• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and properties of graphene oxide/polyacrylonitrile films by in-situ polymerization

    2017-11-04 10:37:08LiFengmeiZhengYingyingLiMengzhuWangBiao
    合成纖維工業(yè) 2017年5期
    關(guān)鍵詞:聚丙烯腈水相成膜

    Li Fengmei, Zheng Yingying, Li Mengzhu, Wang Biao

    (College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620)

    科研快報

    Preparation and properties of graphene oxide/polyacrylonitrile films by in-situ polymerization

    Li Fengmei, Zheng Yingying, Li Mengzhu, Wang Biao*

    (College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620)

    A graphene oxide (GO)/polyacrylonitrile (PAN) polymer was synthesized by in-situ polymerization and was produced into GO/PAN composite film by aqueous film formation. The effect of GO amount on the monomer coversion rate(Y) and specific viscosity (ηsp) of PAN was discussed during the process of polymerization. The structure and properties of the GO/PAN compostie films were investigated. The results shown thatηspandYof PAN were improved due to the addition of GO;Ywas increased by 13.4% andηspby 77.3% as the mass fraction of GO was 2% based on pure PAN. The GO sheets were dispersed uniformly in GO/PAN composite film matrix, and there were some interactions between GO sheets and PAN chains, as compared with those of pure PAN, the crystallinity, the thermal stability and mechanical properties of GO/PAN composite film were improved;and the GO/PAN composite film had the crystallinity of 47.9%, the maximum decomposition temperature of 304 ℃, the weight maintenance rate of 49.8% at 600 ℃ and tensile strength 6.0 MPa as the mass fraction of GO was 2%.

    polyacrylonitrile; graphene oxide; in-situ polymerization; aqueous film formation; structure; properties

    Polyacrylonitrile (PAN) is widely used as fiber or film material in apparel, home furnishings and industrial areas[1]. The incorporation of functional fillers is an important technique to improve the properties of PAN materials[2].

    Graphene has received much attention for wide potential applications such as energy storage, transparent electrodes and nanocomposites[3-5]due to its excellent thermal conductivity, mechanical and electronic transport properties. However, graphene sheets cannot be dispersed well in solvents or polymers due to the significant van der Waals force. Graphene, graphene oxide (GO) has various oxygen-containing functional groups on its surface or edges, such as hydroxyls, epoxides, diols, ketones, carboxyls, and carbonyl groups, which make GO strongly hydrophilic and dispersable in polar solvents and polymer matrices easily. Moreover, GO can be reduced by chemical or physical methods. GO is one kind of ideal nanofiller for nanocomposites[6-8].

    The author synthesized GO/PAN composites by in-situ polymerization, which was produced into GO/PAN composite film by heterogeneous method. The effects of GO on the viscosity and monomer conversion rate of PAN and the structure and properties of GO/PAN composite film were discussed.

    1 Experimental

    1.1Materials

    Acrylonitrile (AN) was provided by China Petroleum Chemical Corporation (Shanghai, China). Methyl acrylate (MA) and azobisisobutyronitrile (AIBN) were of analytical grade and purchased from Sinopharm Chemical Reagent (Shanghai, China) were distilled or recrystallized before used. Dimethyl sulfoxide (DMSO) of chemical pure grade was purchased from Shanghai Lingfeng Chemical Reagent (Shanghai, China). GO with the sheet layer size 1-10 μm was prepared from purified natural graphite by a modified Hummers method[9-11].

    1.2SynthesisofGO/PANnanocomposites

    GO/PAN nanocomposites containing different amounts of GO were synthesized by in-situ polymerization. A typical process of the polymerization was as followed: First, Go was accurately weighed at the mass fractions of 0,0.2%,0.5% and 2% based on the total monomers and was dispersed into a proper amount of DMSO by ultrasonic dispersion for 4 h. Secondly, AN and MA were added at the mass ratio of 90:10 and then AIBN as an initiator (0.6% of the total monomers mass) into the GO solution. The mass fraction of monomers

    of polymerization dispersion sdution was 30%. The polymerization was conducted under nitrogen and 65℃ for 12 h with a stable stirring speed. The obtained polymer were designated as PAN, 0.2GP, 0.5GP and 2.0GP respectively.

