張 旭 姜瑞忠 崔永正 楊志興 陳自立
(1.中國(guó)石油大學(xué)(華東)石油工程學(xué)院 山東青島 266580; 2.中海石油(中國(guó))有限公司上海分公司 上海 200335)
考慮束縛水時(shí)變的致密氣藏?cái)?shù)值模擬研究*
張 旭1姜瑞忠1崔永正1楊志興2陳自立2
(1.中國(guó)石油大學(xué)(華東)石油工程學(xué)院 山東青島 266580; 2.中海石油(中國(guó))有限公司上海分公司 上海 200335)
從氣相啟動(dòng)壓力梯度的物理概念和物模實(shí)驗(yàn)角度分析認(rèn)為,氣體通過(guò)高束縛水低滲致密巖心時(shí)的“閾壓效應(yīng)”實(shí)質(zhì)為氣水相間滲流阻力的宏觀反映,毛管壓力曲線與時(shí)變的氣水相滲曲線足以定量描述該現(xiàn)象,不應(yīng)引入氣相啟動(dòng)壓力梯度。建立了考慮氣水相滲時(shí)變、儲(chǔ)層應(yīng)力敏感及可動(dòng)水啟動(dòng)壓力梯度的致密氣滲流數(shù)學(xué)模型,用全隱式有限差分方法求解,并編制了數(shù)值模擬器。對(duì)新模擬器進(jìn)行了退化測(cè)試,并利用新模擬器研究了特殊滲流機(jī)理對(duì)致密氣藏開(kāi)發(fā)的影響及氣水相滲時(shí)變對(duì)實(shí)際區(qū)塊的影響,結(jié)果表明:不考慮特殊滲流機(jī)理時(shí),新模擬器與Eclipse軟件計(jì)算結(jié)果具有很好的一致性;氣水相滲時(shí)變會(huì)增大氣井產(chǎn)水量、減少穩(wěn)產(chǎn)氣時(shí)間;可動(dòng)水啟動(dòng)壓力梯度會(huì)減少日產(chǎn)水量、增加穩(wěn)產(chǎn)氣時(shí)間;儲(chǔ)層應(yīng)力敏感會(huì)降低日產(chǎn)水量、提早進(jìn)入遞減期;束縛水的運(yùn)移是氣井產(chǎn)水重要原因之一,考慮氣水相滲時(shí)變更能反映實(shí)際氣井生產(chǎn)動(dòng)態(tài)。
致密氣;高束縛水;氣水相滲時(shí)變;儲(chǔ)層應(yīng)力敏感;可動(dòng)水啟動(dòng)壓力梯度;數(shù)學(xué)模型;模擬器
低滲致密氣藏孔喉細(xì)小,束縛水飽和度普遍較高[1-2]。已有實(shí)驗(yàn)結(jié)果表明,氣體通過(guò)高束縛水低滲致密巖心時(shí)存在“閾壓效應(yīng)”[3-4],即流動(dòng)壓差須增大至一定值后氣體才能流動(dòng),剛開(kāi)始流動(dòng)時(shí)的壓力梯度稱為氣體啟動(dòng)壓力梯度;滲透率與含水飽和度均會(huì)影響氣體啟動(dòng)壓力梯度大小,并且當(dāng)含水飽和度小于20%時(shí),幾乎不存在啟動(dòng)壓力梯度。針對(duì)上述實(shí)驗(yàn)現(xiàn)象,主流觀點(diǎn)認(rèn)為[2,5-7]:①啟動(dòng)壓力梯度是氣體在低滲致密儲(chǔ)層流動(dòng)時(shí)受到束縛水的影響而發(fā)生的非達(dá)西流動(dòng),含水是氣體產(chǎn)生啟動(dòng)壓力梯度的主要原因,賈敏效應(yīng)可以解釋氣體啟動(dòng)壓力梯度現(xiàn)象,“氣體閾壓效應(yīng)”是兩相流體相互作用所致;②啟動(dòng)壓力梯度是滲透率和束縛水飽和度的函數(shù),束縛水飽和度越高、滲透率越低,啟動(dòng)壓力梯度越大,低速非線性特征越明顯。
1.1 從啟動(dòng)壓力梯度的物理概念探討主流觀點(diǎn)
以往研究中,液體與氣體的啟動(dòng)壓力梯度均是針對(duì)單相流體得到的[2-3,8];在數(shù)學(xué)模型中,啟動(dòng)壓力梯度是作為某一相的物理量引入的[1,9-10]。也就是說(shuō),啟動(dòng)壓力梯度應(yīng)該是一個(gè)單相流的概念。
主流觀點(diǎn)認(rèn)為賈敏效應(yīng)產(chǎn)生了氣體啟動(dòng)壓力梯度現(xiàn)象,并把啟動(dòng)壓力梯度引入到氣相運(yùn)動(dòng)方程,這時(shí)會(huì)存在2個(gè)方面的問(wèn)題:①賈敏效應(yīng)是一個(gè)兩相的概念,而啟動(dòng)壓力梯度是一個(gè)單相流的概念;②致密氣的“啟動(dòng)壓力梯度現(xiàn)象”實(shí)質(zhì)為氣水相間阻力在實(shí)驗(yàn)結(jié)果的宏觀反映,而氣水相間阻力可以通過(guò)相滲曲線和毛管壓力來(lái)描述,因此數(shù)學(xué)模型中增加氣體啟動(dòng)壓力梯度是物理概念的重復(fù)引入。
1.2 從物理模擬實(shí)驗(yàn)角度探討主流觀點(diǎn)
