楊博智,周書棟,楊莉穎,馬艷青,鄒學(xué)校*
?
辣椒矮稈突變體的表型及其對(duì)外源激素的響應(yīng)
楊博智1,2,周書棟1,2,楊莉穎1,2,馬艷青1,2,鄒學(xué)校1,2*
(1.中南大學(xué)隆平分院,湖南長(zhǎng)沙 410100;2.湖南省農(nóng)業(yè)科學(xué)院蔬菜研究所,湖南長(zhǎng)沙 410125)
于EMS誘變辣椒自交系6421種子所構(gòu)建的突變體庫(kù)獲得1份矮稈突變體(命名為E29),觀察E29的表型和細(xì)胞學(xué)特征,研究E29突變性狀的遺傳規(guī)律和赤霉素(GA3)、24–表油菜素內(nèi)酯(24–eBR)及生長(zhǎng)素(IAA)對(duì)E29種子萌發(fā)和幼苗生長(zhǎng)的影響。結(jié)果表明:與自交系6421相比,E29表現(xiàn)出植株矮化,葉片變大、變厚,葉色變深等特征;顯微觀察結(jié)果顯示,E29變矮是由于其莖稈伸長(zhǎng)區(qū)細(xì)胞長(zhǎng)度縮短,葉片變大、變厚是由于其葉肉細(xì)胞變大及細(xì)胞數(shù)增加;遺傳分析結(jié)果表明,突變性狀由單隱性基因控制;外施不同質(zhì)量濃度的激素,發(fā)現(xiàn)4.0 mg/L GA3處理顯著促進(jìn)E29的根與下胚軸伸長(zhǎng),1.0 ~ 4.0 mg/L的IAA處理顯著抑制E29的根與下胚軸伸長(zhǎng),0.5 ~ 2.0 mg/L的 24–eBR處理對(duì)E29的根和下胚軸伸長(zhǎng)影響不明顯,各激素處理均不能使之恢復(fù)至野生型6421的根與下胚軸長(zhǎng)度,表明E29為BR不敏感型突變體,其突變性狀與GA3、IAA調(diào)控?zé)o關(guān)。
辣椒;矮稈突變體;表型;外源激素
株高是辣椒遺傳育種的主要目標(biāo)性狀之一,與辣椒植株抗倒伏性狀和產(chǎn)量性狀密切相關(guān)[1]。研究辣椒株高遺傳基礎(chǔ)與激素調(diào)控的關(guān)系,有助于人工調(diào)控植株株型,在辣椒育種生產(chǎn)實(shí)踐中具有積極意義。矮稈突變體是研究激素調(diào)控植株生長(zhǎng)的最佳材料。大多數(shù)植株矮化突變與赤霉素(GAs)[2–4]和油菜類固醇(BRs)[5–7]調(diào)控密切相關(guān),少數(shù)矮化突變與生長(zhǎng)素(IAA)調(diào)控有關(guān)[8]。根據(jù)突變體對(duì)外源激素的敏感程度,可以把矮稈突變體分為激素缺失型和激素不敏感型兩類。激素缺失型突變體因?yàn)槠浼に氐纳锖铣赏緩奖灰种苹虮蛔钄喽鴮?dǎo)致內(nèi)源激素缺乏或痕量存在,外施相應(yīng)激素后其表型可恢復(fù)至野生型;激素不敏感型突變體的激素代謝途徑正常,其內(nèi)源激素水平變化不大,甚至比野生型還高,由于激素信號(hào)傳導(dǎo)或應(yīng)答出現(xiàn)障礙,外施相應(yīng)的激素后其表型不能恢復(fù)至野生型。關(guān)于GA3缺失型和不敏感型矮稈突變體的研究主要是針對(duì)擬南芥、水稻和小麥[4, 9–10],BR和IAA缺失型和不敏感型矮稈突變體在豌豆、番茄、大麥和水稻上也均有發(fā)現(xiàn)[11–14]。目前,對(duì)辣椒株高的研究?jī)H限于株高性狀遺傳分析[15–16]及少量株高QTLs位點(diǎn)的定位[17–18],關(guān)于辣椒激素敏感性研究尚少見(jiàn)報(bào)道。筆者于EMS誘變辣椒自交系6421種子所構(gòu)建的突變體庫(kù)[19]中獲得1份矮稈突變體,觀察其表型、細(xì)胞學(xué)特征,分析突變性狀的遺傳規(guī)律,并研究GA3、24–eBR和IAA對(duì)突變體種子萌發(fā)和幼苗生長(zhǎng)的影響,旨在探明該突變體的突變性狀與哪種激素調(diào)控相關(guān),為后續(xù)通過(guò)該突變體來(lái)了解辣椒株高的遺傳性狀提供參考依據(jù)。