    The products were pressed into 150 μm thin films on glass tray, which was transferred into deionized to peel off the GO/PAN composite films.The films were washed with water several times and dried at 60 ℃ under standard atmosphere. The polymer films from PAN,0.2GP,0.5GP and 2.0GP were designated as samples 0#,1#,2#and 3#.

    1.3Characterization

    Monomer conversion rate (Y) was calculated by equation (1):

    Y=m1/(cm0)×100%

    (1)

    Wherem0is the weight of liquid polymerization product,m1is the weight mass of liquid polymerization product after being washed several times and dried,cis monomer mass fraction.

    Specific viscosity (ηsp) was measured with a Ubbelohde viscometer and calculated by equation (2):

    ηsp=(t1-t0)/t0

    (2)

    wheret0andt1were the flow time of solvent and the composite dilute solutions, respectively.

    The morphology of GO/PAN films was evaluated using a scanning electron microscope (SEM, JSM-5600LV, JEOL, Japan). X-ray diffraction (XRD) patterns were recorded on DMSX-2500 PC X-ray spectrometer with CuKαradiation with the wave length of 0.154 2 nm) in the range of 2θbetween 5 °-60° at the scanning rate of 5(°)/min and step angle of 0.02°. In order to analyze the interaction between GO and PAN, Raman spectra were performed using an InVia-Reflex spectrophotometer (Britain, laser wavelength 632.8 nm).

    The thermal property was characterized with a synchronous thermal analyzer (Netzsch STA409PC) in nitrogen atmosphere at the heating rate of 10 ℃/min. The mechanical properties of GO/PAN films were measured by universal testing machine (i-Strentek 1510, China) at the tensile rate of 10 mm/min.

    2 Results and discussion

    2.1EffectofGOonin-situpolymerizationofPAN

    2.1.1 Dispersibility of GO in PAN

    As shown in Fig.1, the color of liquid polymerization products changed from yellow to dark brown with the increase of GO content, but the dispersion solution of GO was yellowish brown because GO was slightly reduced by heat treatment during polymerization process. Moreover, the liquid polymerization products kept homogeneous and stable without layer and deposition phenomena even after standing for 30 days, which indicated that GO can uniformly disperse in PAN solution. PAN film was white and the films with GO was gray. And the color of the films became darker and darker with the increase of GO content. The homogenous color indicated that the GO sheets were uniformly dispersed in PAN matrix.

    Fig.1 Appearance of liquid polymerization product and composite films

    2.1.2Yandηspof solution system

    As shown in Tab.1,Yandηspwere increased with the increase of GO mass fraction.Yandηspof 2.0GP were improved by 13.4% and 77.3%, respectively, as compared with pure PAN. That might because the sheet-like structure of GO will block the movement of polymer chain segment, and the contact between long chain radicals was reduced, then the chain termination was limited.But GO sheets had a little influence on the monomers movement, so the chain propagation will not be affected. In conclusion, GO can improve theYandηspof the solution system.

    Tab.1 ηsp of solution system and Y of polymerization reaction

    2.2EffectofGOonstructureofGO/PANcomposilefilms

    2.2.1 SEM analysis

    As presented in Fig.2, the films prepared by heterogeneous method had finger-like pores due to the double diffusion between water and solvent during the formation process. The fracture surface morphology of GO/PAN films showed that the pore surface of pure PAN film was very smooth when the pore surface of composite films with GO were rough,and the GO sheets were dispersed uniformly in PAN matrix without agglomeration.And with the increase of GO content, the surface of GO/PAN films became rougher.Moreover,the orientation of GO sheet occurred in some degree under film laying force.

    Fig.2 Fracture SEM images of GO/PAN composite films

    2.2.2 Raman spectra analysis

    As shown in Fig.3, there were two obvious characteristic peaks,band D (1 350 cm-1)and G band (1 580 cm-1), in the Raman spectra of GO/PAN films. band D and G band were assigned to the disorder and defects in graphite structure and the ordered graphitic crystallites, respectively[12].

    Fig.3 Raman spectra of GO/PAN films1—0#;2—1#;3—2#;4—3#;5—GO

    The spectra of PAN had no obvious band D and band G, but the composites with GO had band G and band D with great intensity and width. And the intensity of band D and band G tended to be equal to those of the bands of GO with the increase of GO content. However, the up-shifts of band G for the films with GO were observed. These shifts resulted from the change of the chemical environment surrounding the carbon atoms in GO, indicating some interactions between GO sheets and PAN chains.