1)不恰當(dāng)?shù)膶?shí)驗(yàn)操作步驟會(huì)產(chǎn)生氣體啟動(dòng)壓力梯度假象。
在測(cè)定束縛水條件下氣體滲流曲線的實(shí)驗(yàn)步驟中存在不恰當(dāng)操作(圖1),如建立束縛水的實(shí)驗(yàn)環(huán)節(jié)中含有“將巖樣取出、調(diào)換巖樣兩端”或者“在建立束縛水后短時(shí)關(guān)掉巖心兩端壓力閥”的實(shí)驗(yàn)操作[2],這一環(huán)節(jié)與實(shí)際成藏過(guò)程不相似,氣水平衡后可能造成某些含氣的通道被水占據(jù),從而形成氣水互封[11]的狀態(tài)。此外,在測(cè)定滲流曲線時(shí),氣體因受到毛管力的作用而表現(xiàn)“閾壓效應(yīng)”的現(xiàn)象,因此實(shí)驗(yàn)誤將毛管力及氣水相間阻力解釋為氣相啟動(dòng)壓力梯度。
圖1 致密氣藏啟動(dòng)壓力梯度測(cè)定流程及存在問(wèn)題的示意圖Fig.1 Schematic diagram of the process and its problems of measuring the start-up pressure gradient of tight gas reservoir
2)束縛水時(shí)變會(huì)產(chǎn)生氣體啟動(dòng)壓力梯度假象。
據(jù)束縛水定義[12],束縛水的形成是有前提條件的,如果以不同的油氣驅(qū)替壓力梯度發(fā)生成藏過(guò)程,成藏后對(duì)應(yīng)的束縛水飽和度也應(yīng)不同。因此,束縛水飽和度應(yīng)理解為某一成藏驅(qū)替壓力梯度下對(duì)應(yīng)的殘余水飽和度。在開(kāi)發(fā)過(guò)程中,由于驅(qū)替壓力梯度大于成藏驅(qū)替壓力梯度(開(kāi)發(fā)過(guò)程遠(yuǎn)遠(yuǎn)快于成藏過(guò)程),故束縛水飽和度會(huì)逐漸減小。
圖2 不同驅(qū)替壓力梯度下致密氣藏氣水相滲曲線(據(jù)文獻(xiàn)[18],有修改)Fig.2 Relative permeability curves of tight gas reservoir under different displacement pressure gradients(modified from literature[18])
文獻(xiàn)[13-16]實(shí)驗(yàn)證明了束縛水的“速度敏感性”現(xiàn)象,文獻(xiàn)[17-18]實(shí)驗(yàn)證明了氣水相滲曲線時(shí)變現(xiàn)象(圖2)。綜合分析這些實(shí)驗(yàn)結(jié)果,在致密氣藏開(kāi)發(fā)過(guò)程中,由于膨脹能和氣體驅(qū)替的共同作用,束縛水飽和度會(huì)逐漸減小,因此導(dǎo)致氣水相滲的束縛水端點(diǎn)左移、水相相對(duì)滲透率增加、氣相相對(duì)滲透率減小。在滲流曲線的測(cè)定過(guò)程中,由于束縛水的時(shí)變,巖心中流體會(huì)由單相氣流轉(zhuǎn)化為氣水兩相流,相間阻力與毛管力會(huì)降低氣相流動(dòng)能力,從而導(dǎo)致氣體具有啟動(dòng)壓力梯度的假象。當(dāng)含水飽和度較小時(shí),由于水主要分布于極細(xì)微的孔喉中,很難發(fā)生移動(dòng),相間的阻礙可以忽略不計(jì),實(shí)驗(yàn)中觀測(cè)到“當(dāng)含水飽和度小于20%時(shí),幾乎不存在啟動(dòng)壓力梯度”。因此,模型中需要引入時(shí)變的氣水相滲曲線才能準(zhǔn)確反映氣藏開(kāi)發(fā)中流體滲流規(guī)律。
2.1 致密氣特殊滲流機(jī)理的計(jì)算方法
考慮氣水相滲時(shí)變、儲(chǔ)層應(yīng)力敏感及可動(dòng)水啟動(dòng)壓力梯度的致密氣滲流數(shù)學(xué)模型如下。
1)將氣水相對(duì)滲透率考慮為含水飽和度與氣相驅(qū)替壓力梯度的函數(shù),即
式(1)~(2)中:Krg、Krw分別為氣相、水相的相對(duì)滲透率;Sw為水相的飽和度是氣相壓力梯度,Pa/m。
2)選用彈-塑性驅(qū)動(dòng)模型[19]計(jì)算應(yīng)力敏感,壓實(shí)曲線方程為
恢復(fù)曲線方程為
式(3)~(6)中:“”表示壓力下降過(guò)程;“”表示壓力恢復(fù)過(guò)程;p為某時(shí)刻的地層壓力,Pa;p0為原始地層壓力,Pa;p1為開(kāi)始恢復(fù)時(shí)的地層壓力,Pa;K0為原始地層壓力下滲透率,m2;φ0為原始地層壓力下孔隙度,f;αK0、βφ0分別為壓實(shí)過(guò)程中滲透率、孔隙度的變形指數(shù),Pa-1;αK1、βφ1分別為恢復(fù)過(guò)程中滲透率、孔隙度的變形指數(shù),Pa-1。
