章 潔 支亦博 郭偉兵 程祝強 陳春龍 陳浩飛 朱紅梅 劉曉明 劉清珍 金 毅 △ 李偉彥△
(1徐州醫(yī)科大學 江蘇省麻醉學重點實驗室,江蘇省麻醉與鎮(zhèn)痛應(yīng)用技術(shù)重點實驗室,徐州221002;2南京總醫(yī)院麻醉科,南京210002;3南京總醫(yī)院疼痛醫(yī)學中心,南京210002)
脊髓中血紅素加氧酶-1緩解神經(jīng)病理性疼痛*
章 潔1,2,3支亦博2郭偉兵2程祝強3陳春龍2陳浩飛3朱紅梅3劉曉明3劉清珍2金 毅3△李偉彥2△
(1徐州醫(yī)科大學 江蘇省麻醉學重點實驗室,江蘇省麻醉與鎮(zhèn)痛應(yīng)用技術(shù)重點實驗室,徐州221002;2南京總醫(yī)院麻醉科,南京210002;3南京總醫(yī)院疼痛醫(yī)學中心,南京210002)
目的:觀察血紅素加氧酶-1 (Heme oxygenase-1, HO-1)在神經(jīng)病理性疼痛(Neuropathic pain,NP)大鼠脊髓中的表達水平變化,研究HO-1激動劑原卟啉鈷(cobalt protoporphyrin Ⅸ, COPP)對神經(jīng)病理性疼痛的調(diào)節(jié)作用及其可能機制。方法:本實驗采用保留性坐骨神經(jīng)損傷(spared nerve injury,SNI)模型。雄性SD大鼠隨機分為3組: Sham + Vehicle組、SNI + Vehicle和SNI + COPP組。術(shù)后第一天開始, Sham + Vehicle組和SNI + Vehicle組腹腔注射1%DMSO 10 ml/kg,SNI + COPP組腹腔注射0.1% COPP 10 mg/kg,均連續(xù)給藥7天。各組分別于術(shù)前、術(shù)后第3(D3)、7(D7)和14(D14)天測定大鼠50%的機械刺激縮足閾值(Paw withdrawl threshold, PWT)。于術(shù)后D7、D14處死,取大鼠L4-6節(jié)段術(shù)側(cè)脊髓, 采用western blot檢測脊髓中HO-1、μ受體(μ-opioid receptor, MOR)和δ受體(δ-opioid receptor, DOR)的表達量變化。結(jié)果:(1)各組術(shù)前術(shù)側(cè)PWT無明顯統(tǒng)計學差異(P>0.05);術(shù)后SNI + Vehicle組和SNI + COPP組較Sham + Vehicle組相比,在相同時間點術(shù)側(cè)PWT值顯著下降(P< 0.05);與SNI + Vehicle組相比,SNI + COPP組在術(shù)后D7和D14術(shù)側(cè)PWT顯著升高(P<0.05)。(2)與Sham + Vehicle組相比,SNI+Vehicle組HO-1的表達在術(shù)后D7、D14明顯增加(P< 0.05),MOR、 DOR無明顯改變(P> 0.05);與SNI+ Vehicle組相比,SNI+COPP組的HO-1與MOR的表達在術(shù)后D7、D14有顯著提高(P< 0.05),DOR仍無明顯改變(P> 0.05)。結(jié)論:腹腔注射HO-1激動劑COPP可緩解大鼠神經(jīng)病理性疼痛,調(diào)節(jié)阿片受體表達是其可能作用機制之一。
血紅素加氧酶-1;神經(jīng)病理性疼痛;阿片受體
神經(jīng)病理性疼痛(neuropathic pain, NP)是一種臨床常見的慢性疼痛,給病人帶來持續(xù)的巨大的痛苦,嚴重降低病人的生活質(zhì)量。NP的主要表現(xiàn)為痛覺過敏(hyperalgesia)及痛覺超敏(allodynia),主要的病生機制包括神經(jīng)源性炎癥反應(yīng),外周及中樞敏化,神經(jīng)元可塑性改變等等,目前應(yīng)用傳統(tǒng)藥物難以有效控制[1]。尋找治療NP的有效靶點成為目前研究的主要目標。