,更適于人體吸收利用[41-42],這在人類文明發(fā)展過程中起到過重要作用[43]。均衡飲食情況下,攝入適量的瘦肉能改善機(jī)體內(nèi)脂肪酸分布,并且不會(huì)增加患心血管疾病或癌癥的風(fēng)險(xiǎn)。肉源性食物攝入不足,會(huì)導(dǎo)致營(yíng)養(yǎng)不良、佝僂病、貧血等癥狀[44]。
圖1 ROS代謝途徑Fig.1 ROS metabolic pathway
大量研究已經(jīng)證明并且達(dá)成共識(shí),肉的攝入量要在合理范圍內(nèi),一旦過多易引發(fā)“富貴病”如肥胖、腫瘤、心腦血管病、糖尿病等慢性疾病[45-46]。近年來關(guān)于肉源性食物攝入量與癌癥風(fēng)險(xiǎn)的研究結(jié)果并不一致,其復(fù)雜的機(jī)理仍需進(jìn)一步研究[47]。來自豬、牛、羊、馬等哺乳動(dòng)物身上的被稱為紅肉。紅肉對(duì)健康的影響始終存在爭(zhēng)議[48]。元分析(對(duì)以往的研究結(jié)果進(jìn)行系統(tǒng)分析)表明,過量攝入紅肉,特別是加工紅肉,會(huì)增加全因死亡率(All-cause mortality,指一定時(shí)期內(nèi)各種原因?qū)е碌目偹劳鋈藬?shù)與該人群同期平均人口數(shù)之比)[49]。但另外一些研究表明,紅肉攝入與部分癌癥無關(guān),如乳腺癌[50]。美國(guó)研究人員發(fā)現(xiàn)一種被稱為Neu5Gc的糖分子——一種廣泛存在于肉食哺乳動(dòng)物體內(nèi)的糖類物質(zhì),但未在人體內(nèi)發(fā)現(xiàn)。人體攝入哺乳動(dòng)物來源的肉后,會(huì)因?yàn)橛挟愇颪eu5Gc糖的存在而誘發(fā)免疫反應(yīng)來清除它,持續(xù)的免疫狀態(tài)容易引發(fā)炎癥,最終有可能導(dǎo)致癌癥。通過對(duì)普通小鼠和Neu5Gc基因敲除的小鼠飼喂Neu5Gc分子,發(fā)現(xiàn)Neu5Gc基因缺陷小鼠(類似于人類)的腫瘤產(chǎn)生率比普通小鼠高4倍[51]。該實(shí)驗(yàn)并非人體實(shí)驗(yàn)或臨床數(shù)據(jù),很難直接證明像二型糖尿病、動(dòng)脈硬化等免疫慢性病與過量攝入來自哺乳動(dòng)物的肉有關(guān)。
目前對(duì)肉類蛋白的研究還遠(yuǎn)遠(yuǎn)不夠,對(duì)其全面營(yíng)養(yǎng)和生理功能的認(rèn)識(shí)還遠(yuǎn)遠(yuǎn)不足以達(dá)成共識(shí)。2002年第一屆國(guó)際營(yíng)養(yǎng)基因組會(huì)議在荷蘭召開,第一次闡述了營(yíng)養(yǎng)基因組學(xué)的概念,從此對(duì)肉蛋白的深入研究有了新的平臺(tái)[52]。與國(guó)際相比,我國(guó)居民食物攝入來自動(dòng)物的蛋白質(zhì)比重低于世界平均水平,而來自動(dòng)物的脂肪量比重偏高于世界平均水平[53]。營(yíng)養(yǎng)不均衡問題正阻礙著國(guó)民健康建設(shè),肉源性食物的消費(fèi)亟需科學(xué)指導(dǎo)[54]。而一些研究表明,過量攝入動(dòng)物蛋白可能會(huì)增加患2型糖尿病的風(fēng)險(xiǎn)[55],提高心血管和癌癥相關(guān)的死亡率[56],這可能與ROS水平增加有關(guān)[57]。
2.1活性氧與機(jī)體抗氧化調(diào)節(jié)