3)實(shí)驗(yàn)表明地層水在致密儲(chǔ)層中具有低速非達(dá)西現(xiàn)象[20],選用可以反映滲流曲線非線性段與最小啟動(dòng)壓力梯度的模型[21],即
式(7)中:珗vw為水相滲流速度,m/s;aw為影響水相非線性滲流凹形曲線段的影響因子;bw為擬啟動(dòng)壓力梯度的倒數(shù),m/Pa;珦Kw為水相滲透率張量;Δpw為水相壓力梯度,Pa/m。
2.2 數(shù)學(xué)模型
2.2.1 基本假設(shè)
為了能合理地模擬致密氣的運(yùn)移過(guò)程,作出以下假設(shè):①儲(chǔ)層中的滲流是等溫滲流;②儲(chǔ)層巖石具有應(yīng)力敏感現(xiàn)象,并具有各向異性;③儲(chǔ)層內(nèi)有氣、水兩相,氣相的流動(dòng)符合達(dá)西定律,水相的流動(dòng)具有啟動(dòng)壓力梯度,且滲流過(guò)程考慮重力與毛管力的影響;④氣水相間無(wú)傳質(zhì)過(guò)程;⑤束縛水飽和度具有“速度敏感”的特征,氣水相滲曲線的束縛水端點(diǎn)會(huì)隨著氣相速度的變化而發(fā)生移動(dòng);⑥不考慮氣體的滑脫效應(yīng)(致密氣藏廢棄壓力較高,滑脫效應(yīng)可以忽略[22])。
2.2.2 數(shù)學(xué)模型
根據(jù)模型假設(shè),結(jié)合式(1)~(7),在氣水兩相滲流模型基礎(chǔ)上考慮氣水相滲時(shí)變、儲(chǔ)層應(yīng)力敏感及可動(dòng)水啟動(dòng)壓力梯度后建立的致密氣滲流數(shù)學(xué)模型如下。
運(yùn)動(dòng)方程
輔助方程
式(8)~(18)中:qgv、qwv為標(biāo)準(zhǔn)狀況下單位體積巖石中氣組分、水組分單位時(shí)間內(nèi)注入或采出的體積,s-1;Sg、Sw分別為氣相、水相的飽和度,f;pg、pw分別為氣相、水相的壓力,Pa;pf為地層孔隙內(nèi)流體壓力,Pa;Kx(pf)、Ky(pf)、Kz(pf)分別為考慮壓敏的x、y、z方向滲透率,m2;Krg、Krw分別為氣相、水相的相對(duì)滲透率;Bg、Bw分別為氣相、水相的體積系數(shù);μg、μw分別為氣相、水相的黏度,Pa·s;ρg、ρw分別為氣相、水相的密度,kg/m3;pcgw為氣水兩相間毛管力,Pa;φ 為孔隙度,f;g 為重力加速度,m2/s;D為從某一基準(zhǔn)面算起的深度,m。
2.3 數(shù)值計(jì)算流程
對(duì)上述數(shù)學(xué)模型進(jìn)行有限差分方法離散,用全隱式方法進(jìn)行求解,并采用Fortran編制了可以考慮致密氣特殊滲流機(jī)理的模擬器,計(jì)算流程見(jiàn)圖3,計(jì)算步驟如下:
1)輸入原始?xì)馑酀B曲線及滲透率,完成模型初始化,采用全隱式方法求解飽和度與各相壓力。
2)對(duì)每個(gè)網(wǎng)格,用上游權(quán)計(jì)算網(wǎng)格的氣相總速度及水相壓力梯度,并計(jì)算地層孔隙壓力。
3)非線性滲流計(jì)算:①根據(jù)束縛水飽和度隨氣相速度變化曲線,用網(wǎng)格的氣相總速度插值計(jì)算新的束縛水飽和度端點(diǎn)值,并更新各網(wǎng)格的氣水相滲曲線;②根據(jù)地層孔隙壓力,計(jì)算滲透率壓敏修正系數(shù),并更新各網(wǎng)格的滲透率;③利用各網(wǎng)格的水相壓力梯度和aw、bw,計(jì)算水相非線性滲流修正系數(shù),對(duì)水相傳導(dǎo)率進(jìn)行修正。
4)檢查是否滿足物質(zhì)平衡誤差條件,否則調(diào)整時(shí)間步長(zhǎng),并返回步驟(1)。
5)檢查是否達(dá)到模擬結(jié)束時(shí)刻,否則重復(fù)步驟(1)~(4)。
圖3 考慮特殊機(jī)理致密氣模擬的數(shù)值計(jì)算流程圖Fig.3 Numerical calculation flow chart of tight gas simulation considering special mechanisms
3.1 模擬器的退化測(cè)試
為了驗(yàn)證新模擬器的正確性,在不考慮氣水相滲時(shí)變、儲(chǔ)層應(yīng)力敏感及可動(dòng)水啟動(dòng)壓力梯度的條件下,針對(duì)同一致密氣概念模型對(duì)比新模擬器與商業(yè)軟件Eclipse的模擬結(jié)果。致密氣藏概念模型的基礎(chǔ)參數(shù)見(jiàn)表1,氣水相滲曲線見(jiàn)圖4,模擬一口直井的衰竭式開(kāi)發(fā)過(guò)程,以105m3/d定產(chǎn)氣生產(chǎn)6 a。圖5為新模擬器與Eclipse日產(chǎn)氣與日產(chǎn)水的對(duì)比測(cè)試結(jié)果,可以看出新模擬器與Eclipse的模擬結(jié)果具有很好的一致性,證明新模擬器計(jì)算結(jié)果是正確有效的。3.2 特殊滲流機(jī)理對(duì)致密氣藏開(kāi)發(fā)的影響