于EMS誘變辣椒自交系6421種子所構(gòu)建的突變體庫(kù)中獲得矮稈突變體E29。2015年6月將E29和6421雜交得到F1群體;2016年6月將F1群體自花授粉得到F2群體。所有植株均種植于湖南省農(nóng)業(yè)科學(xué)院蔬菜研究所大棚內(nèi)。
1.2.1表型分析
分別種植6421和E29,從出苗期到收獲期進(jìn)行全生育期觀察。于成株期隨機(jī)選取6421和E29各20株,參考李錫香[20]的方法調(diào)查株高、株幅、主莖長(zhǎng)、主莖粗和主莖節(jié)位數(shù)等主要農(nóng)藝性狀,用YMJ–C型便攜式葉面積儀測(cè)量6421和E29植株第8片葉的葉面積;于紅果期調(diào)查6421和E29的單株結(jié)果數(shù)。
1.2.2細(xì)胞學(xué)觀察
于植株幼苗期取6421和E29莖稈頂端第4節(jié)莖段,用解剖刀切莖段,每段約0.4 cm,同時(shí)取6421和E29的第4片真葉,用石蠟切片法[20]制片。選取染色效果良好的切片,在Olympus BX43顯微鏡下觀察并拍照。
1.2.3突變性狀遺傳分析
以E29為母本與6421雜交,獲得F1群體。調(diào)查F1植株的株高。F1自交,構(gòu)建F2群體,再調(diào)查F2分離群體的株高。統(tǒng)計(jì)F2群體中植株的株高分離比,進(jìn)行卡方檢驗(yàn)。
1.2.4外源激素(GA3、24–eBR和IAA)處理
取E29和6421的種子各120粒,用75%乙酸對(duì)其表面消毒30 s,再用5%次氯酸鈉消毒種子10 min,最后用無(wú)菌蒸餾水沖洗種子3次。將種子分別接種于添加了不同濃度激素(GA3、24–eBR、IAA)的1/2MS培養(yǎng)基上,以不添加激素的培養(yǎng)基(CK)為對(duì)照,接種后將培養(yǎng)瓶置入光照培養(yǎng)室中培養(yǎng)。培養(yǎng)溫度為(26±1) ℃,每天光照16 h。培養(yǎng)至第8天分別測(cè)量6421和E29的幼根根長(zhǎng),第15 天分別測(cè)量6421和E29的幼苗根長(zhǎng)與下胚軸長(zhǎng),結(jié)果取其算術(shù)平均值。試驗(yàn)重復(fù)3次。
由圖1可知,與6421相比,E29全生育期表現(xiàn)出植株矮化,葉片變大、變寬、變厚,葉色深綠,側(cè)枝退化,株幅變窄等特征。成株期6421和E29植株表型特征調(diào)查結(jié)果表明,與6421相比,E29的株高、株幅、主莖長(zhǎng)和單株結(jié)果數(shù)均顯著低于6421的,分別比6421低63.33%、36.63%、49.41%和74.73%;E29的主莖粗和葉面積均顯著高于6421的,分別比6421高15.04%和41.36%。二者的主莖節(jié)位數(shù)均為12節(jié)(表1)。
1 子葉期植株(左為6421,右為E29);2 苗期植株(左為6421,右為E29);3 成株期植株(左為6421,右為E29)。
表1 成株期6421和E29的表型
同列數(shù)字后英文字母示<0.05水平差異。