    2.2.3 XRD analysis

    As shown in Fig.4, peaks near 2θof 16.7° was corresponded to the (100) lattice plane of PAN, and a broad peak between 22°-30° was corresponded to the amorphous structure of PAN[13]. The crystalline peak position of GO/PAN composite film did not change after adding GO, which indicated that the addition of GO did not make the crystal form of PAN change.Tab.2 showed that the crystallinities of the samples were increased after adding GO. And the crystallinity of 2.0GP was increased by 14.2% as compared with pure PAN. The crystallization of PAN might be induced by GO, which was attributed to the fact that GO acted as crystallization nucleating agent in the composite film.

    Fig.4 XRD spectra of GO/PAN films1—0#;2—1#;3—2#;4—3#

    Tab.2 Crystallinities of GO/PAN films

    2.3EffectofGOonpropertiesofGO/PANcompositefilm

    As presented in Fig.5 and Tab.3, GO showed severe weight loss in nitrogen atmosphere and began to decompose below 100 ℃ because the oxygen functional groups on GO were not stable in thermal environment. And the retention rate of GO was merely 49.8% at 600 ℃. The TG curves of GO/PAN composite film showed the same tendency with the weight loss of pure PAN, but the thermal weight loss of the film was lower at the same temperature. The retention rate of sample 3#was increased by 27% at 600 ℃ as compared with that of PAN.However, the maximum decomposition temperature of GO/PAN composite film was higher than those of pure PAN and GO. The results indicated that the GO sheets loading in PAN matrix might improve the intermolecular crosslink of PAN chains during heat treatment due to GO decomposition.

    Fig.5 TG curves of GO/PAN composite films1—GO;2—0#;3—1#;4—2#;5—3#

    Tab.3 Thermal stability and mechanical property of GO/PAN composite films

    As shown in Tab.3, the mechanical properties of GO/PAN films were improved but not notably as compared with pure PAN film due to the pore structure and the preparation process not involving drawing.

    3 Conclusions

    a. GO/PAN films were synthesized by in-situ polymerization. It was found thatYandηspof the composite film were improved through the addition of GO.

    b. The GO sheets were dispersed uniformly in PAN matrix, and some interactions existed between GO sheets and PAN chains.

    c. The crystallinity,thermal stability and mechanical properties of the composite film were increased as compared with those of pure PAN.

    [1] Gries T, Rixe C, Steffens M, et al. Polyacrylic fibers[J]. Chem Fiber Int,2002, 52(4): 232-253.

    [2] Nguyen H Q, Deng B. Electrospinning and in situ nitrogen doping of TiO2/PAN nanofibers with photocatalytic activation in visible lights[J]. Mater Lett, 2012, 82(9):102-104.

    [3] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotech, 2008, 3(9): 563-568.

    [4] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nat Nanotech, 2009, 4(1): 25-29.

    [5] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett, 2009, 9(1): 30-35.

    [6] Chua C K, Pumera M. Reduction of graphene oxide with substituted borohydrides[J]. J Mater Chem A, 2013, 1(5): 1892-1898.

    [7] Fernández-Merino M J, Guardia L, Paredes J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. J Phys Chem C, 2010, 114(14): 6426-6432.

    [8] Sundaram R S, Gómez-Navarro C, Balasubramanian K. Electrochemical modification of grapheme[J]. Adv Mater, 2008, 20(16): 3050-3053.

    [9] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. J Amer Chem Soc, 1958, 80(6): 1339.

    [10] Kovtyukhova N I,Ollivier P J,Martin B R,et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem Mater, 1999, 11(3): 771-778.

    [11] Li F, Zheng Y, Wang B. Rheological behaviors of graphene oxide/polyacrylonitrile spinning solutions[J]. Mater Sci Forum, 2017, 898: 2187-2196.

    [12] Lei Shuai, Zhong Shan, Wang Yu, et al. Preparation of monodisperse reduced graphene oxide/polyacrylonitrile composite and its thermal-induced structural transformation[J]. Mater Lett, 2015, 161: 108-111.

    [13] Liu Jie, Zhou Peixun, Zhang Lifeng, et al. Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions[J]. Carbon, 2009, 47(4): 1087-1095.