表1 致密氣藏概念模型的基礎(chǔ)參數(shù)表Table 1 Values of basic parameters of the conceptual model of a tight gas reservoir
圖4 致密氣藏概念模型氣水相滲曲線Fig.4 Gas-water relative permeability curve of the conceptual model of a tight gas reservoir
圖5 新模擬器與Eclipse針對(duì)致密氣概念模型的對(duì)比測(cè)試結(jié)果Fig.5 Comparison between the results from the new simulator and those from Eclipse
3.2.1 氣水相滲時(shí)變對(duì)氣井開(kāi)發(fā)的敏感性分析
依據(jù)文獻(xiàn)[13,18]中實(shí)驗(yàn)數(shù)據(jù),分別輸入3種類型的束縛水飽和度變化曲線(圖6),用于研究氣水相滲時(shí)變對(duì)開(kāi)發(fā)效果的影響。圖6中束縛水飽和度乘子表示當(dāng)前束縛水飽和度與初始束縛水飽和度的比值,3條曲線由上至下分別表示束縛水飽和度較難、一般、較易受氣體的沖刷而減小。
圖6 不同類型巖石的束縛水與氣體沖刷速度關(guān)系曲線(時(shí)變模擬的輸入?yún)?shù))Fig.6 Relationship curve between the irreducible water saturation and gas scouring velocity of different rock types(input parameter of time-varying simulation)
圖7 為3種情況對(duì)應(yīng)的日產(chǎn)水與日產(chǎn)氣曲線,圖8為模擬結(jié)束時(shí)束縛水飽和度分布,可以看出,沖刷速度關(guān)系曲線下降越快,日產(chǎn)水量越大、氣體穩(wěn)產(chǎn)時(shí)間越短,模擬結(jié)束時(shí)井附近地層中束縛水飽和度越小。束縛水越易發(fā)生運(yùn)移,就會(huì)有越多的束縛水轉(zhuǎn)化為可動(dòng)水,近井地帶積液現(xiàn)象越嚴(yán)重,滲流阻力增加越快,導(dǎo)致氣井產(chǎn)量遞減越早出現(xiàn)、產(chǎn)水量大幅度增加。
圖7 不同沖刷難度下的氣井開(kāi)發(fā)動(dòng)態(tài)曲線Fig.7 Production dynamic curve of gas well under different difficulty degree of gas scouring
圖8 模擬結(jié)束時(shí)不同沖刷難度下束縛水飽和度分布Fig.8 Distribution of the irreducible water saturation at the end of the simulation under different difficulty degree of gas scouring
3.2.2 非線性滲流對(duì)氣井開(kāi)發(fā)的影響
分4種情形進(jìn)行對(duì)比:(a)無(wú)特殊滲流機(jī)理;(b)僅考慮氣水相滲時(shí)變;(c)同時(shí)考慮氣水相滲時(shí)變與可動(dòng)水啟動(dòng)壓力梯度;(d)同時(shí)考慮氣水相滲時(shí)變與應(yīng)力敏感。非線性滲流參數(shù)取值見(jiàn)表2,并且取圖6中“一般”沖刷強(qiáng)度下束縛水變化曲線作為氣水相滲時(shí)變的輸入?yún)?shù)。
表2 非線性滲流參數(shù)及取值Table 2 Values of nonlinear flow parameters
圖9 考慮非線性滲流時(shí)氣井開(kāi)發(fā)動(dòng)態(tài)曲線Fig.9 Production dynamic curve of gas well considering nonlinear seepage