對(duì)6421和E29相同部位的莖段和葉片進(jìn)行細(xì)胞學(xué)觀察,發(fā)現(xiàn)6421和E29莖稈分生區(qū)細(xì)胞排列整齊,均能形成縱向細(xì)胞列。E29莖稈分生區(qū)細(xì)胞縱向長(zhǎng)度縮短,其細(xì)胞平均大小為6421分生區(qū)細(xì)胞平均大小的45.62%,表明E29高度降低是由其莖稈節(jié)間細(xì)胞縮短所致(圖2–1,圖2–2)。與6421相比,E29的葉片柵欄組織細(xì)胞排列較疏松,海綿組織細(xì)胞體積較大,細(xì)胞數(shù)目較多,其葉片橫切面厚度為6421葉片橫切面厚度的1.46~1.92倍,表明E29葉片變大、變厚是由其葉肉細(xì)胞體積和數(shù)目發(fā)生變化引起的(圖2–3,圖2–4)。
1 6421莖稈縱切面切片;2 E29莖稈縱切面切片;3 6421葉片橫切面切片;4 E29葉片橫切面切片。
以E29和6421為親本構(gòu)建的F1群體性狀不分離,F(xiàn)2群體正常植株和矮稈植株比例符合3∶1的分離比,說(shuō)明該突變性狀由單隱性基因控制(表2)。
表2 E29×6421 F2群體株高的分離情況
培養(yǎng)7 d后,GA3處理促進(jìn)6421和E29的根伸長(zhǎng),IAA處理抑制6421和E29的根伸長(zhǎng),24–eBR處理抑制6421的根伸長(zhǎng),但對(duì)E29根伸長(zhǎng)的影響不明顯(圖3–1~6)。由表3可知,1.0、2.0、3.0、4.0 mg/L GA3處理E29的根長(zhǎng)顯著高于其對(duì)照E29的,分別比對(duì)照E29高38.51%、37.27%、39.75%和52.80%;1.0、2.0、3.0、4.0 mg/L IAA處理E29的根長(zhǎng)顯著低于其對(duì)照E29的,分別比對(duì)照E29低86.34%、87.58%、86.96%和87.58%,0.5 ~ 2.0 mg/L 24–eBR處理E29的根長(zhǎng)與其對(duì)照E29根長(zhǎng)的差異無(wú)統(tǒng)計(jì)學(xué)意義,各激素處理E29的根長(zhǎng)均沒(méi)有恢復(fù)至與對(duì)照6421的根長(zhǎng)一致,初步判斷,E29既不屬于GA3或IAA不敏感型突變體,也不屬于GA3或IAA缺失型突變體,而是屬于BR不敏感型突變體。
培養(yǎng)15 d后,GA3處理促進(jìn)6421和E29的根和下胚軸伸長(zhǎng),IAA處理抑制6421和E29的根和下胚軸伸長(zhǎng),24–eBR處理抑制6421的根和下胚軸伸長(zhǎng),但對(duì)E29根和下胚軸伸長(zhǎng)的影響不明顯(圖3–7~12)。由表3可知,3.0 ~ 4.0 mg/L GA3處理E29的根長(zhǎng)顯著高于其對(duì)照E29的,比對(duì)照E29低14.37% ~24.46%;4.0 mg/L GA3處理E29的下胚軸長(zhǎng)顯著高于其對(duì)照E29的,比對(duì)照E29低7.80%;1.0 ~ 4.0 mg/L IAA處理E29的根長(zhǎng)和下胚軸長(zhǎng)均顯著低于其對(duì)照E29的,分別比對(duì)照低56.57%~88.69%和12.77 %~ 29.08%,0.5~2.0 mg/L 24–eBR處理E29的根長(zhǎng)和下胚軸長(zhǎng)與其對(duì)照E29的差異無(wú)統(tǒng)計(jì)學(xué)意義,各激素處理E29的根長(zhǎng)與下胚軸長(zhǎng)均沒(méi)有恢復(fù)至與對(duì)照E29的一致,進(jìn)一步證實(shí)E29的突變性狀僅與BR調(diào)控相關(guān),屬于BR不敏感型突變體。