    原位聚合法制備GO/PAN復(fù)合膜及其性能的研究

    李鳳美 鄭迎迎 李夢竹 王彪

    (東華大學(xué)材料科學(xué)與工程學(xué)院纖維材料改性國家重點實驗室,上海 201620)

    通過原位聚合法制備了氧化石墨烯/聚丙烯腈(GO/PAN)聚合物,采用水相成膜法制得GO/PAN復(fù)合膜,探討了聚合過程中GO用量對PAN的單體轉(zhuǎn)化率(Y)和增比黏度(ηsp)的影響,研究了GO/PAN復(fù)合膜的結(jié)構(gòu)和性能。結(jié)果表明:GO的加入使PAN的ηsp和Y都有所提高;當(dāng)加入GO質(zhì)量分?jǐn)?shù)為2%時,相對于PAN,其Y提高了13.4%,ηsp提高了77.3%;GO片層均勻地分布在GO/PAN復(fù)合膜基體當(dāng)中,并且GO與PAN之間存在一定的作用力;與純PAN相比,GO/PAN復(fù)合膜的結(jié)晶度、熱穩(wěn)定性和力學(xué)性能都得到一定程度提高,當(dāng)GO質(zhì)量分?jǐn)?shù)為2%時,所制得的GO/PAN復(fù)合膜的結(jié)晶度為47.9%,最大分解溫度304 ℃,600 ℃時質(zhì)量保持率為49.8%,強(qiáng)度為6.0 MPa。

    聚丙烯腈 氧化石墨烯 原位聚合 水相成膜 結(jié)構(gòu) 性能

    date:06-08-2017; revised date: 15- 08- 2017.

    Biography: Li Fengmei( 1990-), female, Ph. D candidate, is engaged in the research of fiber modification. E-mail:mayerlee@foxmail.com.

    Sinopec Group Project(32000000-16-200607-0007).

    *Correspondingauthorwbiao2000@dhu.edu.cn.

