郭志偉 潘靜也 錢忠東 程 千
(1.武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072; 2.中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,新鄉(xiāng) 453003)
帶可調(diào)式前置導(dǎo)葉軸流泵空化性能試驗
郭志偉1潘靜也1錢忠東1程 千2
(1.武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072; 2.中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,新鄉(xiāng) 453003)
以一臺帶可調(diào)式前置導(dǎo)葉軸流泵為研究對象,在閉式試驗臺上進行了非額定工況的空化性能試驗,揭示了前置導(dǎo)葉對軸流泵空化性能及進出口壓力脈動的影響??栈阅芮€表明:安裝前置導(dǎo)葉后,水力損失增加,揚程下降,但臨界汽蝕余量減小,空化性能得到改善;前置導(dǎo)葉由負角度向正角度調(diào)節(jié)時,雖然揚程逐漸降低,但抗汽蝕性能得到增強。壓力脈動分析結(jié)果表明:空化初生時,設(shè)置前置導(dǎo)葉后進出口壓力脈動幅值均增加,且峰值主要出現(xiàn)在葉頻及其諧頻處,臨界空化與空化嚴重時,進口壓力脈動主要集中在低頻處,出口則呈現(xiàn)寬頻脈動特性;流量降低時,泵內(nèi)流態(tài)紊亂,前置導(dǎo)葉對壓力脈動幅值影響較小,且脈動峰值出現(xiàn)位置隨前置導(dǎo)葉角度變化而改變。
軸流泵; 前置導(dǎo)葉; 汽蝕余量; 壓力脈動
軸流泵高效區(qū)較窄,故灌溉排水泵站無法長期在高效區(qū)運行而產(chǎn)生效率低下問題[1]。為改善軸流泵非設(shè)計工況運行條件,國內(nèi)外學(xué)者進行了大量試驗工作與數(shù)值模擬研究[2-10]。DOHMEN等[2]提出雙進口噴嘴的設(shè)計方法。唐慧等[3-4]采用開縫翼形、J型槽等方式提高軸流泵小流量下的水力性能。導(dǎo)葉調(diào)節(jié)作為旋轉(zhuǎn)機械中常見的調(diào)節(jié)方式,也逐漸運用于軸流泵中。錢忠東等[5-6]提出后置導(dǎo)葉角度調(diào)節(jié)能夠拓寬水泵穩(wěn)定運行區(qū)。FENG等[8-9]通過數(shù)值模擬研究了前置導(dǎo)葉對軸流泵水力性能的影響。
水力機械中的空化與壓力脈動問題也不容忽視,尤其非設(shè)計工況下,空化常帶來異常壓力脈動,導(dǎo)致機組振動加劇,影響安全運行,文獻[11-20]就此進行了研究。TSUGAWA[13]通過試驗研究了一種三維反設(shè)計軸流泵發(fā)生空化時轉(zhuǎn)軸振動及輪緣壓力脈動情況。張德勝等[15-16]分析了葉輪葉頂區(qū)空化特性,同時通過數(shù)值模擬研究了軸流泵空化現(xiàn)象及壓力脈動分布情況。盧加興等[17]研究了離心泵小流量工況空化時的壓力脈動特性。而目前關(guān)于前置導(dǎo)葉對軸流泵空化性能影響的研究較少。
本文采用試驗的方法,研究非設(shè)計工況下帶可調(diào)式前置導(dǎo)葉軸流泵的空化性能,分析前置導(dǎo)葉角度對臨界汽蝕余量的影響,闡明壓力脈動隨空化發(fā)展的變化情況。
空化試驗在武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室的閉式試驗臺上進行,裝置系統(tǒng)如圖1所示。該閉式試驗臺由水泵裝置、空化發(fā)生裝置和數(shù)據(jù)采集系統(tǒng)構(gòu)成。水泵裝置包括葉片角度可調(diào)節(jié)的前置導(dǎo)葉、葉輪和后置導(dǎo)葉,泵內(nèi)流量由管路中的電磁控制閘閥調(diào)節(jié)??栈l(fā)生裝置包括真空泵及調(diào)節(jié)閥,同時,調(diào)節(jié)閥前端設(shè)有真空表以確定軸流泵進口真空度。數(shù)據(jù)采集系統(tǒng)連接著沿水泵進出口斷面均勻布置的壓力傳感器,其不確定度小于0.66%;電磁流量計不確定度小于0.36%;以及電動機轉(zhuǎn)軸外側(cè)的HLD09型轉(zhuǎn)矩轉(zhuǎn)速傳感器不確定度小于0.54%。