HO-1是一種線粒體酶,分解血紅素生成一氧化碳(carbon monoxide, CO)、膽綠素(biliverdin,BV)和游離鐵,BV經(jīng)還原酶轉(zhuǎn)變?yōu)槟懠t素(bilirubin,BR)。炎癥反應(yīng)中, HO-1可由內(nèi)毒素等多種介質(zhì)誘導(dǎo)在多種細胞中表達來發(fā)揮抗炎鎮(zhèn)痛的作用,如內(nèi)皮細胞,中性粒細胞,神經(jīng)膠質(zhì)細胞等[2]。既往較多研究顯示HO-1對炎性疼痛有顯著的鎮(zhèn)痛作用[3],但對NP的作用研究較少,有研究顯示HO-1對糖尿病神經(jīng)病理性疼痛有治療作用,可能與其能夠減輕糖尿病外周神經(jīng)病變及抑制脊髓背角神經(jīng)元凋亡有關(guān)[4]。目前,阿片受體激動劑是運用較多的治療NP的藥物,最常見的有嗎啡等。但系統(tǒng)用藥會產(chǎn)生較多的副作用,有研究顯示給予二氧化碳釋放分子(two carbon monoxide-releasing molecules, CO-RMs)和HO-1激動劑原卟啉鈷(cobalt protoporphyrin Ⅸ, COPP)可顯著增強嗎啡的局部鎮(zhèn)痛作用[5]。COPP是HO-1的特異性激動劑。對于HO-1緩解NP及增強嗎啡的局部鎮(zhèn)痛作用的具體機制尚未得知。本實驗采用大鼠保留性坐骨神經(jīng)損傷模型(spared nerve injury, SNI),通過免疫印跡方法觀察HO-1 、MOR和DOR在脊髓中的表達變化,并觀察腹腔注射HO-1激動劑對神經(jīng)病理性疼痛的影響從而探討其可能的鎮(zhèn)痛機制。
清潔級成年雄性Sprague-Dawley大鼠,體重150~180 g,由南京軍區(qū)南京總醫(yī)院比較醫(yī)學科提供。實驗所實行操作均符合國際疼痛研究會的準則,并且經(jīng)動物倫理委員會許可。采用數(shù)字表法將大鼠隨機分為Sham + Vehicle組、SNI + Vehicle組、SNI+ COPP組,行為學部分每組大鼠8只,分子檢測部分每組每時間點9只,共78只。
模型參照既往文獻[6]的方法。2%戊巴比妥鈉40 mg/kg腹腔注射麻醉,將大鼠俯臥,四肢及頭部固定于手術(shù)臺板上,于大鼠左后肢上緣切開皮膚并鈍性分離肌肉,暴露坐骨神經(jīng)主干及分支:脛神經(jīng)、腓總神經(jīng)和腓腸神經(jīng),5-0絲線結(jié)扎并剪斷腓總神經(jīng)和脛神經(jīng),保留細小的腓腸神經(jīng),逐層縫合。整個過程中盡量避免過分牽拉腓腸神經(jīng)。假手術(shù)組(Sham+Vehicle組)僅暴露坐骨神經(jīng)及其三個分支。
本實驗采用腹腔給藥的方式。COPP溶解于1%DMSO (DMSO溶于生理鹽水),SNI + COPP組注 射 COPP 10 mg/kg/d,Sham + Vehicle組 和 SNI+Vehicle組注射1%DMSO,自造模后第1天連續(xù)給藥至第7天,每天1次。
根據(jù)Chaplan[7]等人報道Up-Down方法,于造模前、造模后D3、D7、D14、晨8:00測定大鼠50%的機械刺激縮足閾值(paw withdrawal threshold,PWT)。將大鼠放置于測試的有機玻璃箱(22 cm×12 cm×15 cm)內(nèi)約15分鐘,待大鼠安靜后,選擇不同折力(0.6、1.0、1.4、2.0、4.0、6.0、8.0、15 g) von Frey纖維絲(Stoleing公司,美國)分別對大鼠左后肢足底部外側(cè)皮膚進行機械性刺激,每次刺激持續(xù)時間為6~8 s。首先用力度為2.0 g的纖維絲開始測試,測試時纖維絲微彎,在大鼠足底部保持6~8 s,出現(xiàn)快速撤足或舔足行為視為陽性反應(yīng)。若撤足反應(yīng)為陰性則選用刺激強度遞增的相鄰纖維絲繼續(xù)刺激;反之,則選擇相鄰遞減的刺激強度給予刺激,如此反復(fù)。每次間隔30 s左右,以Up-Down法推測閾值,并計算50%PWT。