    TQ325+.8DocumentcodeAArticleID1001- 0041(2017)04- 0047- 04

    猜你喜歡
    聚丙烯腈水相成膜
    一種光控制的可逆配位交聯(lián)聚丙烯腈的制備及其循環(huán)利用方法
    凹凸棒土對種衣劑成膜性能的影響
    壓水堆二回路凝汽器母管內(nèi)壁的成膜胺保養(yǎng)工藝研究
    聚丙烯腈/水滑石復(fù)合薄膜及其制備方法和應(yīng)用
    海上中高滲透率砂巖油藏油水相滲曲線合理性綜合分析技術(shù)
    更 正
    新型鉆井液用成膜封堵劑CMF的研制及應(yīng)用
    地下水流速與介質(zhì)非均質(zhì)性對于重非水相流體運移的影響
    聚丙烯腈/棉纖維素薄膜的制備與性能研究
    中國塑料(2016年5期)2016-04-16 05:25:38
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
    久久久国产成人免费| 成人免费观看视频高清| 亚洲成人手机| 超色免费av| 日韩欧美一区二区三区在线观看 | 国内久久婷婷六月综合欲色啪| 91av网站免费观看| 热re99久久精品国产66热6| www.精华液| 中文字幕另类日韩欧美亚洲嫩草| 国产精品98久久久久久宅男小说| 国产成人一区二区三区免费视频网站| 中文字幕人妻丝袜一区二区| 亚洲一区二区三区不卡视频| 无人区码免费观看不卡| 亚洲成av片中文字幕在线观看| 亚洲自偷自拍图片 自拍| 日韩人妻精品一区2区三区| 18禁观看日本| 中国美女看黄片| 曰老女人黄片| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 久久国产精品人妻蜜桃| 国产免费现黄频在线看| 欧美不卡视频在线免费观看 | 精品福利永久在线观看| 国产精品影院久久| 久久精品亚洲av国产电影网| 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩精品亚洲av| 老司机在亚洲福利影院| 国产亚洲欧美98| 另类亚洲欧美激情| 淫妇啪啪啪对白视频| 久久精品91无色码中文字幕| 搡老岳熟女国产| 精品高清国产在线一区| 波多野结衣一区麻豆| 在线观看免费视频网站a站| 老熟妇乱子伦视频在线观看| 国产成人欧美在线观看 | 久9热在线精品视频| 黄色女人牲交| 国产精品亚洲一级av第二区| 久久人妻av系列| 成人黄色视频免费在线看| 国产一区二区激情短视频| 亚洲精品在线观看二区| 一二三四在线观看免费中文在| 国产aⅴ精品一区二区三区波| 国产精品偷伦视频观看了| 国产一区二区三区综合在线观看| 国产亚洲精品第一综合不卡| 亚洲五月色婷婷综合| 国产99久久九九免费精品| 女人精品久久久久毛片| 日本黄色日本黄色录像| 两性午夜刺激爽爽歪歪视频在线观看 | 免费一级毛片在线播放高清视频 | 老熟妇乱子伦视频在线观看| 亚洲欧美一区二区三区黑人| 啦啦啦免费观看视频1| 女人爽到高潮嗷嗷叫在线视频| 午夜成年电影在线免费观看| 亚洲精华国产精华精| 欧美激情极品国产一区二区三区| 亚洲 国产 在线| 色综合婷婷激情| 大片电影免费在线观看免费| 狠狠狠狠99中文字幕| 国产亚洲精品第一综合不卡| 亚洲欧美日韩另类电影网站| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区精品| 国产欧美亚洲国产| 新久久久久国产一级毛片| 超碰成人久久| 可以免费在线观看a视频的电影网站| 黄色视频,在线免费观看| 好男人电影高清在线观看| 成人精品一区二区免费| 精品欧美一区二区三区在线| 麻豆av在线久日| 国产精品二区激情视频| 涩涩av久久男人的天堂| 国产视频一区二区在线看| 亚洲在线自拍视频| 国产av又大| 91成年电影在线观看| 久久国产精品男人的天堂亚洲| 天天躁日日躁夜夜躁夜夜| 欧美日韩亚洲国产一区二区在线观看 | 韩国av一区二区三区四区| 夜夜夜夜夜久久久久| cao死你这个sao货| 91麻豆精品激情在线观看国产 | 可以免费在线观看a视频的电影网站| 99国产精品一区二区蜜桃av | 久久香蕉激情| 欧美日韩乱码在线| 久久国产乱子伦精品免费另类| 亚洲欧美一区二区三区久久| 高清在线国产一区| 日本一区二区免费在线视频| 满18在线观看网站| 在线视频色国产色| 丰满饥渴人妻一区二区三| 无限看片的www在线观看| 精品国产乱子伦一区二区三区| e午夜精品久久久久久久| 99riav亚洲国产免费| 18禁美女被吸乳视频| 久久久久久久午夜电影 | 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| www.