圖1 試驗裝置圖Fig.1 Setup of test rig1.水泵裝置 2.壓力傳感器 3.轉(zhuǎn)矩轉(zhuǎn)速傳感器 4.電磁流量計 5.電磁控制閘閥 6.真空泵 7.調(diào)節(jié)閥 8.壓力罐 9.穩(wěn)壓罐
模型泵如圖2所示,具體參數(shù)如下:葉輪直徑300 mm,葉輪葉片數(shù)Zr=3,后導(dǎo)葉片數(shù)Zs=5。在進口導(dǎo)水錐外殼上設(shè)置前置導(dǎo)葉,其角度可調(diào)節(jié),葉片數(shù)Zi=4,當葉片方向沿泵軸時,角度為0°,葉片傾斜方向與葉輪旋轉(zhuǎn)方向一致時,角度為正,反之,角度為負,具體定義見文獻[8],前置導(dǎo)葉葉片可調(diào)角度為-10°、0°、10°。水泵主要設(shè)計參數(shù)為:設(shè)計流量Qd=370.33 L/s,揚程H=3.283 m,額定轉(zhuǎn)速n=1 450 r/min,為研究非設(shè)計工況不同流量下前置導(dǎo)葉角度對空化性能的影響,試驗選擇0.85Qd、0.30Qd兩種流量進行。
圖2 模型泵示意圖Fig.2 Model sketch of axial pump
機組啟動前,檢查管路,通過空載試驗進行轉(zhuǎn)矩轉(zhuǎn)速傳感器的調(diào)零;同時確定數(shù)據(jù)采集系統(tǒng)參數(shù)。試驗時,首先通過調(diào)節(jié)電磁閘閥使管路內(nèi)流量達到試驗要求,后打開真空泵,改變調(diào)節(jié)閥開度,真空表指數(shù)每下降0.005 MPa采集一次數(shù)據(jù),為確保安全運行,當揚程陡降時停止該工況的測試。每次采集數(shù)據(jù)均重復(fù)進行3~5次,以減小測量誤差。完成一個角度的性能測試后,調(diào)節(jié)前置導(dǎo)葉角度,重復(fù)進行空化試驗。運行過程中,由于電路不穩(wěn)定等因素,轉(zhuǎn)速無法保持恒定,與額定轉(zhuǎn)速間存在差異,因此采用比例率定律對參數(shù)進行換算[21]。
3.1 空化性能
圖3為0.85Qd工況前置導(dǎo)葉不同角度的空化性能曲線,從圖中可以看出,隨著汽蝕余量的減小,曲線均存在明顯的水平段、上升段、下降段。汽蝕余量較大時,軸流泵揚程保持不變,此時空化尚未對水泵性能產(chǎn)生顯著的影響;隨著汽蝕余量的減小,揚程略微上升,這可能是因為隨著空化的發(fā)展,空泡附著在葉片上,具有光順葉片表面的作用[22];汽蝕余量進一步降低時,揚程急劇下降,這是由于空化迅速發(fā)展,空泡增多,堵塞流道所致。對比無前置導(dǎo)葉與前置導(dǎo)葉0°的曲線,可以發(fā)現(xiàn)設(shè)置前置導(dǎo)葉后,揚程降低了10%,這是因為導(dǎo)葉葉片的存在增加了泵內(nèi)能量損失。同時可以發(fā)現(xiàn),前置導(dǎo)葉負角度向正角度調(diào)節(jié)時,揚程降低,可見負角度工況下水力性能較優(yōu),這是由于前置導(dǎo)葉角度改變了軸流泵進口速度分布所致[8]。
圖3 0.85Qd工況空化性能曲線Fig.3 Cavitation performance curves under 0.85Qd
以揚程下降3%對應(yīng)的汽蝕余量作為臨界汽蝕余量[23],無前置導(dǎo)葉以及前置導(dǎo)葉-10°、0°、10°時計算結(jié)果分別為5.11、5.18、4.65、4.23 m。由此可知,0.85Qd工況時,與無前置導(dǎo)葉相比,前置導(dǎo)葉0°的臨界汽蝕余量明顯降低,說明前置導(dǎo)葉具有改善軸流泵空化性能的作用;前置導(dǎo)葉-10°向10°調(diào)節(jié)時,臨界汽蝕余量減小,說明前置導(dǎo)葉正角度調(diào)節(jié)能夠進一步增強水泵抗汽蝕性能。