圖9 為考慮非線性滲流時(shí)氣井開(kāi)發(fā)動(dòng)態(tài)曲線。對(duì)比(a)與(b)可知,氣水相滲時(shí)變會(huì)增大氣井產(chǎn)水量、減小穩(wěn)產(chǎn)氣時(shí)間,這是由于束縛水發(fā)生運(yùn)移導(dǎo)致氣水相滲時(shí)變,水相滲透率增大、氣相滲透率降低;對(duì)比(b)與(c)可知,可動(dòng)水啟動(dòng)壓力梯度會(huì)減少日產(chǎn)水量、增大氣井穩(wěn)產(chǎn)氣時(shí)間,這是由于可動(dòng)水啟動(dòng)壓力梯度阻礙了水的流動(dòng),延緩了氣井的積液現(xiàn)象,使氣井保持較長(zhǎng)時(shí)間內(nèi)穩(wěn)定產(chǎn)氣;對(duì)比(b)與(d)可知,儲(chǔ)層應(yīng)力敏感會(huì)降低日產(chǎn)水量、使開(kāi)發(fā)提早進(jìn)入遞減期,這是由于應(yīng)力敏感降低儲(chǔ)層滲透率所致。
3.3 氣水相滲時(shí)變對(duì)實(shí)際區(qū)塊的影響
選取蘇里格氣田S1井的實(shí)際生產(chǎn)數(shù)據(jù)進(jìn)行歷史擬合研究。該井附近區(qū)域地層平均孔隙度為0.082,平均滲透率為0.55 mD,地層壓力為29 MPa,氣水相滲曲線及生產(chǎn)動(dòng)態(tài)數(shù)據(jù)等相關(guān)數(shù)據(jù)見(jiàn)文獻(xiàn)[23]。采用定產(chǎn)氣擬合日產(chǎn)水,通過(guò)調(diào)試束縛水飽和度與沖刷速度關(guān)系曲線(圖10),最終獲得的該井日產(chǎn)水?dāng)M合結(jié)果見(jiàn)圖11。
圖10 蘇里格氣田S1井日產(chǎn)水歷史擬合中使用的束縛水與氣體沖刷速度關(guān)系曲線Fig.10 Relationship curve between the irreducible water saturation and gas scouring velocity using in the history fitting of Well S1in Sulige gas field
圖11 蘇里格氣田S1井日產(chǎn)水歷史擬合結(jié)果Fig.11 History fitting results of daily water production curves of Well S1in Sulige gas field
從圖11可以看出,不考慮氣水相滲時(shí)變的常規(guī)模擬器模擬的日產(chǎn)水量與實(shí)際氣井的產(chǎn)水量相差近10倍,這是因?yàn)樵诓豢紤]氣水相滲時(shí)變時(shí),產(chǎn)水主要源于巖石及流體膨脹能(假設(shè)不考慮水體影響),由于膨脹能有限,因此模擬的日產(chǎn)水量偏小且有限;而在考慮氣水相滲時(shí)變后,不僅考慮了膨脹能的產(chǎn)水機(jī)理,還考慮了氣體對(duì)束縛水的沖刷作用,束縛水在氣體沖刷下可以轉(zhuǎn)化為可動(dòng)水,因此模擬的日產(chǎn)水量較大且相對(duì)穩(wěn)定。
1)通過(guò)分析大量已有實(shí)驗(yàn),認(rèn)為“氣體閾壓效應(yīng)”實(shí)質(zhì)為氣水相間滲流阻力在實(shí)驗(yàn)結(jié)果的宏觀反映,毛管壓力曲線與時(shí)變的相滲曲線足以定量描述這一現(xiàn)象,不應(yīng)引入氣相啟動(dòng)壓力梯度。
2)建立了考慮氣水相滲時(shí)變、儲(chǔ)層應(yīng)力敏感及可動(dòng)水啟動(dòng)壓力梯度的致密氣滲流數(shù)學(xué)模型,并編制了全隱式的致密氣數(shù)值模擬器。在不考慮特殊滲流機(jī)理的條件下,退化測(cè)試表明新模擬器與Eclipse計(jì)算結(jié)果具有很好一致性,證明了新模擬器的正確性。
3)利用新模擬器研究了特殊滲流機(jī)理對(duì)致密氣開(kāi)發(fā)的影響,結(jié)果表明:①氣水相滲時(shí)變會(huì)增大氣井產(chǎn)水量、減小穩(wěn)產(chǎn)氣時(shí)間;②可動(dòng)水啟動(dòng)壓力梯度會(huì)減少日產(chǎn)水量、增大氣井穩(wěn)產(chǎn)氣時(shí)間;③儲(chǔ)層應(yīng)力敏感會(huì)降低日產(chǎn)水量、使日產(chǎn)氣量提早進(jìn)入遞減期。
4)利用新模擬器對(duì)蘇里格氣田S1井日產(chǎn)水進(jìn)行了歷史擬合,結(jié)果表明考慮氣水相滲時(shí)變更能反映實(shí)際生產(chǎn)動(dòng)態(tài),這是由于膨脹能和氣體對(duì)束縛水的沖刷作用是產(chǎn)水的主要原因,束縛水發(fā)生運(yùn)移會(huì)增大水相滲透率、降低氣相滲透率。
[1] 郭平,張茂林,黃全華,等.低滲透致密砂巖氣藏開(kāi)發(fā)機(jī)理研究[M].北京:石油工業(yè)出版社,2009.GUO Ping,ZHANG Maolin,HUANG Quanhua,et al.Study on development mechanism of low permeability tight sandstone gas reservoir[M].Beijing:Petroleum Industry Press,2009.