活性氧ROS指如超氧化物,過氧化物,羥基自由基和單線態(tài)氧等這類極不穩(wěn)定的含氧分子[58]。ROS作為生理和病理?xiàng)l件下的特異性信號(hào)分子,是維持機(jī)體穩(wěn)態(tài)(包括吞噬細(xì)胞防御,生長(zhǎng)因子增殖反應(yīng),血管生成和內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)等)的主要因子[59-60]。有學(xué)者認(rèn)為ROS造成的氧化應(yīng)激是導(dǎo)致細(xì)胞凋亡的關(guān)鍵[61]。
ROS水平在一定范圍內(nèi)可以被分解代謝清除,若無過多積累,不會(huì)造成氧化損傷,但細(xì)胞內(nèi)環(huán)境與外環(huán)境中其他不利因素會(huì)破壞ROS的正常代謝穩(wěn)態(tài)。如果短時(shí)間內(nèi)ROS產(chǎn)生過多,抗氧化防御系統(tǒng)無法及時(shí)消除,ROS累積會(huì)造成氧化應(yīng)激損傷[62]。ROS積累過多會(huì)導(dǎo)致各種與氧化還原相關(guān)的疾病及細(xì)胞衰老。已經(jīng)有大量研究表明過高的ROS水平與心肌梗塞、阿爾茨海默病、腦血管破裂、2型糖尿病等眾多常見疾病有關(guān)[63-65]。線蟲線粒體中ROS積累越多,壽命越短。機(jī)體衰老的速度在相當(dāng)大程度上取決于動(dòng)物機(jī)體功能代謝最旺盛時(shí)的衰老速度[66-67]。
膳食蛋白的攝入會(huì)引起機(jī)體內(nèi)ROS水平的差異,相應(yīng)影響各種信號(hào)傳導(dǎo)、代謝調(diào)節(jié)、細(xì)胞凋亡及機(jī)體衰老。膳食攝入后,機(jī)體消化代謝過程中產(chǎn)生ROS不可避免,而機(jī)體具有抗氧化防御體系來控制ROS在體內(nèi)的濃度[6]。內(nèi)環(huán)境中最重要的ROS消除劑就是超氧化物歧化酶(SOD),它可以將高反應(yīng)性的ROS轉(zhuǎn)化為低反應(yīng)活性的ROS,然后谷胱甘肽過氧化物酶(GPX)和過氧化氫酶(CAT)將后者轉(zhuǎn)化為水[68]。同時(shí)還存在一個(gè)負(fù)反饋,若肝臟中血液更新效率降低,會(huì)導(dǎo)致SOD更新不及時(shí)。低水平的SOD會(huì)被過多的ROS削弱活性。SOD活性下降的同時(shí),某些金屬離子易催化ROS產(chǎn)生MDA,MDA對(duì)細(xì)胞有強(qiáng)毒性,能夠使蛋白質(zhì)產(chǎn)生內(nèi)部或外部交聯(lián),從而導(dǎo)致細(xì)胞凋亡[69]。
2.2抗氧化蛋白Trx和Grx對(duì)健康的影響
癌細(xì)胞能在高濃度ROS條件下存活且不斷增殖,主要通過硫氧還蛋白Trx和谷氧還蛋白Grx的過表達(dá)來不斷清除ROS,從而抑制細(xì)胞凋亡[13-15]。在Grx基因敲除的小鼠體內(nèi),腫瘤細(xì)胞的增殖受到抑制[16]。硫氧還蛋白Trx中的主要功能蛋白是Trx1,是非酶抗氧化物。谷氧還蛋白Grx中主要代表性功能蛋白是Grx1,雖然也是一種抗氧化酶,但不同于三大主要抗氧化酶——包括超氧化物歧化酶SOD、谷胱甘肽過氧化物酶GPX和過氧化氫酶CAT[11-12]。
2.2.1 Trx的抗氧化機(jī)制 Trx最先從綠色植物中被獲得,其后同樣在微生物中發(fā)現(xiàn)并分離獲得。Trx對(duì)溫度耐受力強(qiáng),高溫下不會(huì)失活,證明Trx不是一種酶,并且普遍存在于機(jī)體中。Trx有104個(gè)氨基酸,分子量小,僅12 kD[70]。Trx的超級(jí)大家族中,主要的抗氧化代表有Trx1和Trx2。Trx1主要作用于細(xì)胞質(zhì)中,自身具有兩個(gè)催化半胱氨酸殘基的位點(diǎn)及三個(gè)不具活性的半胱氨酸殘基位點(diǎn),分別是Cys-62、Cys-69和Cys-73。氧化半胱氨酸會(huì)破壞蛋白分子結(jié)構(gòu),從而影響Trx1的結(jié)構(gòu)功能[71]。Trx2較Trx1表達(dá)量少,少量存在于線粒體中。