腹腔注射2%戊巴比妥鈉40mg/kg深麻醉后,放血處死大鼠,迅速取出L4-6脊髓,液氮速凍后-80℃保存。稱取標本質(zhì)量按比例加入細胞裂解液和蛋白酶抑制劑,組織勻漿后,4℃12000 r/min離心15 min,取上清,BCA法(Thermo,美國)測定樣品的蛋白含量。將40 μg/well總蛋白加入SDS上樣緩沖液(Beyotime),95℃變性5 min,用10%十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(sodium dodeeyl sulfate poly-aerylamide gel electrophoresis,SDSPAGE)電泳,轉(zhuǎn)至PVDF膜,轉(zhuǎn)膜時恒流0.3 mA,時間90 min。5%的脫脂奶粉溶液封閉1.5 h,加一抗:兔抗大鼠HO-1 (1:1000, Millipore, 美國)或兔抗大鼠MOR(1:500, Millipore, 美國)或兔抗大鼠DOR(1:1000, Millipore, 美國),4℃搖床孵育過夜,內(nèi)參為β-actin(兔源, l:1000, Cell Signaling, 美國)。TBST緩沖液沖洗10 min×3次,辣根過氧化物酶標二抗室溫孵育1 h,TBST緩沖液沖洗10 min×3次,ECL顯色曝光(Bio-Rad ChemiDoc MP全能型凝膠成像分析系統(tǒng))。目標蛋白與內(nèi)參的灰度比值表示目的蛋白的相對表達量。
采用SPSS 16.0統(tǒng)計軟件進行統(tǒng)計學分析,計量資料數(shù)據(jù)以均數(shù)±標準差(±SD)表示。各組機械痛閾值比較采用重復(fù)測量的方差分析;HO-1蛋白表達水平及阿片受體的表達水平同一時間點三組組間比較采用單因素方差分析,兩兩比較采用LSD法。P< 0.05為差異有統(tǒng)計學意義。
所有動物術(shù)后恢復(fù)良好,未見左后肢運動障礙跡象,造模后大鼠均出現(xiàn)術(shù)側(cè)后爪內(nèi)收、后爪輕度外翻,假手術(shù)組大鼠術(shù)后未出現(xiàn)上述跡象。
術(shù)前各組間的機械刺激縮足閾值(paw withdrawl threshold, PWT)基礎(chǔ)值比較差異無統(tǒng)計學意義;Sham + Vehicle組術(shù)側(cè)后肢PWT和時間點未見明顯改變(P> 0.05)。與Sham+ Vehicle組相比,SNI + Vehicle組和SNI+COPP組自術(shù)后第3、7、14天PWT明顯下降,差異有統(tǒng)計學意義(P< 0.05);與SNI + Vehicle組相比,SNI + COPP組在第7、14天PWT顯著上升,且差異有統(tǒng)計學意義(P< 0.05,見圖1)。
Western blot結(jié)果表明,各時間點Sham+Vehicle組HO-1表達無明顯變化。與Sham+ Vehicle組相比,SNI+ Vehicle組和SNI + COPP組HO-1在術(shù)后第7、14天表達顯著增高(P< 0.05);與SNI +Vehicle組相比,SNI + COPP組HO-1在術(shù)后第7、14天表達明顯上調(diào)(P< 0.05,見圖2)。
(1)MOR表達變化
各時間點Sham + Vehicle組MOR表達量無明顯變化。與Sham + Vehicle組相比,SNI + Vehicle組MOR在術(shù)后第7、14天表達無明顯改變(P>0.05);與SNI + Vehicle組相比,SNI + COPP組MOR在術(shù)后第7、14天表達顯著上調(diào)(P< 0.05,見圖3)。
(2)DOR表達變化
各時間點Sham + Vehicle組DOR表達量無明顯變化。與Sham + Vehicle組相比,SNI + Vehicle組和SNI + COPP組DOR在術(shù)后第7、14天表達無明顯變化(P> 0.05);與SNI + Vehicle組相比,SNI + COPP組DOR在術(shù)后第7、14天表達也無明顯變化(P> 0.05,見圖4)。