[2] 楊朝蓬,李星民,劉尚奇,等.蘇里格低滲致密氣藏閾壓效應(yīng)[J].石油學(xué)報(bào),2015,36(3):347-354.YANG Zhaopeng,LI Xingmin,LIU Shangqi,et al.Threshold pressure effect of low permeability tight gas reservoirs in Sulige gas field[J].Acta Petrolei Sinica,2015,36(3):347-354.
[3] 胡勇.氣體滲流啟動(dòng)壓力實(shí)驗(yàn)測(cè)試及應(yīng)用[J].天然氣工業(yè),2010,30(11):48-50.HU Yong.Experimental test analysis of the threshold pressure in tight sandstone gas flow:a case study of the Sulige gas field[J].Natural Gas Industry,2010,30(11):48-50.
[4] ZENG J,ZHANG Y,ZHANG S,et al.Experimental and theoretical characterization of the natural gas migration and accumulation mechanism in low-permeability(tight)sandstone cores[J].Journal of Natural Gas Science and Engineering,2016,33:1308-1315.
[5] 李奇,高樹(shù)生,楊朝蓬,等.致密砂巖氣藏閾壓梯度對(duì)采收率的影響[J].天然氣地球科學(xué),2014,25(9):1444-1450.LI Qi,GAO Shusheng,YANG Zhaopeng,et al.Influence of the threshold pressure gradienton tight sandstone gas reservoir recovery[J].Natural Gas Geoscience,2014,25(9):1444-1450.
[6] 朱華銀,徐軒,高巖,等.致密砂巖孔隙內(nèi)水的賦存特征及其對(duì)氣體滲流的影響:以松遼盆地長(zhǎng)嶺氣田登婁庫(kù)組氣藏為例[J].天然氣工業(yè),2014,34(10):54-58.ZHU Huayin,XU Xuan,GAO Yan,et al.Occurrence characteristics of tight sandstone pore water and its influence on gas seepage:a case study from the Denglouku gas reservoir in the Changling gas field,southern Songliao Basin[J].Natural Gas Industry,2014,34(10):54-58.
[7] 高樹(shù)生,侯吉瑞,楊洪志,等.川中地區(qū)須家河組低滲透砂巖氣藏產(chǎn)水機(jī)理[J].天然氣工業(yè),2012,32(11):40-42.GAO Shusheng,HOU Jirui,YANG Hongzhi,et al.Water production mechanism of low-permeability sandstone gas reservoir in Xujiahe Formation in Middle Sichuan Basin[J].Natural Gas Industry,2012,32(11):40-42.
[8] 王敬,劉慧卿,劉仁靜,等.考慮啟動(dòng)壓力和應(yīng)力敏感效應(yīng)的低滲、特低滲油藏?cái)?shù)值模擬研究[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(增2):3317-3327.WANG Jing,LIU Huiqing,LIU Renjing,et al.Numerical simulation for low-permeability and extra-low permeability reservoirs with considering starting pressure and stress sensitivity effects[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(S2):3317-3327.