圖2 Trx系統(tǒng)抗氧化過程[73]Fig.2 Trx system’s antioxidant process[73]
圖3 Grx的兩種抗氧化反應(yīng)機(jī)制[77]Fig.3 Grx’s two antioxidant mechanisms[77]
SOD可以將ROS轉(zhuǎn)化為低活性的產(chǎn)物,隨后CAT會(huì)將低活性產(chǎn)物轉(zhuǎn)化水,而Trx可以通過還原CAT酶來輔助消除ROS,減少M(fèi)DA積累過多導(dǎo)致的基因損傷及細(xì)胞凋亡[72]。由于Trx能作為氫供體還原二硫鍵,來作用于某些轉(zhuǎn)錄因子、蛋白激酶及某些磷酸蛋白酶等,保持蛋白質(zhì)結(jié)構(gòu)功能活性。Trx及其還原酶和還原型輔酶Ⅱ共同作用于二硫鍵,不斷還原被氧化的二硫鍵來消除ROS。Trx的半胱氨酸活性位點(diǎn)能通過可逆反應(yīng),催化保守的活性位點(diǎn)-Cys-Gly-Pro-Cys-形成氧化的Cys二硫化物,還原轉(zhuǎn)化成含有二硫化物的底物。被氧化的Trx則需要被其還原酶還原成含有Cys的巰基化合物。大多數(shù)具有二硫鍵的蛋白都能通過與Trx的這種交換被還原[73]。
2.2.2 Grx的抗氧化機(jī)制 巰基轉(zhuǎn)移酶Grx廣泛分布于微生物與動(dòng)植物中,與Trx同為小分子蛋白,分子量12 kD左右,比Trx多3~4個(gè)氨基酸。Grx作用方式也和Trx類似,蛋白質(zhì)的二硫鍵和巰基作用于活性位點(diǎn)-Cys-Pro-Tyr-Cys-來維持蛋白活力,與谷胱甘肽之間存在二硫鍵轉(zhuǎn)換作用[74]。近年來谷氧還蛋白大家族不斷有新成員被發(fā)現(xiàn),其中最具有代表性并起主要作用的是Grx1,主要分布于細(xì)胞質(zhì)中[75]。后發(fā)現(xiàn)的分子量18 kD的Grx2主要存在于線粒體中,少量作用于核膜上。Grx2具有谷胱甘肽硫轉(zhuǎn)移酶GST類似的蛋白質(zhì)結(jié)構(gòu),而表現(xiàn)出巰基轉(zhuǎn)移酶Grx的蛋白活力。Grx2活性顯著強(qiáng)于Grx1,但在細(xì)胞中的濃度低,作用范圍小,總抗氧還能力不及Grx1。人體中主要是這兩種谷氧還蛋白[76]。Grx的主要抗氧化機(jī)制是通過GSH來可逆的轉(zhuǎn)換巰基及二硫鍵,并且只針對(duì)性的作用于GSH關(guān)聯(lián)的二硫化物,使得含有巰基的蛋白質(zhì)處于動(dòng)態(tài)平衡中,維持蛋白質(zhì)生物活性[77]。
Lee等[12]研究證明,線粒體中的細(xì)胞凋亡信號(hào)調(diào)控激酶1可與還原型谷氧還蛋白連接從而失活。當(dāng)細(xì)胞中氧化水平過高時(shí),Grx1會(huì)被氧化。被氧化的Grx1與細(xì)胞凋亡信號(hào)調(diào)控激酶1接觸,會(huì)激活細(xì)胞凋亡信號(hào)調(diào)控激酶1,從而誘發(fā)細(xì)胞自我毀滅。而Trx只可以與細(xì)胞凋亡信號(hào)調(diào)控激酶1結(jié)合抑制細(xì)胞凋亡[78]。此外Grx1可以通過核因子NF-κB途徑調(diào)節(jié)細(xì)胞凋亡[79]。
高品質(zhì)的膳食蛋白對(duì)機(jī)體健康很重要[80]。考慮到蛋白質(zhì)的來源和成本,市售的膳食蛋白補(bǔ)充劑通常來源于牛奶蛋白或其他植物蛋白[81]。而動(dòng)物蛋白能提供更適合人體吸收的高品質(zhì)蛋白質(zhì),更適合像中國(guó)這樣的發(fā)展中國(guó)家的國(guó)民[82]。相比植物蛋白,來自日常飲食中的動(dòng)物蛋白能更有效地促進(jìn)機(jī)體肌肉蛋白質(zhì)合成[44]。