圖4 0.30Qd工況空化性能曲線Fig.4 Cavitation performance curves under 0.30Qd
0.30Qd工況前置導(dǎo)葉不同角度的空化性能曲線如圖4所示,由圖可知,前置導(dǎo)葉負角度時軸流泵水力性能同樣優(yōu)于正角度,這與0.85Qd工況的規(guī)律一致;同時可以發(fā)現(xiàn),隨著汽蝕余量的減小,揚程只維持了極短的水平段,隨后迅速下降,這是因為小流量泵內(nèi)流態(tài)紊亂,對空化敏感,空化一旦發(fā)生水力性能急劇惡化。
3.2 壓力脈動
為研究空化時前置導(dǎo)葉對軸流泵壓力脈動的影響,選擇空化初生、臨界空化及空化嚴重3種情況進行分析,以第1測點(軸流泵進口壓力最大的試驗點)作為空化初生點;以臨界汽蝕余量對應(yīng)的工況點作為臨界空化點;以揚程下降15%對應(yīng)工況點作為空化嚴重點。采用快速傅里葉變換對進出口相同監(jiān)測點壓力脈動進行分析。以壓力系數(shù)Cp表征監(jiān)測點處壓力脈動,其計算公式為
(1)
式中p——監(jiān)測點壓力,Pa
ρ——流體密度,kg/m3
Utip——葉輪葉頂圓周速度,m/s
以葉頻倍數(shù)Zr=f/fn表征頻率無量綱參數(shù),其中f為測點脈動頻率,fn為泵軸旋轉(zhuǎn)頻率,其公式為
(2)
圖5為0.85Qd工況運行一段時間后,4個旋轉(zhuǎn)周期內(nèi)軸流泵進口壓力脈動時域圖。由圖可知,空化初生時,前置導(dǎo)葉的存在增大了壓力脈動幅值,且由負角度向正角度調(diào)節(jié)時,幅值進一步增大,可見正角度工況水泵進口受不良流動因素干擾較嚴重。臨界空化與空化嚴重時,有無前置導(dǎo)葉與前置導(dǎo)葉不同角度間壓力脈動幅值時域差異較小。
圖6 0.85Qd工況出口壓力脈動時域圖Fig.6 Unsteady pressure pulsation of outlet sensor under 0.85Qd
圖6為0.85Qd工況運行一段時間后,4個旋轉(zhuǎn)周期內(nèi)軸流泵出口壓力脈動時域圖。從圖中可以發(fā)現(xiàn),空化初生時,無前置導(dǎo)葉與前置導(dǎo)葉0°出口壓力脈動幅值差異較小,但前置導(dǎo)葉10°與-10°時脈動幅值均有所增大,10°時幅值增大尤其明顯。臨界空化時與空化嚴重時,設(shè)置前置導(dǎo)葉均降低了出口壓力脈動幅值,但前置導(dǎo)葉正負角度調(diào)節(jié)時產(chǎn)生的影響不同。
圖7、8分別為0.30Qd工況運行一段時間后,4個旋轉(zhuǎn)周期內(nèi)軸流泵進、出口壓力脈動時域圖。與0.85Qd相比,小流量時進出口壓力脈動幅值均增大。同時可以發(fā)現(xiàn),雖然前置導(dǎo)葉各角度壓力脈動幅值差異較小,但隨著空化發(fā)展,進、出口壓力脈動幅值均有所上升。
圖7 0.30Qd工況進口壓力脈動時域圖Fig.7 Unsteady pressure pulsation of inlet sensor under 0.30Qd
圖8 0.30Qd工況出口壓力脈動時域圖Fig.8 Unsteady pressure pulsation of outlet sensor under 0.30Qd
圖9 0.85Qd工況壓力脈動頻域圖Fig.9 Frequency spectrums of unsteady pressure pulsation under 0.85Qd
圖10 0.30Qd工況壓力脈動頻域圖Fig.10 Frequency spectrums of unsteady pressure pulsation under 0.30Qd