自偷自拍.com| aaaaa片日本免费| 人人妻人人爽人人添夜夜欢视频| 涩涩av久久男人的天堂| 久久婷婷成人综合色麻豆| 黄色毛片三级朝国网站| 国产亚洲欧美精品永久| 亚洲人成电影观看| 久久国产精品大桥未久av| 午夜免费观看网址| 国产男靠女视频免费网站| 亚洲欧美日韩另类电影网站| 女人爽到高潮嗷嗷叫在线视频| 中出人妻视频一区二区| 免费不卡黄色视频| 黄片大片在线免费观看| 中国美女看黄片| 日韩熟女老妇一区二区性免费视频| 亚洲少妇的诱惑av| 亚洲专区国产一区二区| 在线十欧美十亚洲十日本专区| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 国产成人精品久久二区二区91| 日韩欧美一区二区三区在线观看 | 一边摸一边做爽爽视频免费| 老司机亚洲免费影院| 高清av免费在线| 成年女人毛片免费观看观看9 | 亚洲精品乱久久久久久| 日本一区二区免费在线视频| 麻豆av在线久日| 午夜亚洲福利在线播放| 国产精品九九99| 日韩欧美三级三区| 99re在线观看精品视频| 天天躁日日躁夜夜躁夜夜| 亚洲av成人av| 欧美性长视频在线观看| 夫妻午夜视频| 久久久久久久久久久久大奶| 亚洲欧美色中文字幕在线| 欧美激情久久久久久爽电影 | 欧美大码av| a级片在线免费高清观看视频| 亚洲国产精品合色在线| 美女扒开内裤让男人捅视频| 国产一区有黄有色的免费视频| 99香蕉大伊视频| 久久精品熟女亚洲av麻豆精品| 757午夜福利合集在线观看| 国产精品欧美亚洲77777| 久久精品国产清高在天天线| 激情视频va一区二区三区| 搡老乐熟女国产| 国产精华一区二区三区| 捣出白浆h1v1| 久久精品国产a三级三级三级| 色老头精品视频在线观看| 黄色a级毛片大全视频| 99久久国产精品久久久| 亚洲五月天丁香| 免费不卡黄色视频| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说 | 亚洲av日韩精品久久久久久密| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 脱女人内裤的视频| 老司机午夜福利在线观看视频| 最近最新中文字幕大全免费视频| 亚洲五月色婷婷综合| 法律面前人人平等表现在哪些方面| 日韩人妻精品一区2区三区| 日本精品一区二区三区蜜桃| 人人妻,人人澡人人爽秒播| 国产1区2区3区精品| 18禁裸乳无遮挡动漫免费视频| 国产亚洲欧美在线一区二区| 成人国产一区最新在线观看| 色综合婷婷激情| 可以免费在线观看a视频的电影网站| 午夜精品在线福利| 日韩欧美免费精品| 亚洲国产精品sss在线观看 | 欧美国产精品va在线观看不卡| 午夜精品久久久久久毛片777| 亚洲精品美女久久av网站| 激情视频va一区二区三区| 日日摸夜夜添夜夜添小说| 可以免费在线观看a视频的电影网站| 在线观看免费日韩欧美大片| 老汉色av国产亚洲站长工具| 少妇 在线观看| 免费一级毛片在线播放高清视频 | 免费看十八禁软件| 国产又色又爽无遮挡免费看| 老司机靠b影院| 高清欧美精品videossex| 国产精品成人在线| tube8黄色片| 免费观看精品视频网站| 亚洲成a人片在线一区二区| 成人免费观看视频高清| 久久精品熟女亚洲av麻豆精品| 999久久久国产精品视频| 亚洲国产精品合色在线| 91大片在线观看| www.精华液| 亚洲精品美女久久av网站| 极品少妇高潮喷水抽搐| 亚洲精品成人av观看孕妇| 韩国av一区二区三区四区| 成人18禁在线播放| av视频免费观看在线观看| 水蜜桃什么品种好| 性少妇av在线| 亚洲av日韩在线播放| 国产野战对白在线观看| 中文字幕精品免费在线观看视频| 99久久综合精品五月天人人| 后天国语完整版免费观看| 一级片免费观看大全| 国产精品一区二区在线观看99| 91麻豆精品激情在线观看国产 | 精品国产国语对白av| 国产男女内射视频| 亚洲色图 男人天堂 中文字幕| 99国产精品免费福利视频| av中文乱码字幕在线| 国产免费现黄频在线看| 日韩欧美在线二视频 | 波多野结衣一区麻豆| 亚洲久久久国产精品| 在线观看免费高清a一片| 国产成人影院久久av| 在线免费观看的www视频| 精品亚洲成a人片在线观看| 999久久久精品免费观看国产| 啦啦啦视频在线资源免费观看| 波多野结衣av一区二区av| 这个男人来自地球电影免费观看| 夜夜夜夜夜久久久久| 成人免费观看视频高清| 老熟女久久久| 一边摸一边做爽爽视频免费| 无限看片的www在线观看| 日日夜夜操网爽| 亚洲欧洲精品一区二区精品久久久| 最新在线观看一区二区三区| 丝袜人妻中文字幕| 满18在线观看网站| 国内毛片毛片毛片毛片毛片| 亚洲精品美女久久av网站| 久久中文看片网| 国产xxxxx性猛交| 又黄又爽又免费观看的视频| 亚洲精品国产色婷婷电影| 国产麻豆69| 成人手机av| 最近最新中文字幕大全免费视频| 精品电影一区二区在线| 建设人人有责人人尽责人人享有的| 亚洲国产欧美网| 成人18禁高潮啪啪吃奶动态图| 精品午夜福利视频在线观看一区| 一边摸一边抽搐一进一小说 | 国产男女内射视频| 国产国语露脸激情在线看| 国产三级黄色录像| 嫩草影视91久久| 麻豆成人av在线观看| 久久久久国产精品人妻aⅴ院 | 精品久久久久久久久久免费视频 | 黄色女人牲交| 国产深夜福利视频在线观看| 中文字幕制服av| 少妇 在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美性长视频在线观看| 在线观看66精品国产| 中文字幕高清在线视频| 一级毛片精品| 亚洲精品久久午夜乱码| 男男h啪啪无遮挡| 