每一種膳食蛋白都是復(fù)雜的蛋白質(zhì)、多肽和氨基酸的混合物。植物蛋白、動(dòng)物蛋白以及不同物種來源的蛋白質(zhì)之間氨基酸組成可能存在較大差異,因此攝食后可能會(huì)引起機(jī)體內(nèi)ROS水平的差異,機(jī)體相應(yīng)的抗氧化調(diào)節(jié)及抗氧化蛋白(Trx和Grx)的表現(xiàn)亦會(huì)不同,從而影響各種信號(hào)傳導(dǎo)、生理代謝、細(xì)胞凋亡及機(jī)體衰老等等。了解這兩種抗氧化蛋白的調(diào)控作用,結(jié)合體內(nèi)其他抗氧化指標(biāo),更好地認(rèn)識(shí)不同來源的膳食蛋白的代謝差異。日常生活中應(yīng)該攝入多種來源的膳食蛋白,避免長(zhǎng)期食用單一膳食蛋白對(duì)機(jī)體健康造成不良影響。謹(jǐn)慎地?cái)z取高質(zhì)量的肉類蛋白[83],這樣既不會(huì)損失營(yíng)養(yǎng)優(yōu)勢(shì),也不會(huì)喪失吃肉的樂趣[84]。
膳食蛋白的攝入會(huì)引起機(jī)體氧化狀態(tài)和抗氧化能力的差異可能與膳食蛋白來源及其氨基酸的組成有關(guān)??梢钥紤]進(jìn)一步開展工作,探尋飲食中某些氨基酸限制如何影響機(jī)體的氧化狀態(tài)與抗氧化調(diào)節(jié)及其對(duì)健康的影響。
[1]Kearney J. Food consumption trends and drivers[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2010,365(1554):2793-2807.
[2]Jahan-Mihan A,Luhovyy B L,El Khoury D,et al. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract[J]. Nutrients,2011,3(5):574-603.
[3]Song S,Hooiveld G J,Zhang W,et al. Comparative proteomics provides insights into metabolic responses in rat liver to isolated soy and meat proteins[J]. Journal of Proteome Research,2016,15(4):1135-1142.
[4]Song S,Hooiveld G J E J,Li M,et al. Distinct physiological,plasma amino acid,and liver transcriptome responses to purified dietary beef,chicken,fish,and pork proteins in young rats[J]. Molecular nutrition & Food Research,2016,60:1199-1205.
[5]Song S,Hooiveld G J,Li M,et al. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats[J]. Scientific Reports,2016,6:20036.
[6]Quindry J C,Kavazis A N,Powers S K. Exercise-induced oxidative stress:Are supplemental antioxidants warranted[J]. Sports Nutrition,2014:263-276.