圖9為0.85Qd工況軸流泵進、出口壓力脈動頻域圖。由圖可知,對于水泵進口,空化初生時,設(shè)置前置導(dǎo)葉后壓力脈動幅值明顯升高,且幅值隨著角度增大而增大,這與時域圖規(guī)律一致;同時,壓力脈動峰值主要出現(xiàn)在葉頻及其倍數(shù)處,可見葉輪轉(zhuǎn)動對上游流場的影響。臨界空化與空化嚴重時,壓力脈動均以低頻脈動為主,可能是受到了葉片背面流動分離及空泡脫落的影響。對于水泵出口,空化初生時,與進口相似,前置導(dǎo)葉增加了壓力脈動幅值,同時可以發(fā)現(xiàn),葉頻處均出現(xiàn)了較大的脈動峰值,這體現(xiàn)了葉輪旋轉(zhuǎn)對水泵出口流場的影響。臨界空化時,無前置導(dǎo)葉與前置導(dǎo)葉10°均出現(xiàn)了較大范圍的寬頻脈動;空化嚴重時,這種寬頻脈動同樣出現(xiàn)在前置導(dǎo)葉-10°與0°工況下,并且在幅值和范圍上進一步加劇,這可能是由于空泡大量產(chǎn)生和潰滅,對出口造成干擾所致。
圖10為0.30Qd工況軸流泵進、出口壓力脈動頻域圖。從圖中可以發(fā)現(xiàn),不同空化程度下,進口壓力均呈現(xiàn)寬頻脈動特征,峰值出現(xiàn)位置因前置導(dǎo)葉角度而異。對于出口,壓力脈動主要分布在低頻區(qū),且峰值隨著空化程度加劇而增大。
(1)小流量工況下,與無前置導(dǎo)葉相比,前置導(dǎo)葉0°時軸流泵水力損失增加,揚程下降,但抗汽蝕性能增強;且隨著前置導(dǎo)葉向正角度調(diào)節(jié),臨界汽蝕余量降低,前置導(dǎo)葉10°時空化性能最優(yōu)。
(2)通過壓力脈動時域圖發(fā)現(xiàn),空化初生時,前置導(dǎo)葉增大了軸流泵進、出口壓力脈動幅值;隨著空化的發(fā)展,不同前置導(dǎo)葉角度間進口壓力脈動幅值差異縮小,同時,前置導(dǎo)葉的存在明顯降低了出口壓力脈動幅值。流量降低時,前置導(dǎo)葉對泵內(nèi)壓力脈動時域的影響變小。
(3)通過壓力脈動頻域圖發(fā)現(xiàn),空化初生時,受葉輪轉(zhuǎn)動的影響,軸流泵進、出口壓力脈動峰值主要出現(xiàn)在葉頻及其諧頻處;隨著空化的發(fā)展,葉頻及其諧頻處峰值逐漸消失,進口壓力脈動以低頻為主,出口壓力則呈現(xiàn)寬頻脈動。流量降低時,壓力脈動在不同前置導(dǎo)葉角度下均以寬頻脈動為主。
1 李琪,許建中,李端明,等.中國灌溉排水泵站的發(fā)展與展望[J].中國農(nóng)村水利水電, 2015(12): 6-10.
2 DOHMEN H J, BENRA F K, BRINKHORST S.Improvement of axial-flow pump part load behavior by a double inlet nozzle[C]∥ASME 2012 Fluids Engineering Division Summer Meeting, 2012: 479-489.
3 唐慧,陳紅勛,張睿.提高小流量工況下軸流泵的效率[J].上海大學(xué)學(xué)報: 自然科學(xué)版, 2013, 19(5): 545-550.
TANG Hui, CHEN Hongxun, ZHANG Rui.Improving efficiency of axial-flow pump under small flow condition [J].Journal of Shanghai University: Natural Science Edition, 2013, 19(5): 545-550.(in Chinese)
4 張睿,陳紅勛.改善失速工況下軸流泵水力性能的研究[J].水力發(fā)電學(xué)報, 2014, 33(3): 292-298, 310.
ZHANG Rui, CHEN Hongxun.Study on the improvement of hydrodynamic performance of axial-flow pump at stall condition [J].Journal of Hydroelectric Engineering, 2014, 33(3): 292-298, 310.(in Chinese)
5 錢忠東,王焱,鄭彪,等.可調(diào)導(dǎo)葉式軸流泵水力特性數(shù)值模擬[J].水力發(fā)電學(xué)報, 2011, 30(2): 123-127, 137.