[9] 薛國(guó)慶,李閩,羅碧華,等.低滲透氣藏低速非線性滲流數(shù)值模擬研究[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,31(2):163-166.XUE Guoqing,LI Min,LUO Bihua,et al.Low-speed and non-linear flow through porous media numerical simulation for low-permeability gas reservoir[J].Journal of Southwest Petroleum University(Science & Technology Edition),2009,31(2):163-166.
[10] 李允,陳軍,張烈輝.一個(gè)新的低滲氣藏開(kāi)發(fā)數(shù)值模擬模型[J].天然氣工業(yè),2004,24(8):65-68.LI Yun,CHEN Jun,ZHANG Liehui.New model of numerical simulation for development of gas reservoirs with low permeability[J].Natural Gas Industry,2004,24(8):65-68.
[11] 葉禮友,高樹(shù)生,楊洪志,等.致密砂巖氣藏產(chǎn)水機(jī)理與開(kāi)發(fā)對(duì)策[J].天然氣工業(yè),2015,35(2):41-46.YE Liyou,GAO Shusheng,YANG Hongzhi,et al.Water pro-duction mechanism and development strategy of tight sandstone gas reservoirs[J].Natural Gas Industry,2015,35(2):41-46.
[12] 李愛(ài)芬.油層物理學(xué)[M].3版.東營(yíng):中國(guó)石油大學(xué)出版社,2011.
[13] 郭平,黃偉崗,姜貽偉,等.致密氣藏束縛與可動(dòng)水研究[J].天然氣工業(yè),2006,26(10):99-101.GUO Ping,HUANG Weigang,JIANG Yiwei,et al.Research on the irreducible and movable water of tight sandstone gas reservoir[J].Natural Gas Industry,2006,26(10):99-101.
[14] 朱華銀,徐軒,安來(lái)志,等.致密氣藏孔隙水賦存狀態(tài)與流動(dòng)性實(shí)驗(yàn)[J].石油學(xué)報(bào),2016,37(2):230-236.ZHU Huayin,XU Xuan,AN Laizhi,et al.An experimental on occurrence and mobility of pore water in tight gas reservoirs[J].Acta Petrolei Sinica,2016,37(2):230-236.
[15] 胡勇,李熙喆,盧祥國(guó),等.砂巖氣藏衰竭開(kāi)采過(guò)程中含水飽和度變化規(guī)律[J].石油勘探與開(kāi)發(fā),2014,41(6):723-726.HU Yong,LI Xizhe,LU Xiangguo,et al.Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs[J].Petroleum Exploration and Development,2014,41(6):723-726.
[16] 胡勇,李熙喆,盧祥國(guó),等.高含水致密砂巖氣藏儲(chǔ)層與水作用機(jī)理[J].天然氣地球科學(xué),2014,25(7):1072-1076.HU Yong,LI Xizhe,LU Xiangguo,et al.The realization of the active mechanism between formation and water in tight sand gas reservoir with high water saturation[J].Natural gas Geoscience,2014,25(7):1072-1076.
[17] 莫邵元,何順利,雷剛,等.致密氣藏氣水相對(duì)滲透率理論及實(shí)驗(yàn)分析[J].天然氣地球科學(xué),2015,26(11):2149-2154.MO Shaoyuan,HE Shunli,LEI Gang,et al.Theoretical and experimental analysis of gas-water relative permeability in tight gas[J].Natural gas Geoscience,2015,26(11):2149-2154.
[18] 高樹(shù)生,葉禮友,熊偉,等.大型低滲致密含水氣藏滲流機(jī)理及開(kāi)發(fā)對(duì)策[J].石油天然氣學(xué)報(bào),2013,35(7):93-99.GAO Shusheng,YE Liyou,XIONG Wei,et al.Seepage mechanism and strategy for development of large and low permeabili-ty and tight sandstone gas reservoirs with water content[J].Journal of Oil and Gas Technology,2013,35(7):93-99.
[19] 楊仁鋒,姜瑞忠,劉世華,等.特低滲透油藏非線性滲流數(shù)值模擬[J].石油學(xué)報(bào),2011,32(2):299-306.YANG Renfeng,JIANG Ruizhong,LIU Shihua,et al.Numerical simulation of nonlinear seepage in ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2011,32(2):299-306.
[20] 王楊,楊勝來(lái),吳彬,等.大慶特低滲砂巖單相水啟動(dòng)壓力梯度實(shí)驗(yàn)研究[J].復(fù)雜油氣藏,2010,3(1):62-65.WANG Yang,YANG Shenglai,WU Bin,et al.Experimental research of single phase water on threshold pressure gradient of ultra-low permeability sandstone cores of Daqing Oilfield[J].Complex Hydrocarbon Reservoirs,2010,3(1):62-65.