[7]Diamanti-Kandarakis E,Papalou O,Kandaraki E A,et al. Mechanisms in endocrinology:Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women[J]. European Journal of Endocrinology,2017,176(2):R79-R99.
[8]Bergamini C M,Gambetti S,Dondi A,et al. Oxygen,reactive oxygen species and tissue damage[J]. Current Pharmaceutical Design,2004,10(14):1611-1626.
[9]Harman D. The biologic clock:the mitochondria?[J]. Journal of the American Geriatrics Society,1972,20(4):145-147.
[10]Halliwell B,Gutteridge J M C. Free radicals in biology and medicine[M]. Oxford University Press,USA,2015.
[11]Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems[J]. Antioxidants & Redox Signaling,2000,2(4):811-820.
[12]Lee K O,Lee J R,Yoo J Y,et al. GSH-dependent peroxidase activity of the rice(Oryza sativa)glutaredoxin,a thioltransferase[J]. Biochemical and Biophysical Research Communications,2002,296(5):1152-1156.
[13]Peltoniemi M J,Rytila P H,Harju T H,et al. Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease[J]. Respiratory Research,2006,7(1):133-143.
[14]Powis G,Kirkpatrick D L. Thioredoxin signaling as a target for cancer therapy[J]. Current Opinion in Pharmacology,2007,7(4):392-397.
[15]Qu Y,Wang J,Ray P S,et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-κB signaling[J]. The Journal of Clinical Investigation,2011,121(1):212-225.
[16]Cheng N H,Zhang W,Chen W Q,et al. A mammalian monothiol glutaredoxin,Grx3,is critical for cell cycle progression during embryogenesis[J]. FEBS Journal,2011,278(14):2525-2539.
[17]陳輝. 現(xiàn)代營(yíng)養(yǎng)學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2005:38-45.
[18]中國(guó)就業(yè)培訓(xùn)技術(shù)指導(dǎo)中心. 公共營(yíng)養(yǎng)師[M]. 北京:中國(guó)勞動(dòng)社會(huì)保障出版社,2007:67-78.
[19]Khmelinskii A,Blaszczak E,Pantazopoulou M,et al. Protein quality control at the inner nuclear membrane[J]. Nature,2014,516(7531):410-413.
[20]Hine C,Harputlugil E,Zhang Y,et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits[J]. Cell,2015,160(1):132-144.
[21]Friedman M. Nutritional value of proteins from different food sources[J]. Journal of Agricultural and Food Chemistry,1996,44(1):6-29.
[22]Davis J,Sonesson U,Baumgartner D U,et al. Environmental impact of four meals with different protein sources:case studies in Spain and Sweden[J]. Food Research International,2010,43(7):1874-1884.
[23]Singhal R,Shankar K,Badger T M,et al. Hepatic gene expression following consumption of soy protein isolate in female Sprague-Dawley rats differs from that produced by 17β-estradiol treatment[J]. Journal of Endocrinology,2009,202(1):141-152.
[24]Ricketts M L,Moore D D,Banz W J,et al. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors[J]. The Journal of Nutritional Biochemistry,2005,16(6):321-330.
[25]Mezei O,Banz W J,Steger R W,et al. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells[J]. The Journal of Nutrition,2003,133(5):1238-1243.
[26]Morifuji M,Sanbongi C,Sugiura K. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats[J]. British Journal of Nutrition,2006,96(3):469-475.
[27]M?ller N P,Scholz-Ahrens K E,Roos N,et al. Bioactive peptides and proteins from foods:indication for health effects[J]. European Journal of Nutrition,2008,47(4):171-182.
[28]Trompette A,Claustre J,Caillon F,et al. Milk bioactive peptides andβ-casomorphins induce mucus release in rat jejunum[J]. The Journal of Nutrition,2003,133(11):3499-3503.
[29]Wergedahl H,Liaset B,Gudbrandsen O A,et al. Fish protein hydrolysate reduces plasma total cholesterol,increases the proportion of HDL cholesterol,and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats[J]. The Journal of Nutrition,2004,134(6):1320-1327.