圖1 COPP對SNI大鼠PWT的影響*P < 0.05,與 Sham + Vehicle 組比較;#P < 0.05, 與 SNI + Vehicle組比較Fig.1 The effects of COPP on PWT in SNI rats*P < 0.05, compared with Sham + Vehicle group; #P < 0.05,compared with SNI+Vehicle group
圖2 各組大鼠脊髓HO-1表達量變化*P < 0.05, 與 Sham+Vehicle 組比較;#P < 0.05, 與 SNI+Vehicle組比較Fig.2 The changes of HO-1 expression in each group*P < 0.05, compared with Sham + Vehicle group; #P < 0.05,compared with SNI + Vehicle group
圖3 各組大鼠脊髓MOR表達量變化*P < 0.05,與 Sham + Vehicle 組比較;#P < 0.05, 與 SNI+Vehicle組比較Fig.3 The changes of MOR expression in each group*P < 0.05, compared with Sham + Vehicle group; #P < 0.05,compared with SNI + Vehicle group
圖4 各組大鼠脊髓DOR表達量變化*P < 0.05,與 Sham + Vehicle組比較;#P < 0.05,與 SNI + Vehicle組比較Fig.4 The changes of DOR expression in each group*P < 0.05, compared with Sham + Vehicle group; #P < 0.05,compared with SNI + Vehicle group
本實驗利用HO-1激動劑COPP研究了HO-1對神經(jīng)病理性疼痛的影響并探討其作用機制。由于SNI制作簡單,產(chǎn)生疼痛迅速且穩(wěn)定性好,可靠性高,對機械刺激敏感,故本實驗選擇SNI為神經(jīng)病理性疼痛模型。行為學結(jié)果顯示SNI術(shù)后即產(chǎn)生了明顯的機械痛閾下降,而連續(xù)腹腔注射COPP后大鼠的機械痛敏癥狀較Vehicle + SNI組有顯著改善。說明COPP對SNI所致的NP有調(diào)節(jié)作用,HO-1產(chǎn)生鎮(zhèn)痛作用的機制目前仍不十分清楚,以往的研究表明可能通過如下機制。首先,HO-1分解血紅素生成CO、游離鐵和BV,BV進一步轉(zhuǎn)變?yōu)锽R。其中CO對感受傷害性通路有調(diào)節(jié)作用。CO可激活可溶性鳥苷酸環(huán)化酶(soluble guanylyl cyclase, sGC)上調(diào)胞內(nèi)第二信使環(huán)鳥苷酸(cGMP),進而激活下游靶點,包括cGMP依賴性蛋白激酶(cGKs),離子通道和受體[8]。因此,腹腔注射HO-1激動劑COPP可上調(diào)內(nèi)源性CO,從而顯著降低機械痛覺超敏及痛覺過敏。其次,HO-1與環(huán)氧化酶(cyclooxygenase,COX) -2通路間存在相互作用[3]。因此,炎癥反應(yīng)時HO-1過表達對血紅素蛋白可產(chǎn)生抑制作用,包括細胞色素P450同工酶和環(huán)氧化酶[9]。COX-2可產(chǎn)生多種與炎癥及疼痛發(fā)展相關(guān)的前列腺素。所以,HO-1過表達可削弱COX的活性同時可緩解神經(jīng)病理性疼痛。第三,HO-1作為白介素(interleukin,IL)-10和IL-13的下游效應(yīng)器,可產(chǎn)生細胞保護、免疫調(diào)節(jié)及促進抗凋亡作用[10,11]。因此,HO-1能促進抗氧化防御系統(tǒng)功能。