午夜91福利影院| 热re99久久国产66热| 欧美 亚洲 国产 日韩一| 精品福利观看| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 亚洲av日韩精品久久久久久密| 国产一区二区激情短视频| 色94色欧美一区二区| 少妇裸体淫交视频免费看高清 | 亚洲精品一卡2卡三卡4卡5卡| 757午夜福利合集在线观看| 建设人人有责人人尽责人人享有的| 亚洲中文字幕日韩| 国产精品综合久久久久久久免费 | 国产麻豆69| 很黄的视频免费| 多毛熟女@视频| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 黑人操中国人逼视频| 高清欧美精品videossex| 少妇猛男粗大的猛烈进出视频| 99国产精品一区二区三区| 好男人电影高清在线观看| ponron亚洲| 日韩免费av在线播放| 女人高潮潮喷娇喘18禁视频| 国产在线观看jvid| 国产一区二区三区在线臀色熟女 | 国产真人三级小视频在线观看| 免费少妇av软件| 日韩欧美三级三区| 久久香蕉国产精品| 色94色欧美一区二区| 色94色欧美一区二区| 亚洲av欧美aⅴ国产| 国产精品偷伦视频观看了| 69av精品久久久久久| 男女免费视频国产| 在线观看午夜福利视频| 高清毛片免费观看视频网站 | 在线观看日韩欧美| 日本vs欧美在线观看视频| 99久久综合精品五月天人人| 777米奇影视久久| 最新美女视频免费是黄的| 美女福利国产在线| 精品久久久精品久久久| 欧美乱色亚洲激情| 97人妻天天添夜夜摸| 又黄又粗又硬又大视频| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 不卡一级毛片| 自线自在国产av| 91字幕亚洲| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 日韩人妻精品一区2区三区| 女人精品久久久久毛片| 国产成人精品久久二区二区免费| 国产精品98久久久久久宅男小说| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女 | 少妇 在线观看| 不卡一级毛片| 亚洲av成人不卡在线观看播放网| 一级a爱片免费观看的视频| av在线播放免费不卡| 国产真人三级小视频在线观看| 国产精品免费一区二区三区在线 | 在线永久观看黄色视频| 国产男靠女视频免费网站| 午夜福利乱码中文字幕| 日本黄色日本黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 久久亚洲真实| 99久久国产精品久久久| 国产麻豆69| 国产高清国产精品国产三级| xxxhd国产人妻xxx| 日韩免费高清中文字幕av| 亚洲色图av天堂| 少妇粗大呻吟视频| 无遮挡黄片免费观看| 亚洲第一av免费看| 国产精品九九99| 91字幕亚洲| 国产精品久久久人人做人人爽| 精品一品国产午夜福利视频| a级片在线免费高清观看视频| 国产成人精品久久二区二区91| 国产成人av教育| 国产单亲对白刺激| 法律面前人人平等表现在哪些方面| 精品国内亚洲2022精品成人 | 色94色欧美一区二区| 欧美精品一区二区免费开放| www.精华液| 亚洲av成人一区二区三| 亚洲精品成人av观看孕妇| 亚洲国产精品sss在线观看 | 午夜影院日韩av| a级片在线免费高清观看视频| 欧美日韩亚洲综合一区二区三区_| 国产色视频综合| 人人妻人人澡人人看| 成人18禁在线播放| 黄色怎么调成土黄色| 水蜜桃什么品种好| 精品一区二区三区视频在线观看免费 | 久久婷婷成人综合色麻豆| 亚洲欧美日韩另类电影网站| 99国产精品一区二区三区| 国产片内射在线| 不卡av一区二区三区| 少妇 在线观看| 中文字幕精品免费在线观看视频| 我的亚洲天堂| av国产精品久久久久影院| 久热这里只有精品99| 韩国精品一区二区三区| 亚洲精品国产精品久久久不卡| 国产成人一区二区三区免费视频网站| xxxhd国产人妻xxx| 每晚都被弄得嗷嗷叫到高潮| 成在线人永久免费视频| 婷婷丁香在线五月| 99久久99久久久精品蜜桃| 国产精品免费一区二区三区在线 | www.精华液| 丝瓜视频免费看黄片| 成年人黄色毛片网站| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 香蕉久久夜色| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 免费不卡黄色视频| 在线观看www视频免费| 亚洲人成电影免费在线| 亚洲欧美激情在线| 中文字幕人妻熟女乱码| 免费在线观看影片大全网站| 精品国产一区二区久久| 97人妻天天添夜夜摸| 国产成人精品无人区| 色播在线永久视频| 免费高清在线观看日韩| 日韩免费高清中文字幕av| 一夜夜www| 亚洲国产欧美网| 亚洲精品中文字幕一二三四区| 黄色毛片三级朝国网站| 他把我摸到了高潮在线观看| 91老司机精品| 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 十八禁高潮呻吟视频| 母亲3免费完整高清在线观看| 一级黄色大片毛片| 电影成人av| 