QIAN Zhongdong, WANG Yan, ZHENG Biao, et al.Numerical simulation and analysis of performance of axial flow pump with adjustable guide vanes [J].Journal of Hydroelectric Engineering, 2011, 30(2): 123-127, 137.(in Chinese)
6 錢忠東,王凡,王志遠,等.可調(diào)導(dǎo)葉式軸流泵馬鞍區(qū)水力特性試驗研究[J].排灌機械工程學(xué)報, 2013, 31(6): 461-465.
QIAN Zhongdong, WANG Fan, WANG Zhiyuan, et al.Experiment study on hydraulic performance of saddle zone in axial flow pump with adjustable guide vane [J].Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(6): 461-465.(in Chinese)
7 楊帆,劉超,湯方平,等.帶可調(diào)進口導(dǎo)葉軸流泵裝置水力性能數(shù)值分析[J/OL].農(nóng)業(yè)機械學(xué)報, 2014, 45(5): 51-58.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20140508&flag=1.DOI:10.6041/j.issn.1000-1298.2014.05.008.
YANG Fan, LIU Chao, TANG Fangping, et al.Numerical simulation on hydraulic performance of axial-flow pumping system with adjustable inlet guide vanes [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 51-58.(in Chinese)
8 FENG W M, PAN J Y, GUO Z W, et al.The effects of variable-inlet guide vanes on performance of an axial flow pump with tip clearance [C]∥ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, 2015: VOOIT33A017.
9 FENG W M, CHENG Q, GUO Z W, et al.Simulation of cavitation performance of an axial flow pump with inlet guide vanes [J].Advances in Mechanical Engineering, 2016, 8(6): 1-8.
10 程千,馮衛(wèi)民,周龍才,等.前置導(dǎo)葉對軸流泵馬鞍區(qū)工況回流渦特性的影響[J/OL].農(nóng)業(yè)機械學(xué)報, 2016, 47(4): 8-14.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20160402&flag=1.DOI:10.6041/j.issn.1000-1298.2016.04.002.
CHENG Qian, FENG Weimin, ZHOU Longcai, et al.Effects of inlet guide vane on characteristics of backflow vortex in the hump region of axial flow pump [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 8-14.(in Chinese)
11 聶榮栤.水輪機中的空化與空蝕[M].北京: 水利電力出版社, 1985.
12 湯方平,袁偉聲.軸流泵轉(zhuǎn)輪空化性能的數(shù)值預(yù)測[J].工程熱物理學(xué)報, 1993, 14(1): 48-52.
TANG Fangping, YUAN Weisheng.An axial pump cavitation characteristic prediction using numerical methods [J].Journal of Engineering Thermophysics, 1993, 14(1): 48-52.(in Chinese)
13 TSUGAWA T.Observation of cavitation occurring in an axial flow pump with high suction specific speed [C]∥Proceedings of the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, 1995: 105-110.
14 袁丹青,陳向陽,叢小青,等.軸流泵內(nèi)部流場空化問題研究[J].中國農(nóng)村水利水電, 2009(11): 107-109, 113.
YUAN Danqing, CHEN Xiangyang, CONG Xiaoqing, et al.Research on cavitation in an axial-flow pump [J].China Rural Water and Hydropower, 2009(11): 107-109, 113.(in Chinese)
15 張德勝,潘大志,施衛(wèi)東,等.軸流泵空化流及其誘導(dǎo)壓力脈動的數(shù)值模擬[J].華中科技大學(xué)學(xué)報: 自然科學(xué)版, 2014, 42(1): 34-38.
ZHANG Desheng, PAN Dazhi, SHI Weidong, et al.Numerical simulation of cavitation flow in axial flow pump and induced pressure fluctuation [J].Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(1): 34-38.(in Chinese)16 張德勝,石磊,施衛(wèi)東,等.軸流泵葉輪葉頂區(qū)空化流的數(shù)值模擬與實驗研究[J].水利學(xué)報, 2014, 45(3): 335-342.
ZHANG Desheng, SHI Lei, SHI Weidong, et al.Numerical simulation and experimental study on impeller tip region [J].Journal of Hydraulic Engineering, 2014, 45(3): 335-342.(in Chinese)
17 盧加興,袁壽其,任旭東,等.離心泵小流量工況不穩(wěn)定空化特性研究[J/OL].農(nóng)業(yè)機械學(xué)報, 2015, 46(8): 54-58.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150809&flag=1.DOI:10.6041/j.issn.1000-1298.2015.08.009.