阿片類藥物是治療疼痛的常用藥物,可有效緩解急性痛及炎性痛,而常規(guī)劑量的阿片藥物難以緩解神經(jīng)病理性疼痛,大劑量用藥會產(chǎn)生巨大的中樞副作用。在外周損傷組織應(yīng)用小劑量阿片藥物不但能產(chǎn)生有效的鎮(zhèn)痛作用,并將中樞副作用最小化[12]。在小鼠坐骨神經(jīng)損傷模型研究中,給予CORMs和COPP可提高嗎啡的局部鎮(zhèn)痛效果。這一作用機制是上調(diào)MOR表達及抑制脊髓小膠質(zhì)細胞活化和一氧化氮合酶(nitric oxide synthases, NOS)1/NOS2過表達[5]。與此一致,本實驗通過觀察SNI及給予COPP后HO-1、MOR和DOR表達的變化探討在SNI所致的NP模型中HO-1過表達對MOR、DOR的調(diào)節(jié)作用。Western blot結(jié)果顯示,與Vehicle +Sham組相比,Vehicle + SNI組HO-1有明顯升高,MOR和DOR無明顯升高,表明誘導(dǎo)型的HO-1在應(yīng)激狀態(tài)下會被激活并表達增多;而與Vehicle +SNI組比較,COPP + SNI組HO-1和MOR都明顯升高,說明COPP是HO-1的有效激動劑,同時上調(diào)的HO-1可通過某種方式升高MOR的表達。但具體的作用機制還不明確。MOR激動劑嗎啡外周鎮(zhèn)痛作用可能通過NO-cGMP-PKG-ATP敏感性鉀通道(ATP-sensitive potassium, KATP)信號通路產(chǎn)生[5]。如上所述,HO-1分解血紅素的產(chǎn)物CO也可激活此通路。NO由NOS合成,通過激活cGMP-PKG通路調(diào)節(jié)NP。NOS分為神經(jīng)元型(NOS1)和誘導(dǎo)型(NOS2)。CO和NO作為體內(nèi)兩種重要的氣體神經(jīng)遞質(zhì),兩者之間存在密切的相互作用[8],不同濃度的CO對NO介導(dǎo)激動sGC分別有促進和抑制作用,有離體實驗證實NOS/NO是CO的下游靶點[8]。NOS2來源的NO能通過cGMP-PKG激活HO-1產(chǎn)生CO。在體實驗證實NOS通路的完整性是CO產(chǎn)生鎮(zhèn)痛作用的必要條件,而NO的抗傷害作用則不依賴于CO[3]。NP中CO和NO之間的相互關(guān)系十分復(fù)雜,仍需要進一步研究。
相較MOR激動劑而言,DOR激活后呼吸抑制和軀體依賴及耐受明顯減少[13]。既往研究顯示,糖尿病神經(jīng)病理性疼痛小鼠模型,皮下給予小劑量(0.5 mg/kg) DOR激動劑DPDPE ([D-Pen(2), D-Pen(5)]-Enkephalin)同時腹腔注射大劑量(10 mg/kg) CORM-2或COPP可顯著增強DPDPE的鎮(zhèn)痛作用,而高劑量的DPDPE(5 mg/kg)與HO-1拮抗劑SnPP(tin protoporphyrin Ⅸ)合用,DPDPE的鎮(zhèn)痛作用完全被阻斷,充分說明HO-1參與調(diào)解DOR激動劑的鎮(zhèn)痛作用[13]。本實驗結(jié)果顯示較Vehicle + sham組,DOR在Vehicle + SNI和COPP + SNI組的表達量均無明顯改變,NP中抑制NO-PKG通路會抑制嗎啡的外周鎮(zhèn)痛作用,但能增強DOR和CB2R激動劑的鎮(zhèn)痛作用。DOR激活后緩解NP的主要機制是通過激活蛋白激酶C (protein kinase C, PKC)下調(diào)電壓門控型鈉通道[5],可見MOR和DOR緩解NP的機制不同,但兩者間的具體聯(lián)系尚不清楚。