99国产精品99久久久久| 极品教师在线免费播放| 日日爽夜夜爽网站| 日韩欧美免费精品| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 久久精品国产综合久久久| 色94色欧美一区二区| 热99国产精品久久久久久7| 91av网站免费观看| 免费在线观看日本一区| 黄色视频,在线免费观看| 国产激情欧美一区二区| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 国产精品自产拍在线观看55亚洲 | 50天的宝宝边吃奶边哭怎么回事| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 最近最新免费中文字幕在线| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 国产亚洲一区二区精品| 日本wwww免费看| 国产不卡一卡二| 国产精品一区二区在线不卡| 三上悠亚av全集在线观看| 很黄的视频免费| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 在线观看午夜福利视频| 亚洲全国av大片| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女 | www日本在线高清视频| 久久久久久久午夜电影 | 免费在线观看日本一区| 精品国产美女av久久久久小说| 可以免费在线观看a视频的电影网站| 精品亚洲成a人片在线观看| 操美女的视频在线观看| 一进一出抽搐gif免费好疼 | 99国产综合亚洲精品| 久久久久国产精品人妻aⅴ院 | 伦理电影免费视频| 精品亚洲成国产av| 一级作爱视频免费观看| 久久热在线av| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 一本综合久久免费| 国产一区二区激情短视频| 国产高清国产精品国产三级| 午夜福利欧美成人| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 亚洲av第一区精品v没综合| 91精品国产国语对白视频| 宅男免费午夜| 久久久国产成人精品二区 | 人人澡人人妻人| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 精品福利观看| а√天堂www在线а√下载 | 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影| netflix在线观看网站| 欧美激情 高清一区二区三区| 国产亚洲欧美精品永久| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 一边摸一边做爽爽视频免费| 两人在一起打扑克的视频| 十八禁高潮呻吟视频| 女人精品久久久久毛片| 久久久精品免费免费高清| 国产精品永久免费网站| 免费高清在线观看日韩| 亚洲三区欧美一区| 久久久国产成人精品二区 | 久久精品成人免费网站| 亚洲少妇的诱惑av| 两个人看的免费小视频| 18禁美女被吸乳视频| 亚洲国产欧美日韩在线播放| 亚洲精品国产一区二区精华液| 久久久水蜜桃国产精品网| 手机成人av网站| 99久久国产精品久久久| 欧美午夜高清在线| 午夜福利影视在线免费观看| 亚洲熟女精品中文字幕| avwww免费| 美女福利国产在线| 99riav亚洲国产免费| 久久久国产欧美日韩av| 夫妻午夜视频| 亚洲久久久国产精品| 久久久久国产精品人妻aⅴ院 | 精品一区二区三卡| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 色老头精品视频在线观看| a在线观看视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 欧美亚洲| 国产成人精品在线电影| 欧美不卡视频在线免费观看 | 欧美不卡视频在线免费观看 | 一本综合久久免费| 亚洲精品中文字幕一二三四区| 国产亚洲精品一区二区www | 国产精品永久免费网站| 久久国产精品大桥未久av| 超碰成人久久| 在线观看午夜福利视频| 欧美av亚洲av综合av国产av| 免费av中文字幕在线| 久久中文字幕一级| 高清欧美精品videossex| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 一二三四在线观看免费中文在| 久久久精品国产亚洲av高清涩受| 国产淫语在线视频| 91在线观看av| av网站免费在线观看视频| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 精品高清国产在线一区| 男女免费视频国产| 好男人电影高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久人人爽av亚洲精品天堂| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 亚洲精品美女久久av网站| 精品福利观看| 中文欧美无线码| 人妻 亚洲 视频| 99精品在免费线老司机午夜| 18在线观看网站|