[30]Yahia D A,Madani S,Prost J,et al. Fish protein improves blood pressure but alters HDL2 and HDL3 composition and tissue lipoprotein lipase activities in spontaneously hypertensive rats[J].European Journal of Nutrition,2005,44(1):10-17.
[31]Murata M,Sano Y,Bannai S,et al. Fish protein stimulated the fibrinolysis in rats[J]. Annals of Nutrition & Metabolism,2003,48(5):348-356.
[32]Ait-Yahia D,Madani S,Savelli J L,et al. Dietary fish protein lowers blood pressure and alters tissue polyunsaturated fatty acid composition in spontaneously hypertensive rats[J]. Nutrition,2003,19(4):342-346.
[33]Shukla A,Bettzieche A,Hirche F,et al. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model[J]. British Journal of Nutrition,2006,96(4):674-682.
[34]Madani Z,Louchami K,Sener A,et al. Dietary sardine protein lowers insulin resistance,leptin and TNF-αand beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome[J]. International Journal of Molecular Medicine,2012,29(2):311-318.
[35]Brandsch C,Shukla A,Hirche F,et al. Effect of proteins from beef,pork,and turkey meat on plasma and liver lipids of rats compared with casein and soy protein[J]. Nutrition,2006,22(11):1162-1170.
[36]張英君,魏法山,李春保,等. 飼喂羊肉和鴨肉日糧對(duì)大鼠血清甲狀腺素水平的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,34(1):128-132.
[37]閆振國(guó),馮憲超,徐幸蓮,等. 飼喂羊肉和鴨肉對(duì)大鼠水鹽代謝影響的比較研究[J]. 食品科學(xué),2011,32(9):285-289.
[38]閆振國(guó),王思丹,王虎虎,等. 飼喂羊肉和鴨肉對(duì)大鼠結(jié)腸 AQP2 表達(dá)的影響[J]. 食品科學(xué),2012,33(7):275-279.
[39]陳佳. 飼喂不同來源肉類對(duì)大鼠免疫功能的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2012.
[40]Pereira P M C C,Vicente A F R B. Meat nutritional composition and nutritive role in the human diet[J]. Meat Science,2013,93(3):586-592.
[41]Donovan S. Biochemical,physiological and molecular aspects of human nutrition 2nd edition,by Martha H Stipanuk,2006,1232 pages,hardcover,price not known. Elsevier Inc,St Louis,MO[J]. The American Journal of Clinical Nutrition,2007,85(1):244-245.
[42]Gilbert J A,Bendsen N T,Tremblay A,et al. Effect of proteins from different sources on body composition[J]. Nutrition,Metabolism and Cardiovascular Diseases,2011,21:B16-B31.
[43]Stipanuk M H,Caudill M A. Biochemical,physiological,and molecular aspects of human nutrition[M]. Elsevier Health Sciences,2013:681-683.
[44]McAfee A J,McSorley E M,Cuskelly G J,et al. Red meat consumption:An overview of the risks and benefits[J]. Meat Science,2010,84(1):1-13.
[45]Dwyer T,Hetzel B S. A comparison of trends of coronary heart disease mortality in Australia,USA and England and Wales with reference to three major risk factors-hypertension,cigarette smoking and diet[J]. International Journal of Epidemiology,1980,9(1):65-71.
[46]Armstrong B,Doll R. Environmental factors and cancer incidence and mortality in different countries,with special reference to dietary practices[J]. International Journal of Cancer,1975,15(4):617-631.
[47]Glade M J. Food,nutrition,physical activity,and the prevention of cancer:a global perspective[J]. American Institute for Cancer Research/World Cancer Research Fund,American Institute for Cancer Research,1997:523-526.
[48]Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food,nutrition,physical activity,and the prevention of cancer:a global perspective[J]. Proceedings of the Nutrition Society,2008,67(3):253-256.
[49]Larsson S C,Orsini N. Red meat and processed meat consumption and all-cause mortality:a meta-analysis[J]. American journal of epidemiology,2014,179:282-289.