LU Jiaxing, YUAN Shouqi, REN Xudong, et al.Investigation of instabilities of cavitation at low flow rate of centrifugal pump [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 54-58.(in Chinese)
18 潘強,施衛(wèi)東,張德勝.魚友好型軸流泵流場數(shù)值分析與汽蝕性能優(yōu)化[J/OL].農(nóng)業(yè)機械學(xué)報, 2016, 47(4): 15-21.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20160403&flag=1.DOI:10.6041/j.issn.1000-1298.2016.04.003.
PAN Qiang, SHI Weidong, ZHANG Desheng.Numerical analysis of flow field and cavitation performance optimization of fish-friendly axial-flow pump [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 15-21.(in Chinese)
19 LUO X W, JI B, TSUJIMOTO Y.A review of cavitation in hydraulic machinery [J].Journal of Hydrodynamics, 2016, 28(3): 335-358.
20 王凡,錢忠東,郭志偉,等.可調(diào)導(dǎo)葉式軸流泵壓力脈動數(shù)值分析[J/OL].農(nóng)業(yè)機械學(xué)報, 2017, 48(3): 119-123.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20170315&&flag=1.DOI:10.6041/j.issn.1000-1298.2017.03.015.
WANG Fan, QIAN Zhongdong, GUO Zhiwei, et al.Pressure oscillations prediction of axial flow pump with adjustable guide vanes [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 119-123.(in Chinese)
21 劉竹溪,劉景植.水泵及水泵站[M].北京: 中國水利水電出版社, 2009: 82.
22 張德勝,石磊,陳健,等.軸流泵葉輪葉頂區(qū)空化特性試驗分析[J].浙江大學(xué)學(xué)報: 工學(xué)版, 2016, 50(8): 1585-1592.
ZHANG Desheng, SHI Lei, CHEN Jian, et al.Experiment analysis on characteristic of cavitation in tip region of axial flow pump impeller [J].Journal of Zhejiang University: Engineering Science, 2016, 50(8): 1585-1592.(in Chinese)
23 CHRISTOPHER S, KUMARASWAMY S.Identification of critical net positive suction head from noise and vibration in a radial flow pump for different leading edge profiles of the vane[J].ASME Journal of Fluid Engineering, 2013, 135(12): 121301.
ExperimentonCavitationPerformanceofAxialPumpwithAdjustableInletGuideVanes
GUO Zhiwei1PAN Jingye1QIAN Zhongdong1CHENG Qian2
(1.StateKeyLaboratoryofWaterResourcesandHydropowerEngineeringScience,WuhanUniversity,Wuhan430072,China2.FarmlandIrrigationResearchInstitute,ChineseAcademyofAgriculturalSciences,Xinxiang453003,China)
In order to reveal the influences of variable inlet guide vanes (IGVs) on cavitation performance of axial pump under off-design conditions, experiment was conducted in a closed test rig at the Pump Station Laboratory of Wuhan University.Both the operating conditions with and without IGVs and the situations when the angles of IGVs were changed were researched.The angles of IGVs were adjusted by bolts.The cavitation performances were obtained and the unsteady pressure pulsations collected by pressure sensors which installed in pump inlet and outlet were analyzed based on fast Fourier transform.The results showed that when the pump device was assembled with IGVs, pump head was reduced due to more energy losses were induced.However, the cavitation performance was improved.At the same time, the critical net positive suction head was decreased and the cavitation performance was enhanced as the angles of IGVs were adjusted from negative to positive values.The pressure pulsation results showed that when cavitation occurred, pressure amplitude was magnified both in pump inlet and outlet when IGVs were set up, and the pressure peak appeared mainly in blade frequency and its harmonic frequencies as a result of the influence of rotating of impeller.With the development of cavitation, pressure pulsation aggregated in low frequency in inlet and appeared broadband feature in outlet.When mass flow rate was decreased, the pressure amplitude discrepancy shrank and the pressure peak depended on the angles of IGVs.
axial pump; inlet guide vane; net positive suction head; pressure pulsation
10.6041/j.issn.1000-1298.2017.10.014
TH312
A
1000-1298(2017)10-0115-06
2017-01-16
2017-03-09
國家自然科學(xué)基金項目(51422906、51609177)
郭志偉(1985—),男,副教授,博士,主要從事水力機械系統(tǒng)研究,E-mail:GuoZW1985@outlook.com