眾所周知,小膠質(zhì)細胞在慢性疼痛的發(fā)生發(fā)展中起到了重要作用。神經(jīng)損傷后小膠質(zhì)細胞顯著激活,并參與了NP的發(fā)生發(fā)展[14]。給予其活化抑制劑后可顯著減輕NP的癥狀[15]。有文獻顯示,小鼠神經(jīng)損傷模型中小膠質(zhì)細胞標志物CD11b/c表達增加,給予CORM-2或COPP后明顯減少[3]。神經(jīng)損傷后小膠質(zhì)細胞激活也可改變阿片藥物信號通路抑制嗎啡的鎮(zhèn)痛作用,但具體作用機制還不明確[5]。故可以推測HO-1對小膠質(zhì)細胞的調(diào)節(jié)作用可能也是其發(fā)揮NP鎮(zhèn)痛作用機制之一。
綜上所述,SNI模型促進大鼠產(chǎn)生神經(jīng)病理性疼痛后誘導(dǎo)脊髓HO-1表達上調(diào)。腹腔注射HO-1激動劑COPP后促進HO-1表達進一步升高以緩解SNI模型大鼠的神經(jīng)病理性疼痛癥狀,HO-1/CO通路對阿片受體的調(diào)節(jié)作用是其重要機制之一。本研究在更深入闡明神經(jīng)病理性疼痛的發(fā)病機制的同時,為治療神經(jīng)病理性疼痛提供新思路。
[1]Maruo T, Nakae A, Maeda L,et al. Validity, reliability,and assessment sensitivity of the Japanese version of the short-form McGill pain questionnaire 2 in Japanese patients with neuropathic and nonneuropathic pain. Pain Med, 2014, 15:1930 ~ 7.
[2]Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov, 2010, 9:728 ~ 43.
[3]Hervera A, Le anez S, Negrete R,et al. Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesisin mice. PLoS One,2012, 7:e43693.
[4]孔倩,劉康.血紅素加氧酶 -1 對糖尿病大鼠神經(jīng)病理性疼痛的影響及可能的機制.中國疼痛醫(yī)學雜志,2013, 19(3):145 ~ 151.
[5]Hervera A, Le anez S, Motterlini R,et al. Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of m-opioid receptors during neuropathic pain. Anesthesiology, 2013,118:1180 ~ 97.
[6]Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain,2000, 87:149 ~ 158.
[7]Chaplan SR, Bach FW, Pogrel JW,et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994, 53:55 ~ 63.
[8]Fan W, Huang F, Wu Z,et al. Carbon monoxide: A gas that modulates nociception. J Neurosci Res, 2011,89:802 ~ 807.
[9]Haider A, Olszanecki R, Gryglewski R,et al. Regulation of cyclooxygenase by the heme-heme oxygenase system in microvessel endothelial cells.J Pharmacol Exp Ther,2002, 300:188 ~ 194.
[10]Lee TS, Chau LY. Heme oxygenase-1 mediates the antiin fl ammatory effect of interleukin-10 in mice. Nat Med,2002, 8:240 ~ 246.