[50]Kim A E,Lundgreen A,Wolff R K,et al. Red meat,poultry,and fish intake and breast cancer risk among Hispanic and Non-Hispanic white women:The Breast Cancer Health Disparities Study[J]. Cancer Causes & Control,2016,27(4):527-543.
[51]Samraj A N,Pearce O M T,L?ubli H,et al. A red meat-derived glycan promotes inflammation and cancer progression[J].Proceedings of the National Academy of Sciences,2015,112(2):542-547.
[52]Van Ommen B,Stierum R. Nutrigenomics:exploiting systems biology in the nutrition and health arena[J]. Current Opinion in Biotechnology,2002,13(5):517-521.
[53]封志明,史登峰. 近 20 年來中國(guó)食物消費(fèi)變化與膳食營(yíng)養(yǎng)狀況評(píng)價(jià)[J]. 資源科學(xué),2006,28(1):2-8.
[54]Walker P,Rhubart-Berg P,McKenzie S,et al. Public health implications of meat production and consumption[J]. Public Health Nutrition,2005,8(4):348-356.
[55]Van Nielen M,Feskens E J M,Mensink M,et al. Dietary protein intake and incidence of type 2 diabetes in Europe:the EPIC-InterAct Case-Cohort Study[J]. Diabetes Care,2014,37(7):1854-1862.
[56]Rohrmann S,Overvad K,Bueno-de-Mesquita H B,et al. Meat consumption and mortality-results from the European Prospective Investigation into Cancer and Nutrition[J]. BMC Medicine,2013,11(1):63.
[57]Larsson S C,Wolk A. Meat consumption and risk of colorectal cancer:a meta-analysis of prospective studies[J]. International Journal of Cancer,2006,119(11):2657-2664.
[58]Bergamini C M,Gambetti S,Dondi A,et al. Oxygen,reactive oxygen species and tissue damage[J]. Current Pharmaceutical Design,2004,10(14):1611-1626.
[59]Finkel T,Holbrook N J. Oxidants,oxidative stress and the biology of ageing[J]. Nature,2000,408(6809):239-247.
[60]Brown D I,Griendling K K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system[J]. Circulation Research,2015,116(3):531-549.
[61]Sims N R,Muyderman H. Mitochondria,oxidative metabolism and cell death in stroke[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease,2010,1802(1):80-91.
[62]Miyamoto H,Doita M,Nishida K,et al. Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cellsinvitro[J]. Spine,2006,31(1):4-9.
[63]Tsang A H K,Chung K K K. Oxidative and nitrosative stress in Parkinson’s disease[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease,2009,1792(7):643-650.
[64]Shi S Y,Lu S Y,Sivasubramaniyam T,et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice[J]. Nature Communications,2015,6:1-10.
[65]Zhu X,Smith M A,Honda K,et al. Vascular oxidative stress in Alzheimer disease[J]. Journal of the Neurological Sciences,2007,257(1):240-246.
[66]Kenyon C J. The genetics of ageing[J]. Nature,2010,464(7288):504-512.
[67]Shen E Z,Song C Q,Lin Y,et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans[J]. Nature,2014,508(7494):128-132.
[68]Schieber M,Chandel N S. ROS function in redox signaling and oxidative stress[J]. Current Biology,2014,24(10):R453-R462.
[69]Franco R,Sánchez-Olea R,Reyes-Reyes E M,et al. Environmental toxicity,oxidative stress and apoptosis:menage a trois[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2009,674(1):3-22.
[70]Tamura T,Stadtman T C. A new selenoprotein from human lung adenocarcinoma cells:purification,properties,and thioredoxin reductase activity[J]. Proceedings of the National Academy of Sciences,1996,93(3):1006-1011.
[71]Burke-Gaffney A,Callister M E J,Nakamura H. Thioredoxin:friend or foe in human disease?[J]. Trends in Pharmacological Sciences,2005,26(8):398-404.
[72]Watson W H,Yang X,Choi Y E,et al. Thioredoxin and its role in toxicology[J]. Toxicological Sciences,2004,78(1):3-14.