表3 各激素處理6421和E29的幼苗根長(zhǎng)及下胚軸長(zhǎng)
同列數(shù)據(jù)后小寫英文字母示<0.05水平差異。
油菜素內(nèi)酯屬于植物甾醇類生長(zhǎng)促進(jìn)激素,從種子萌發(fā)到開(kāi)花結(jié)實(shí)的各發(fā)育時(shí)期油菜素內(nèi)酯均發(fā)揮著重要作用。模式植物擬南芥BR突變體在正常光照條件下生長(zhǎng)表現(xiàn)出下胚軸生長(zhǎng)受抑制、植株嚴(yán)重矮化、葉深綠、開(kāi)花延遲、育性下降等多種生長(zhǎng)發(fā)育缺陷。切片結(jié)果顯示BR突變體變矮的原因是由于是細(xì)胞伸長(zhǎng)受阻[21]。本試驗(yàn)中突變體E29表現(xiàn)出植株矮化,葉片變大、變厚,葉色變深,單株結(jié)果數(shù)減少等特點(diǎn)。顯微觀察結(jié)果表明,E29莖稈伸長(zhǎng)區(qū)細(xì)胞縮短、葉肉細(xì)胞變大及細(xì)胞數(shù)增加,這些特征與從擬南芥中鑒定出的BR突變體表型的特征類似。激素處理試驗(yàn)結(jié)果表明,3種激素中僅24–eBR處理對(duì)E29的根和下胚軸伸長(zhǎng)影響不明顯,證明E29屬于BR不敏感型矮稈突變體。
激素不敏感突變體的產(chǎn)生通常是由植物體內(nèi)感知該激素的受體發(fā)生突變而不能接受到相應(yīng)的信號(hào)而引起的。第一個(gè)BR不敏感突變體在擬南芥中被發(fā)現(xiàn),并被命名為bri1。外源BR處理不能恢復(fù)bri1的表型[22]。之后,采用分子遺傳學(xué)、生物化學(xué)和蛋白組學(xué)等技術(shù)手段,擬南芥BR信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián)反應(yīng)途徑被逐漸發(fā)現(xiàn)[23–26]。辣椒屬于茄科蔬菜作物,目前還少見(jiàn)關(guān)于其BR突變體的報(bào)道。以BR不敏感突變體E29為試驗(yàn)材料,研究辣椒中BR信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)對(duì)了解植物中BR信號(hào)途徑的進(jìn)化過(guò)程具有重要意義。后續(xù)試驗(yàn)中將對(duì)突變體E29進(jìn)行全基因組重測(cè)序,克隆與突變性狀相關(guān)的基因,并對(duì)其進(jìn)行功能分析,為進(jìn)一步解析BR調(diào)控植物生長(zhǎng)發(fā)育的分子機(jī)制提供依據(jù)。
[1] 李玉華,閆立英.辣椒主要農(nóng)藝性狀的相關(guān)分析[J].北京農(nóng)學(xué)院學(xué)報(bào),2003,18(1): 10–12.DOI:10.3969/j.issn. 1002–3186.2003.01.003.
[2] MITSUNAGA S,TASHIRO T,YAMAGUCHI J. Identification and characterization of gibberellin–insensitive mutants selected from among dwarf mutants of rice[J].Theor Appl Genet,1994,87(6): 705–712.DOI:10.1007/BF00222896.