[21] 于榮澤.特低滲透油藏非線性滲流數(shù)值模擬研究及應(yīng)用[D].廊坊:中國(guó)科學(xué)院研究生院(滲流流體力學(xué)研究所),2011.YU Rongze.Research and application of nonlinear flow numerical simulation in ultra-low permeability reservoir[D].Langfang:Institute of Porous Flow and Fluid Mechanics,Chinese Academy of Science,2011.
[22] 葉禮友,高樹(shù)生,熊偉,等.儲(chǔ)層壓力條件下低滲砂巖氣藏氣體滲流特征[J].復(fù)雜油氣藏,2011,4(1):59-62.YE Liyou,GAO Shusheng,XIONG Wei,et al.Percolation characteristics of gas in sandstone gas reservoir with low permeability under reservoir pressure[J].Complex Hydrocarbon Reservoirs,2011,4(1):59-62.
[23] 李躍剛,肖峰,徐文,等.基于氣水相對(duì)滲透率曲線的產(chǎn)水氣井開(kāi)采效果評(píng)價(jià):以蘇里格氣田致密砂巖氣藏為例[J].天然氣工業(yè),2015,35(12):27-34.LI Yuegang,XIAO Feng,XU Wen,et al.Performance evaluation on water-producing gas wells based on gas-water relative permeability curves:a case study of tight sandstone gas reservoirs in the Sulige Gas Field,Ordos Basin[J].Natural Gas Industry,2015,35(12):27-34.
Numerical simulation study on tight gas reservoir considering the variation of irreducible water saturation with time
ZHANG Xu1JIANG Ruizhong1CUI Yongzheng1YANG Zhixing2CHEN Zili2
(1.College of Petroleum Engineering,China University of Petroleum,Qingdao,Shandong266580,China;2.Shanghai Branch of CNOOC Ltd.,Shanghai 200335,China)
Analyzing start-up pressure gradient of gas phase from the viewpoint of physical concept and experiment,it concludes that the"threshold pressure effect"is the macroscopic reflection of two-phase seepage resistance when gas flows in tight core with high irreducible water saturation,and the capillary pressure curve and the time-varying relative permeability curve are sufficient to describe this phenomenon quantitatively.So gas phase start-up pressure gradient should not be introduced into model.A seepage mathematical model of tight gas considering the time-varying relative permeability curve,reservoir stress sensibility and start-up pressure gradient of movable water is established,and a new numerical simulator is programmed in which the model is solved with fully implicit finite difference method.Comparison testing between the new simulator and Eclipse software shows a good consistency without considering the special mechanism.Simulation results show that time-varying gas water relative permeability curve increases water production and reduces the period of table gas production.Start-up pressure gradient of movable water reduces daily water production and increases the period of table gas production.Reservoir stress sensibility reduces daily water production and accelerates gas well decline.The migration of irreducible water is an important reason for water producing.The model considering the time-varying gas water relative permeability curve can forecast the well real production dynamics.
tight gas;high irreducible water saturation;time-varying gas water relative permeability curve;reservoir stress sensibility;start-up pressure gradient of movable water;mathematical model;simulator
TE37
A
張旭,姜瑞忠,崔永正,等.考慮束縛水時(shí)變的致密氣藏?cái)?shù)值模擬研究[J].中國(guó)海上油氣,2017,29(5):82-89.
ZHANG Xu,JIANG Ruizhong,CUI Yongzheng,et al.Numerical simulation study on tight gas reservoir considering the variation of irreducible water saturation with time[J].China Offshore Oil and Gas,2017,29(5):82-89.
1673-1506(2017)05-0082-08
10.11935/j.issn.1673-1506.2017.05.011
*“十三五”國(guó)家科技重大專項(xiàng)“厚層非均質(zhì)性氣藏產(chǎn)能評(píng)價(jià)及預(yù)測(cè)技術(shù)(編號(hào):2016ZX05027-004-004)”、國(guó)家自然科學(xué)基金“頁(yè)巖氣藏多級(jí)壓裂水平井流動(dòng)特征及產(chǎn)能評(píng)價(jià)方法研究(編號(hào):51374227)”、國(guó)家自然科學(xué)基金“致密儲(chǔ)層體積壓裂縫網(wǎng)擴(kuò)展模擬研究(編號(hào):51574265)”部分研究成果。
張旭,男,中國(guó)石油大學(xué)(華東)油氣田開(kāi)發(fā)工程專業(yè)在讀博士生,主要從事致密氣產(chǎn)能評(píng)價(jià)與數(shù)值模擬方法研究。地址:山東省青島市黃島區(qū)長(zhǎng)江西路66號(hào)(郵編:266580)。E-mail:zx8u8@qq.com。
姜瑞忠,男,教授,博士生導(dǎo)師,從事低滲透油氣藏?cái)?shù)值模擬、三次采油、高含水油氣藏開(kāi)發(fā)等教學(xué)與科研工作。E-mail:jrzhong@126.com。
2017-04-28 改回日期:2017-05-08
(編輯:楊 濱)