[73]劉光慧,沈恂. 硫氧還蛋白與心血管疾病[J]. 生物物理學(xué)報(bào),2007,22(6):406-414.
[74]Bushweller J H,Aaslund F,Wuethrich K,et al. Structural and functional characterization of the mutant Escherichia coli glutaredoxin(C14. fwdarw. S)and its mixed disulfide with glutathione[J]. Biochemistry,1992,31(38):9288-9293.
[75]Fernandes A P,Fladvad M,Berndt C,et al. A novel monothiol glutaredoxin(Grx4)from Escherichia coli can serve as a substrate for thioredoxin reductase[J]. Journal of Biological Chemistry,2005,280(26):24544-24552.
[76]Lundberg M,Johansson C,Chandra J,et al. Cloning and expression of a novel human glutaredoxin(Grx2)with mitochondrial and nuclear isoforms[J]. Journal of Biological Chemistry,2001,276(28):26269-26275.
[77]葛巖. 基因工程方法構(gòu)建含硒谷氧還蛋白[D]. 長(zhǎng)春:吉林大學(xué),2009.
[78]Lee B C,Park B H,Kim S Y,et al. Role of Bim in diallyl trisulfide-induced cytotoxicity in human cancer cells[J]. Journal of Cellular Biochemistry,2011,112(1):118-127.
[79]Finkel T. Signal transduction by reactive oxygen species[J]. The Journal of Cell Biology,2011,194(1):7-15.
[80]Moore D R,Camera D M,Areta J L,et al. Beyond muscle hypertrophy:why dietary protein is important for endurance athletes 1[J]. Applied Physiology,Nutrition,and Metabolism,2014,39(9):987-997.
[81]Reidy P T,Walker D K,Dickinson J M,et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis[J]. The Journal of nutrition,2013,143(4):410-416.
[82]Wedin W F,Hodgson H J,Jacobson N L. Utilizing plant and animal resources in producing human food[J]. Journal of Animal Science,1975,41(2):667-686.
[83]Phillips S M,Fulgoni V L,Heaney R P,et al. Commonly consumed protein foods contribute to nutrient intake,diet quality,and nutrient adequacy[J]. The American Journal of Clinical Nutrition,2015,101(6):1346S-1352S.
[84]Myhre J B,L?ken E B,Wandel M,et al. Differences in nutrient composition and choice of side dishes between red meat and fish dinners in Norwegian adults[J]. Food & Nutrition Research,2016,60.
Researchprogressintheassociationsofdietaryproteinswithantioxidantregulationofthebodyandhumanhealth
ZHUJing,LIChun-bao,XUXing-lian,ZHOUGuang-hong*
(National Center of Meat Quality and Safety Control,Nanjing Agricultural University,Nanjing 210095,China)
Dietary proteins provide the essential amino acids for human body and have a wide range of physiological functions. The cellsinvivocan produce reactive oxygen species during dietary protein digestion and metabolism process. The accumulation of reactive oxygen species may lead to oxidation and aging. The antioxidant system including the antioxidant proteins,thioredoxin and glutaredoxin,and other antioxidant enzymes can resist reactive oxygen species and reduce the generetion of harmful substances. The effects of different dietary proteins and the corresponding antioxidant regulation on human health,as well as the regulation of the two antioxidant proteins during reactive oxygen species metabolism combined with other antioxidant indicators were described in this review. The background information is better for us to understand the metabolic differences of different dietary protein and to have a healthy diet.
dietary proteins;meat proteins;reactive oxygen species;glutaredoxin;thioredoxin
2017-05-02
朱菁(1992-),女,碩士研究生,研究方向:食品營(yíng)養(yǎng)基因組學(xué),E-mail:2014108081@njau.edu.cn。
*
周光宏(1960-),男,博士,教授,研究方向:食品科學(xué),E-mail:guanghong.zhou@hotmail.com。
國(guó)家自然科學(xué)基金(31471600和31530054)。
TS201.4
A
1002-0306(2017)21-0335-07
10.13386/j.issn1002-0306.2017.21.065