[3] CHEN L,HAO L,CONDON A G,et al.Exogenous GA3application can compensate the morphogenetic effects of the GA–responsive dwarfing gene Rht12 in bread wheat[J].PLoS ONE,2014,9(1): e86431.DOI:10.1371/journal.pone.0086431.
[4] RAMCHANDER S,PILLAI M A.Semi–dwarf narrow rolled leaf mutant in rice: photosynthetic efficiency and physiological response to gibberellic acid (GA3)[J]. Journal of Applied and Natural Science,2016,8(3): 1312–1316.
[5] KOKA C V,CERNY R E,GARDNER R G,et al.A putative role for the tomato genes DUMPY and CURL–3 in brassinosteroid biosynthesis and response[J].Plant Physiol,2000,122(1):85–98.
[6] SUZUKI Y,SASO K,F(xiàn)UJIOKA S,et al.A dwarf mutant strain of,Uzukobito (kobito),has defective brassinosteroid biosynthesis[J].Plant J,2003,36(3): 401–410.
[7] SHANG Y,LEE M M,LI J,et al.Characterization of cp3 reveals a new bri1 allele,bri1–120,and the importance of the LRR domain of BRI1 mediating BR signaling[J]. BMC Plant Biol,2011,11:8.DOI:10.1186/ 1471–2229– 11–8.
[8] ROUSE D,MACKAY P,STIRNBERG P,et al.Changes in auxin response from mutations in an AUX/IAA gene[J].Science,1998,279(5355): 1371–1373.
[9] LINCOLN C,BRITTON J H,ESTELLE M.Growth and development of the axr1 mutants of[J].Plant Cell,1990,2(11): 1071–1080.DOI:10.1105/tpc.2.11. 1071.
[10] CHEN L,HAO L,CONDON A G,et al.Exogenous GA3application can compensate the morphogenetic effects of the GA–responsive dwarfing gene Rht12 in bread wheat[J].PLoS ONE,2014,9(1): e86431.DOI:10.1371/journal.pone.0086431.
[11] NOMURA T,KITASAKA Y,TAKATSUTO S,et al. Brassinosteroid/Sterol synthesis and plant growth as affected by l ka and l kb mutations of Pea[J].Plant Physiol,1999,119(4): 1517–1526.
[12] LI X J,GUO X,ZHOU Y H,et al.Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato[J].BMC Plant Biology,2016,16(1): 33.DOI:10.1186/s12870–016–0715–6.
[13] YE Y J,LIU Y,CAI M,et al.Screening of molecular markers linked to dwarf trait in crape myrtle by bulked segregant analysis[J].Genet Mol Res,2015,14(2): 4369–4380.DOI:10.4238/2015.April.30.10.
[14] KALIH R,MAURER H P,HACKAUF B,et al.Effect of a rye dwarfing gene on plant height,heading stage,and Fusarium head blight in triticale (×)[J].Theor Appl Genet,2014,127(7): 1527– 1536.DOI:10.1007/s00122–014–2316–9.
[15] INOUHE M,SAKURAI N,KURAISHI S.Growth regulation of dark–grown dwarf barley coleoptile by the endogenous IAA content[J].Plant and Cell Physiology,1982,23(4):689–698.
[16] SAZUKA T,KAMIYA N,NISHIMURA T,et al.A rice tryptophan deficient dwarf mutant,tdd1,contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J].Plant J,2009,60(2): 227–241.DOI:10.1111/j.1365–313X.2009.03952.x.
[17] 蔣向輝,佘朝文,曾洪波,等.辣椒矮化及果皮皺縮突變體鑒定RAPD初步分析[J].武漢植物學(xué)研究,2008,26(5):524–527.
[18] 段蒙蒙,王寧,毛勝利,等.辣椒種內(nèi)遺傳圖譜的構(gòu)建及主要農(nóng)藝性狀的QTL分析[J].園藝學(xué)報(bào),2014,41(12):2497–2506.