[11]Ke B, Shen XD, Zhai Y,et al. Heme oxygenase 1 mediates the immunomodulatory and antiapoptotic effects of interleukin 13 gene therapy in vivo and in vitro. Hum Gene Ther, 2002, 13:1845 ~ 57.
[12]Obara I,Parkitna JR, Korostynski M,et al. Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and in fl ammatory pain. Pain, 2009, 141(3):283 ~ 291.
[13]Castany S, Carcolé M, Leánez S,et al. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1.Neurosci Lett, 2016, 614:49 ~ 54.
[14]Watkins LR, Milligan ED, Maier SF. (2001) Glial activation: a driving force for pathological pain. Trends Neurosci, 2001, 24: 450 ~ 455.
[15]Mika J, Osikowicz M, Rojewska E,et al. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol, 2009, 623:65 ~ 72.
HO-1 IN SPINAL CORD MEDIATES NEUROPATHIC PAIN IN RATS*
ZHANG Jie1,2,3, ZHI Yi-Bo2, GUO Wei-Bing2, CHENG Zhu-Qiang3, CHEN Chun-Long2, CHEN Hao-Fei3,ZHU Hong-Mei3, LIU Xiao-Ming3, LIU Qing-Zhen2, JIN Yi3△, LI Wei-Yan2△
(1Xuzhou Medical University, Jiangsu Key Laboratory of Anesthesiology&Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, China;2Anesthesiology of Jinling Hospital, Nanjing 210002, China;3Pain Medicine Center of Jinling Hospital, Nanjing 210002, China)
Objectives: To investigate the effects and possible mechanism of cobalt protoporphyrinⅨ(COPP), an inducible heme oxygenase agonist, on neuropathic pain (NP) by observing the alteration of expression and distribution of heme oxygenase-1 (HO-1) in the spinal cord of rats with sciatic nerve injury.Methods: Neuropathic pain was induced by the spared nerve injury (SNI). All male Sprague-Dawley rats were randomly assigned into 3 groups: Vehicle + Sham group, Vehicle + SNI group and COPP + SNI group.On the fi rst day after operation, Vehicle (1%DMSO, 10 ml/kg) was intraperitoneally injected in Vehicle + Sham group and Vehicle + SNI group, and COPP (0.1%, 10 mg/kg) was intraperitoneally injected in COPP + SNI group. The paw withdrawal threshold (PWT) was measured before surgery and on day 3,7,14 after surgery.The expression of HO-1, μ-opioid receptor (MOR) and δ-opioid receptor (DOR) in the ipsilateral L4-6lumbar segments of the spinal cord was analyzed by Western blotting on day 7 and 14 after surgery. Results: (1)At baseline, there was no signi fi cant difference of PWT among the three groups (P> 0.05). Compared with the Vehicle + Sham group, rats in the Vehicle + SNI group and SNI + COPP group showed signi fi cantly lower PWT from day 3 to 14 (P< 0.05). Compared with the Vehicle + SNI group, rats in the COPP+SNI group showed a signi fi cant improvement of PWT on day 7 and 14 after surgery (P< 0.05). (2) Compared with Vehicle+ Sham group, the expression of HO-1 in Vehicle+ SNI group was markedly increased (P< 0.05) on day 7 and 14;The expression of MOR and DOR were unaltered (P> 0.05); Compared with the Vehicle + SNI group, the expression of HO-1 and MOR increased signi fi cantly (P< 0.05) and DOR expression had no change (P> 0.05).Conclusion: Intraperitoneal injection of HO-1 agonist COPP reduced the mechanical allodynia of NP. The possible mechanism of these effects of COPP might be associated with the expression of opioid receptor.
Heme oxygenase-1; Neuropathic pain; Opioid receptor
10.3969/j.issn.1006-9852.2017.02.003
江蘇省自然科學基金面上研究項目(BK20141374);南京總醫(yī)院院管課題(2015007)
△通訊作者 金毅 kimye@vip.163.com; 李偉彥 weiyanlee@sina.cn