[19] 周書棟,楊博智,歐立軍,等.辣椒突變體庫(kù)的構(gòu)建及突變?nèi)后w表型變異分析[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,43(1):31–36.DOI:10.13331/j.cnki.jhau. 2017.01.006.
[20] 李錫香,張寶璽,沈鏑,等.辣椒種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M].北京:中國(guó)農(nóng)業(yè)出版社,2006.
[21] JI H S,CHU S H,JIANG W,et al.Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes[J].Genetics,2006,173(2): 995–1005.DOI:10.1534/genetics.105.054031.
[22] LI J,NAGPAL P,VITART V,et al.A role for brassinosteroids in light–dependent development of Arabidopsis[J].Science,1996,272(5260): 398.
[23] CLOUSE S D,LANGFORD M,MCMORRIS T C.A brassinosteroid–insensitive mutant inexhibits multiple defects in growth and development[J]. Plant physiology,1996,111(3): 671– 678.
[24] WANG X,LI X,MEISENHELDER J,et al. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1[J].Dev Cell,2005,8(6):855–865.DOI:10.1016/j.devcel.2005. 05.001.
[25] WANG X,KOTA U,HE K,et al.Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling[J].Dev Cell,2008,15(2): 220–235.DOI:10.1016/j.devcel.2008.06.011.
[26] KIM T W,GUAN S,SUN Y,et al.Brassinosteroid signal transduction from cell–surface receptor kinases to nuclear transcription factors[J].Nat Cell Biol,2009,11(10): 1254–1260.DOI:10.1038/ncb1970.
責(zé)任編輯:王賽群
英文編輯:王庫(kù)
Phenotypic characteristic of a dwarf mutant in pepper and its response to exogenous hormones
YANG Bozhi1,2, ZHOU Shudong1,2, YANG Liying1,2, MA Yanqing1,2,ZOU Xuexiao1,2*
(1.Longping Branch of Central South University, Changsha 410100, China; 2.Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China)
We have identified a dwarf mutant line, E29, through a screen from inbred line 6421 of ethyl methanesulfonate (EMS) mutagenized population in the pepper. In this paper, E29 was studied from its phenotypes, stem and leaf morphology by means of light microscope, genetic characteristics, and also including its physiological responses to GA3, 24–eBR and IAA. The results showed that E29 and 6421 had similar phenotypes, which showed severe dwarf accompanied with wide, thick leaf blades and dark green leaves. The mutation phenotype was controlled by a single recessive gene. It was proved from the longitudinal sections of the stems that the length of mutant cell reduced, which resulted in the short stature. Transverse sections of leaf blades also revealed that mesophyll mutant cells became larger and the number of mesophyll mutant cell was more than their wild counterparts, which explained its wide and thick leaves. It was further showed that GA3(1.0 mg/L) promoted root and hypocotyl elongation of E29, while IAA (1.0 – 4.0 mg/L) gave rise to the opposite effects, and 24–eBR(0.5–2.0 mg/L) had no effects on inhibiting or promoting root and hypocotyl elongation. Exogenous GA3, IAA or 24–eBR was failed to recover the mutant of E29 to its wild phenotype, which indicated that the dwarf phenotype was not sensitive to BR.
L.; dwarf mutant; phenotype; exogenous hormone
TS201.1
A
1007-1032(2017)05-0518-06
2017–06–11
2017–08–11
國(guó)家自然科學(xué)基金(31601757);湖南省自然科學(xué)基金(2016JJ2076)
楊博智(1983—),女,湖南益陽(yáng)人,博士研究生,主要從事生物技術(shù)輔助辣椒育種研究,yangy_1223@163.com;*通信作者,鄒學(xué)校,研究員,主要從事辣椒新品種選育工作,zouxuexiao428@163.com
投稿網(wǎng)址:http://xb.hunau.edu.cn